
Automatic recognition of linguistic replacements in text series generated from
keystroke logs

Daniel Couto-Vale, Stella Neumann, Paula Niemietz
RWTH Aachen University, Germany
Kármánstr. 17-19, D-52062 Aachen

danielvale@icloud.com, {firstname.familyname}@ifaar.rwth-aachen.de

Abstract
This paper introduces a toolkit used for the purpose of detecting replacements of different grammatical and semantic structures in ongo-
ing text production logged as a chronological series of computer interaction events (so-called keystroke logs). The specific case we use
involves human translations where replacements can be indicative of translator behaviour that leads to specific features of translations that
distinguish them from non-translated texts. The toolkit uses a novel CCG chart parser customised so as to recognise grammatical words
independently of space and punctuation boundaries. On the basis of the linguistic analysis, structures in different versions of the target
text are compared and classified as potential equivalents of the same source text segment by ‘equivalence judges’. In that way, replace-
ments of grammatical and semantic structures can be detected. Beyond the specific task at hand the approach will also be useful for the
analysis of other types of spaceless text such as Twitter hashtags and texts in agglutinative or spaceless languages like Finnish or Chinese.

Keywords: translation process, keystroke logging, character chart parser

1. Introduction

In a naı̈ve approach, it would be assumed that the task of
translating consists in giving literal renditions of the words
of the source language text in the target language, i.e. in
finding equivalent words for each word in the source text
and simply replacing the source text words by these target
language words in the same order. However, various factors
such as the incommensurability of the languages involved,
differences in the situational features that determine a reg-
ister, specific goals and guidelines of the translation brief
among others will result in non-literal translations.
Moreover, the task of mediating between two potentially
different lingua-cultures also leads to translations being dif-
ferent in terms of the distribution of linguistic features from
original text production in the target language in several
ways (Hansen-Schirra et al., 2012). Machine learning ap-
proaches to translation as a sub-language (‘translationese’)
report high accuracies in classifying texts as translations
and non-translated texts in a mixed set based on proper-
ties such as mean 1-gram length, frequencies of spellings
of derivational and inflectional prefixes and suffixes, ratio
between function words and content words (Volansky et al.,
2015). While such studies provide evidence for the claim
that translations are indeed different from non-translated
texts, they do not easily support explanations for the ob-
served differences. It is also assumed that some of the sta-
tistical patterns are caused not by linguistic and cultural dif-
ferences, but by cognitive factors such as (lack of) under-
standing of the source text and fatigue by the translator.
Process-oriented translation research aims at characteris-
ing this cognitive activity in terms of translators’ behaviour
during the translation task. For this purpose, keystroke log-
gers such as Translog (Jakobsen and Schou, 1999; Carl,
2012) are used to record and replay the text-producing ac-
tions of different translators in the task of translating the
same source text from language A to language B. Instead
of analysing corpora of the products of the translation pro-

cess in the carefully composed final order in which they are
deemed to best achieve their goals, log files represent the
text production process as a chronological series of com-
puter interaction events (log events such as character key
strokes and hot key strokes, mouse clicks etc.). A text pro-
duction process will always include sequences of uninter-
rupted text production, but it may also include (i) poten-
tially discontinuous modifications (insertions, deletions) of
text produced so far when an existing part of the text is
modified at a later stage and (ii) actions of changing cur-
sor positions, in which case insertions in the middle of the
produced text move the tail of the text right and down to
other screen coordinates. Especially in the revision phase
towards the end of the text production process, modifica-
tions consisting of individual log events occur at various
places of the text produced so far.
Processual data enables researchers not only to align source
text segments with segments of the final target text (?,
‘equivalence’, cf)]Catford:1965vc, but also to track the se-
ries of possible alternate equivalents produced by one and
the same translator for the same original segment through-
out time. Intermediate (non-final) target texts offer a unique
opportunity for researchers to observe intermediary stages
of a chained transfer procedure and also to infer personal
and collective preferences between divergent equivalents
when translators consider two or more alternates.
Keyloggers are useful for collection of such data since they
store timestamped text-producing actions by the translator.
Figure 1 illustrates an action of replacing the underlined
part of the nominal group eines solchen Balls Papier (‘of
such a ball of paper’) by the more frequent wording eines
solchen Papierballs (‘of such a paper ball’). This replace-
ment actually consists of backwards deleting 12 individual
characters from lines 1622 to 1633 and inserting 11 charac-
ters from lines 1634 to 1644 in the XML representation of
the log events.
The human analyst interested in understanding which tex-
tual units attract particular attention (and which ones do

3617



Figure 1: Log events in Translog XML (lines 1620-1650
out of 4072).

not) is faced with the task of reassembling such individ-
ual log events (see Figure 1) into strings of letters of un-
folding words for further analysis of, say, which linguis-
tic elements are replaced and what they are replaced by.
Though log files are comprehensive and very useful, man-
ually analysing such data is at times cumbersome and at
times altogether impossible for the human analyst. Among
the reasons why analysis is so difficult is the fact that trans-
lators’ actions during text production affect an intermedi-
ary text produced until then that the analyst does not have
access to visually and must reconstruct mentally from the
beginning of the file.
In this paper we present a method for creating a human-
inspectable visualisation of keystroke logs in a corpus of
keystroke logging files and of automatically analysing them
linguistically, which allows us to detect replacements of
grammatical and semantic structures between different text
versions automatically. The remainder of the paper is or-
ganised as follows. Section 2 will elaborate on the role that
replacements play in translation and why a computational
tool is useful for analysing them. The toolkit developed
for the analysis of replacements is introduced in two steps:
In Section 3 the approach to parsing log files is explained,
while Section 4 discusses the approach to detecting alter-
nate translation attempts in the log files. Section 5 provides
details on the evaluation of the toolkit we developed. Sec-
tion 6 discusses the limitations of our toolkit, and, finally,
Section 7 summarises the main findings and provides an
outlook on future work.

2. The role of replacements in translation
Experimental studies have shown that translators approach
their task in a cyclic fashion, not simply translating one
source text segment by a final target text segment, but rather
attempting a translation and coming back to it for revision
potentially at various times during the translation process
(Carl, 2009; Alves and Couto-Vale, 2011). Especially in
cases when the translator finds it difficult to map lexical,
grammatical or semantic structures between the languages,
the translation may be attempted in several ways involving
replacements of previously written segments by new ones.
For instance, this can involve packing phenomena repre-
sented by a clause in an earlier translation attempt into a
segment represented by a nominal group, a strategy that

will often include nominalisations. When we detect such
a replacement, we gather evidence that some translations
might be divided into a first transfer procedure between
similar verbal representations in each language (clause to
clause, nominal group to nominal group) and a second pro-
cedure between representations of different ranks in the
same language. This means that a rank shift might hap-
pen between two target representations and not necessarily
between source and target ones for the translation of some
segments. It is equally conceivable that the first transfer
procedure already involved a rank shift across languages
(nominal group to clause) with the second procedure in-
volving another rank shift (clause to nominal group) result-
ing in a final translation that appears inconspicuous when
only comparing the source text with the final translation
product.
Steps of translations such as these can be reconstructed
from logged text-affecting actions. This type of informa-
tion may yield insight among others into how specific fea-
tures of translations come about. Rank shifts and other
translational phenomena have been discussed for a long
time (Vinay and Darbelnet, 1958). More recently, Cyrus
(2006) and Čulo et al. (2008) provided corpus evidence
that transfer procedures have a residual effect on translated
texts. In addition, a better understanding of such procedures
has also been recognised as a bottleneck for machine trans-
lation (Helmreich et al., 2004). Therefore, modelling how
humans translate may result not only in a theory of transla-
tion better capable of describing, explaining, and predicting
translational phenomena but also in a better understanding
of what can be done to improve machine translation.

Figure 2: Beginning of a text series file

Keystroke logs contain detailed timestamped descriptions
of translators’ sequential text-affecting actions such as
‘pressing the P key while the shift key is held down and
while the cursor is at position 110 in the text’ (line 1634 in
Figure 1). However, since characters are inserted at the cur-
sor position (not always at the end of the text written so far)
and since inserted characters may replace selected text seg-
ments, analysing keystroke logs linguistically through in-
spection is difficult even for the most elementary tasks such
as that of recognising inserted words. For the harder tasks
of recognising insertions and replacements of grammatical
and semantic structures, which are where new insights are
to be achieved, it becomes altogether impossible.

3618



A computational tool should help detect and visualise
keystrokes on related text-affecting actions to support fur-
ther analysis. We demonstrate such a tool based on
analysing a keystroke logged corpus collected by Serbina
et al. (2015). The corpus contains the logs generated with
Translog v. 3.0.1 based on 16 translations of a popular-
scientific text about the physical properties of the action of
crumpling paper.1

The computational task involves, among other things, iden-
tifying meaningful grammatical units from a not neces-
sarily meaningful stream of log events that may include
keystrokes in an inconsistent order from the linguistic point
of view as well as identifying versions of the ongoing text
production that are actually modifications of the same ele-
ment (e.g. the replacement of Balls Papier by Papierballs
in Figure 1) and not chance occurrences of similar lexico-
grammatical items that are to be expected to occur multiple
times in a text on a given topic. Our solution to this task in-
volves drawing on grammatical analysis already in the ini-
tial task of identifying meaningful units in the intermediary
versions of the target text.
Drawing on a computational solution to the problem laid
out here also has an additional advantage. Since the units
that the parser recognises (see Section 3) are not necessar-
ily unambiguous, the parser will produce several alterna-
tive analyses (a standard approach to handling ambiguous
items in language data). This is seen as a major advantage
for the purposes of the present analysis, because the ambi-
guity of the text production data is intended to be kept in
the linguistic analysis. In many cases, it will be impossible
to determine which of the possible readings of an incom-
plete textual unit was intended by the author. Drawing on
an approach to a similar problem in learner corpus research
(Lüdeling, 2008), the various readings are captured as tar-
get hypotheses, i.e. the analyst’s different interpretations of
the target construction the learner/writer attempted to use,
rather than deliberately narrowing down the possible read-
ings to the one the analyst happens to prefer.

3. How to parse texts
For recognising replacements, we first developed a soft-
ware2 for creating a text series file for each log file. Each
line of these files contains four tab separated values: a
timestamp of a text-producing action and the resulting dot
position, mark position,3 and text (see Figure 2).
Because these files are too large for any thorough manual
annotation, we used a parser for annotating all text ver-
sions. Since we were interested in replacements such as
Ball Papier (‘ball of paper’ in German) by Papierball (‘pa-
per ball’), we could not rely on gram-based chart parsers.
For that reason, we customised the OpenCCG chart parser
(Steedman and Baldridge, 2011) so that it is capable of
recognising grammatical words independent of space and

1One file had to be excluded from our analysis due to poor
translation quality. Another file had to be discarded at a later stage
due to incomplete logging of mouse interactions by Translog (see
Section 5).

2Software available at https://github.com/DanielCoutoVale/TranslogToolset
3Documentation: https://docs.oracle.com/javase/tutorial/uiswing/events/caretlistener.html

punctuation boundaries.4 In particular, this parser is capa-
ble of recognising Papier and ball as two different words
even when they are written together as in Papierball.
Figure 3 illustrates an automatically recognised replace-
ment of a 2-gram by a 1-gram. The first segment high-
lighted in pink is the replaced 2-gram and the second one
highlighted in purple is the substitute 1-gram.

Figure 3: Replacement of Balls Papier by Papierballs au-
tomatically recognised and highlighted in our application

Our new method of parsing does not treat all space-
separated letter sequences (1-grams or orthographic
words5) as word spellings. By separating the notion of
1-gram from that of word spelling, we were able to con-
sider any sequence of morphemes a separate grammatical
word according to our needs. As a result, we could treat
both the 1-gram Papierballs ‘paper ball’ and the 2-gram
Balls Papier ‘ball of paper’ as a sequence of two grammat-
ical words. This way of cutting strings (see Section 4) into
word spellings and not grams shall facilitate the next step
of judging whether two wordings are alternate equivalents.

eines∗ solchen∗ Balls∗ Papier∗
Modifier Modifier2 Head Modifier

– – Thing Material

Table 1: A 4-gram with 4 grammatical words

eines∗ solchen∗ Papier balls∗
Modifier Modifier2 Modifier Head

– – Material Thing

Table 2: A 3-gram with 4 grammatical words

In Tables 1 and 2, the symbol ∗ represents a space ‘inside’
a word spelling, the last character of a word spelling being
usually a space. However, since word spellings are not nec-
essarily 1-grams, not all word spellings recognised by our
parser end in a space character. Some of them such as Pa-
pier in the nominal group eines∗solchen∗Papierballs∗ end
with a letter, in this case the letter r.
The process for achieving this is the following. First an
n × n matrix is created where n is the number of charac-
ters in the text string. Each celli, j of the matrix represents

4Parser available at https://github.com/DanielCoutoVale/openccg
5An n-gram is a sequence of n orthographic words.

3619



a substringi, j where i is the initial character of the string
and j is the last. Because i must be lesser or equal j only
half of the matrix can be filled. Matrices of this kind are
called ‘charts’ in parsing. The difference between our chart
parser and traditional chart parsers is that we use a ‘charac-
ter chart’ whereas other approaches use ‘1-gram charts’.
The first module that fills the chart is a word spelling recog-
niser. This module recognises all word spellings that are
predicted with an internal vocabulary. In our case, we cre-
ated the internal vocabulary based on a corpus of the final
target texts by translators. Since we have several transla-
tions of the same original text, the coverage of the word
spelling recogniser is close to 100% for intermediate ver-
sions.
From that point on, a combinatory categorial unifier takes
words as instances of ‘combinatory categories’ and unites
them according to the combinatory rules that apply to each
structure category. Two grammatical structures categorised
according to combinatory rules are only to be united if the
spelling of the first ends immediately before the spelling
of the second and if the combinatory rules allow it. Each
composite structure produced by the parser has a spelling
resulting from the concatenation of the spellings of its parts.
Each composite structure is put into a chart cell that corre-
sponds to its spellings. Figure 4 shows a filled character
chart for the 2-gram ein Papierball ‘a paper ball’. Notice
that both the incomplete structure for the substring1 − 10

and that for the substring 5 − 15 are inserted. The complete
nominal group for the substring 1 − 15 is inserted into the
chart as expected.

Figure 4: A character chart filled with complete and incom-
plete grammatical structures.

Since our parser fills a character chart by recognising
word spellings and uniting structures based on their com-
binatory categories, it does not depend on a prepro-
cessing with a 1-gram tokeniser nor a part-of-speech
tagger (pos-tagger). As a result, both grammatical
structures eines∗solchen∗Balls∗Papier∗ in Table 1 and
eines∗solchen∗Papierballs∗ in Table 2 could be treated by
our parser as nominal groups directly composed of four
words with no intermediary unit corresponding to the 1-
gram Papierballs∗. In other words, our parser does not need
to take 1-grams as grammatical atoms from a preprocessing
phase nor to build up any structure that corresponds to them
in order to complete a linguistic analysis. In that sense, our
parser does not distinguishes the two structures in Tables
1 and 2 but by the fact that they differ in word order and
that the chosen word spellings are also different (Balls∗ vs

balls∗ and Papier∗ vs Papier).
Once parsing is finished, a semantic structure is created in
terms of what nominal groups represent. Tables 3-5 are
examples of such semantic structures. The prefix eum:
stands for Experiential Upper Model (Bateman et al., 2010)
whereas the prefix deu: stands for Deutsches Unteres Mod-
ell ‘German Lower Model’.

Superclass Subclass
eum:Thing deu:Ball

eum:Material deu:Papier

Table 3: eines solchen Balls Papier as representation

Superclass Subclass
eum:Thing deu:Ball

eum:Material deu:Papier

Table 4: eines solchen Papierballs as representation

Superclass Subclass
eum:Thing deu:Ball

eum:Material deu:Papier

Table 5: der Papierball as representation

Superclass Subclass
eum:Thing deu:Kugel

eum:Material deu:Papier

Table 6: eine Papierkugel as representation

Contrary to grammatical structures, two representations
such as those in Tables 3 and 4 can be identical even if
the word sequences are different. Moreover, two represen-
tations such as those in Tables 4 and 5 can also be identical
despite the fact that the grammatical case and the deictic
terms of the nominal groups are different. Furthermore,
two representations such as those in Tables 5 and 6 can be
alternate equivalents of the same original during a transla-
tion even if they differ as far as representation is concerned.
All classes of phenomena specified in a general upper
model such as things and materials are further specified
with language specific classes of representable phenomena
(taxa). These general and specific classifications of repre-
sentable phenomena are what enables a system to detect
alternates as we shall demonstrate in the next section.

4. How to detect alternates
We implemented a procedure to ‘difference’ the parse
charts of each pair of consecutive target text versions. It
generates a ‘chart difference’ for each pair in the same way
as version control systems do for different file versions,
in our case keeping track of insertions and deletions of
lexicogrammatical and semantic structures from a chart to
the next. By comparing two consecutive charts, we detect
which grammatical structures are present in only one of the

3620



two charts, indicating that a structure was added to or re-
moved from the unfolding translation. For example, each
time the second text string is one character shorter than the
first, the procedure searches for all the structures that exist
in the first chart either at the same position as in the second
chart or one position before. If the structure is not found
there, then it is considered removed.
A second procedure iterates over the chart difference se-
ries to find replacements. Whenever it finds a removal of
a grammatical structure, it searches for additions of struc-
tures in the 50 following differences in a window of 25
characters from the dot position. If it finds an addition of
structure, it sends the removed-added structure pair to soft-
ware modules that we called ‘equivalence judges’.
For each segment of text, the parser builds zero or more
lexicogrammatical structures, each one associated with the
corresponding semantic structures in the form of entities.
When a removed grammatical structure is compared with
an added structure for equivalence, the ‘equivalence judges’
are activated. If the structures in the pair are judged by any
of the judges to be potential equivalents of the same seg-
ment in the source text, they are kept in the list of replace-
ments.
Two equivalence judges have been implemented so far. The
first equivalence judge checks whether two references to an
entity are references to instances of the same type. For in-
stance, eines solchen Balls Papier (‘such a ball of paper’)
and eines solchen Papierballs (‘such a paper ball’) are in-
stances of the same class of things made of the same mate-
rial. Although lexicogrammatically different, these entities
are identical as far as their semantics is concerned. The
second equivalence judge checks whether two references
to an entity are references to instances of different but in-
terchangeable types in a given situation. For instance, ein
zerknülltes Blatt Papier (‘a crumpled sheet of paper’) and
eine Papierkugel (‘a paper ball’) are indeed two ways of
classifying things, but they happen to be references to the
same thing and are in the same textual position. In that
sense, the second equivalence judge checks whether two
entity classes are interchangeable ways of classifying the
same thing in a given situation. This equivalence judge re-
lies on user-specified groups of classes of phenomena. The
information used for the equivalence judges has to be pro-
vided by the human analyst for each specific domain based
on the divergent equivalents found in the corpus of the final
translations of the source text.

5. Evaluation
For calculating precision, we used the whole corpus and all
hits of our algorithm. For calculating recall, we manually
detected the first two and the last two non-overlapping re-
placements in each text series files. When less than four
replacements occurred in a text series file, we counted each
once. There are 55 instances of replacements in our test
sample, resulting in a granularity of 2%.6

We ran the software over 15 text series files. All but the
last were successfully processed (see Footnote 1, Section

6Each replacement that is recalled corresponds to an approxi-
mate increase of 2% to the total count.

2). Out of the 14 remaining files, the replacement detection
had 405 hits with 92% precision and 22% recall without
any tuning.
A large fraction of the non-recognised replacements were
changes in the way things are classified. In a random sam-
ple, these accounted for 22% of the cases. To increase
recall, we created interchangeability groups that are rele-
vant for the field of activity of our texts, based on the vo-
cabulary of the target text. These groups included repre-
senting the same portion of matter either as a ‘crumpled
sheet’ (zerknülltes Blatt, zerknittertes Blatt, and verknit-
tertes Blatt) or as a ‘ball’ (Kugel, Ball, and Bündel). When
we added such thing class interchangeability groups to our
German linguistic resource, we increased hits by 113 to a
total of 518. Recall rose in the test sample to 25%. Pre-
cision rose collaterally from 92% to 94% because of the
newly recognised replacements.
For improving recall, we implemented a filter that relies
on a user-specified blacklist of classes of things that we
do not expect in the current translation task. We manu-
ally tagged the wrongly recognised replacements in the list.
All of them consisted of segments of words such as ich in
Gewicht, sich and nicht, as du in durch, such as menge in
zusammengedrückt and such as änderung in Veränderung.
By adding references to people, sets, types, and the noun
änderung (changes) to our blacklist, we excluded all and
only the 32 wrong hits, resulting in an increase in precision
from 94% to 100% without affecting recall.
Inspecting the test sample shows that 31% of the replace-
ments are neither replacements of identical classes nor re-
placements of interchangeable classes and are therefore not
covered by the equivalence judges implemented so far.

6. Discussion
Our method of recovering replacements in text series files
has a satisfactory precision and recall for the researched
register in our German corpus. Recall can be improved
with a better lexical coverage and tuning. The remaining
31% of replacements will be more costly to detect auto-
matically because they involve a variety of linguistic phe-
nomena. These phenomena include:

1. typing of a word spelled in the source language but
capitalised according to German graphology: e.g. En-
ergy replaced by Energie;

2. replacing an elliptic reference by a non-elliptic one:
e.g. [...] Kanten [...] und kleinere werden gebildet re-
placed by [...] Kanten [...] und kleinere Kanten wer-
den gebildet; and

3. grammatical ‘unpacking’ of semantic content.

There are two examples of unpacking from phrasal to
clause-level units in our test sample: die in die Speicherung
von Energie involviert sind (‘which are involved in the stor-
age of energy’) being replaced by in denen Energie gespe-
ichert wird (‘in which energy is stored’) or Die Erklärung
(‘the explanation’) being replaced by zu erklären (‘to ex-
plain’) (Serbina et al., 2015). Unpackings account for ap-
proximately 4% of all replacements. Since such unpackings

3621



are of particular interest from the point of view of transla-
tion studies, this is an aspect that will be addressed in future
work.
Two important points remain to be made. First, we noticed
that our hit list contains replacements that were hard to de-
tect – e.g. instances when local changes have implications
for larger structures – and thus overlooked during manual
creation of the test sample. We take this as evidence for
the unreliability of manual inspection of such data. Sec-
ond, the high cost of manual analysis prohibits attempts to
increase support for low-frequency phenomena without au-
tomation. For this data, we foresee that further replacement
types can be detected through the implementation of addi-
tional equivalence judges.

7. Conclusion
In this paper, we presented an open-source toolkit for gen-
erating text series files, parsing without word boundaries,
and detecting replacements in text series files. With this
toolkit, we are now able to describe the behaviour of trans-
lators with a corpus size and a reliability that was up to now
unfeasible with human analysts. We hope to have shown
that the effort of providing domain-specific information for
the equivalence judges is justified because it gives access
to modifications made during the translation process which
are otherwise simply not reliably accessible to the human
analyst.
In our own research, the tool will be used to analyse which
grammatical features are particularly likely to attract atten-
tion during the translation process in the form of (repeated)
replacements across participants. Moreover, such observa-
tions and inferences can contribute to our general under-
standing of language as a meaning-making resource and to
our understanding of why translations tend to display un-
typical grammatical and semantic patterns.
These tools are not only important for translation stud-
ies, but also for research in other areas such as authoring
tools (Rösener, 2010) and MT post-editing (Koehn, 2009).
Moreover, a parser that does not rely on space bound-
aries may be used to process spaceless fragments of a text
such as Twitter hashtags (Couto-Vale and Hansen-Ampah,
2016), texts in agglutinative languages such as Turkish, and
Finnish, and texts in predominantly spaceless languages
such as Chinese and Japanese.

8. Acknowledgements
The research reported here was funded by the German Re-
search Council, grant no. NE 1822/2-1.

9. Bibliographical References
Alves, F. and Couto-Vale, D. (2011). On drafting and revi-

sion in translation: a corpus linguistics oriented analysis
of translation process data. Translation: Corpora, Com-
putation, Cognition, 1(1):105–122.

Bateman, J. A., Hois, J., Ross, R., and Tenbrink, T. (2010).
A linguistic ontology of space for natural language pro-
cessing. Artificial Intelligence, 174:1027–1071.

Carl, M. (2009). Triangulating product and process data:
quantifying alignment units with keystroke data. In In-
ger M. Mees, et al., editors, Methodology, Technology

and Innovation in Translation Process Research, num-
ber 38 in Copenhagen Studies in Language, pages 225–
247. Samfunds Litteratur, Frederiksberg.

Carl, M. (2012). Translog-II: a Program for Recording
User Activity Data for Empirical Reading and Writ-
ing Research. In Proceedings of the Eight Interna-
tional Conference on Language Resources and Evalu-
ation (LREC’12), Istanbul, Turkey. European Language
Resources Association.

Couto-Vale, D. and Hansen-Ampah, A. (2016). The mean-
ing of hashtags matters: detecting hashtags such as #je-
suiskouachi. In Proceedings of the 8th International
Corpus Linguistics Conference (CILC 2016), page 29,
Málaga.

Čulo, O., Hansen-Schirra, S., Neumann, S., and Vela, M.
(2008). Empirical Studies on Language Contrast Us-
ing the English-German Comparable and Parallel CroCo
Corpus. In Proceedings of LREC 2008, pages 47–51,
Marrakesh.

Cyrus, L. (2006). Building a resource for studying transla-
tion shifts. In Proceedings of LREC 2006, pages 1240–
1245, Genoa, Italy.

Hansen-Schirra, S., Neumann, S., and Steiner, E. (2012).
Cross-linguistic Corpora for the Study of Translations
- Insights from the language pair English-German. de
Gruyter Mouton, Berlin.

Helmreich, S., Farwell, D., Dorr, B., Habash, N., Levin, L.,
Mitamura, T., Reeder, F., Miller, K., Hovy, E., Rambow,
O., and Siddharthan, A. (2004). Interlingual Annotation
of Multilingual Text Corpora. In Adam Meyers, editor,
HLT-NAACL 2004 Workshop: Frontiers in Corpus Anno-
tation, pages 55–62, Boston, Massachusetts, USA, May.
Association for Computational Linguistics.

Jakobsen, A. L. and Schou, L. (1999). Translog documen-
tation. In Gyde Hansen, editor, Probing the process in
translation: Methods and results, pages 9–20. Samfunds
Litteratur, Frederiksberg.

Koehn, P. (2009). A process study of computer-aided
translation. Machine Translation, 23(4):241–263.

Lüdeling, A. (2008). Mehrdeutigkeiten und Kate-
gorisierung: Probleme bei der Annotation von Lernerko-
rpora. In Maik Walter et al., editors, Fortgeschrittene
Lernervarietäten: Korpuslinguistik und Zweitspracher-
werbsforschung, pages 119–140. Niemeyer, Tübingen.

Rösener, C. (2010). Computational linguistics in the trans-
lator’s workflow—combining authoring tools and trans-
lation memory systems. In Proceedings of the NAACL
HLT 2010 Workshop on Computational Linguistics and
Writing: Writing Processes and Authoring Aids, pages
1–6, Los Angeles.

Serbina, T., Niemietz, P., Fricke, M., Meisen, P., and Neu-
mann, S. (2015). Part of speech annotation of interme-
diate versions in the keystroke logged translation corpus.
In Proceedings of the 9th Linguistic Annotation Work-
shop, pages 102–111, Denver.

Steedman, M. and Baldridge, J. (2011). Combinatory Cat-
egorial Grammar. In Robert Borsley et al., editors, Non-
Transformational Syntax, pages 181–224. Oxford UK.

Vinay, J.-P. and Darbelnet, J. (1958). Stylistique Comparée

3622



du Français et de l’Anglais: Méthode de Traduction. Di-
dier, Paris.

Volansky, V., Ordan, N., and Wintner, S. (2015). On the
features of translationese. Digital Scholarship Humani-
ties, 30(1):98–118.

3623


