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Abstract

This paper describes a novel approach for the
task of end-to-end argument labeling in shal-
low discourse parsing. Our method describes a
decomposition of the overall labeling task into
subtasks and a general distance-based aggrega-
tion procedure. For learning these subtasks, we
train a recurrent neural network and gradually
replace existing components of our baseline by
our model. The model is trained and evalu-
ated on the Penn Discourse Treebank 2 corpus.
While it is not as good as knowledge-intensive
approaches, it clearly outperforms other mod-
els that are also trained without additional lin-
guistic features.

1 Introduction

Shallow discourse parsing (SDP) is a challeng-
ing problem in NLP with the aim to identify lo-
cal coherence relations in text. Discourse rela-
tions are used in text to connect individual seg-
ments of text logically. The Penn Discourse Tree-
bank (PDTB) (Prasad et al., 2008a) adopts a non-
hierarchical view on discourse relations. As an ex-
ample from the PDTB, the sentence:

• We would stop index arbitragewhen the mar-
ket is under stress.

contains an explicit discourse relation which is sig-
naled through the underlined connective (Conn)
and further consists of two arguments (Arg1 in
italics and Arg2 in bold). In addition, a sense is
assigned to a relation, such as Condition.
Discourse analysis, however, does not work on

a sentence-level, but takes full documents into ac-
count. Often, short paragraphs suffice to show the
challenge in extracting overlapping relations. To il-
lustrate the problem,we split the paragraphs shown
in Figure 1 into small text chunks. Though our im-
plementation works on the level of individual to-

If you think you have stress-related problems on the job,
there’s good news and bad news. You’re probably right, and
you aren’t alone.
. . .
Even the courts are beginning to recognize the link between
jobs and stress-related disorders in compensation cases, ac-
cording to a survey by the National Council on Compensation
Insurance. But although 56% of the respondents in the study
indicated that mental-health problems were fairly pervasive
in the workplace, there is still a social stigma associated with
people seeking help.
Figure 1: Excerpt from text WSJ 1582 (PDTB corpus)

Text Chunk R1 R2 R3
If Conn Arg1
you think you have
stress-related problems on
the job,

Arg2 Arg1

there’s good news and bad
news.

Arg1 Arg1

You’re probably right, Arg2 Arg1
and Arg2 Conn
you aren’t alone Arg2 Arg2

Table 1: First sample paragraph split into text chunks.

kens, we here use these chunks to highlight chal-
lenges in discourse argument labeling. The chunks
are delimited such that no smaller part would play
exactly the same role for the various relations in-
volved.
The first example (cf. Table 1) shows that (1)

each relations argument contains an arbitrary num-
ber of tokens. Further, (2) chunks may have mul-
tiple functions (class labels) referring to different
individual relations, e.g. the “if” of the first chunk
is the connective of R1, while in R2 it is part of the
first argument. As a special case, (3) they can have
the same class label but pointing to different rela-
tions. Finally, (4) there is no generally fixed linear
order for the classes Arg1, Arg2, Conn, although
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Text Chunk R4 R5
Even the courts are beginning to
recognize the link between jobs and
stress-related disorders in
compensation cases, according to a
survey by the National Council on
Compensation Insurance.

Arg1

But Conn Arg1
although Conn
56% of the respondents in the study
indicated that mental-health
problems were fairly pervasive in the
workplace

Arg2 Arg2

there is still a social stigma
associated with people seeking help.

Arg2 Arg1

Table 2: Second sample paragraph split into text
chunks.

the connective is always syntactically integrated
with the second argument.
In the second example (cf. Table 2), (5) argu-

ments can cover whole sentences as demonstrated
by R4. (6) Although two connectives are next to
each other, they can have different arguments and
thus constitute different relations. Finally, (7) argu-
ments can also consist of non-continuous chunks
as in R5.
SDP consists of the main tasks of identifying

connectives, demarcating their arguments, assign-
ing senses to them, and finding the senses of so-
called implicit relations holding between adjacent
text spans, which are not explicitly signaled by a
connective. Lin et al. (2014) presented a full end-
to-end shallow discourse parser that solves these
subtasks with a sequential pipeline architecture,
which served as a model for the vast majority of
follow-up work. Recently, however, most work has
addressed specifically the last-mentioned task of
identifying the senses of implicit relations, which
has been found to be by far the most challenging
one.
The focus of our work, in contrast, is on iden-

tifying and delimiting the arguments of relations
as well as the disambiguation of connectives. Our
aim is to do this without any engineering of lin-
guistic features, so that the approach can be eas-
ily applied to new corpora and new languages.
With this perspective, we follow in particular the
proposals of Wang et al. (2015) and Hooda and
Kosseim (2017). The first work applies a recur-
rent neural network on selected sentences and la-
bels these sentences on a token-level. The second
work extends this idea and uses an LSTM on a re-
stricted form of the argument labeling task. The

authors show the feasibility of a neural model for
explicit argument labeling on pre-extracted argu-
ment spans. They prepare a dataset of argument
spans (extracted from their context) and train a re-
current neural network to label each token’s posi-
tion in such a span .
In our work, we extend this idea to make it appli-

cable within the full SDP setting, i.e., on running
text rather than on previously extracted individual
relations. As a baseline approach, we use our reim-
plementation of the system of Lin et al. (2014). We
study different applications of our neural model
and substitute corresponding components for argu-
ment extraction from the baseline pipeline: First
we address extracting the arguments of connec-
tives that are already given; this is a sensible as-
sumption since models for connective classifica-
tion (Pitler and Nenkova, 2009) work quite well.
Then, we extend this approach by removing the
dependency on previously identified connectives.
This step is not easy, because the connectives serve
to identify the number of explicit relations in a doc-
ument. Because the number of relations is initially
not clear when connectives are missing, we adapt a
sliding window approach for decomposing the text
in overlapping windows. We then develop a pro-
cess of identical prediction steps (one for each pos-
sible window within a document) and one final ag-
gregation step, which combines the individual re-
sults into the final set of predicted relations. As an
outlook, we study the capacity of our neural model
for the joint prediction of explicit and implicit re-
lation arguments.
The main contributions of this paper are
1. integrating a BiLSTMmodel into the shallow

discourse pipeline architecture, and
2. addressing the problem of jointly predicting

connective and arguments with a moving-
window approach for handling overlapping
relations in running text.

In the following, Section 2 discusses relevant re-
latedwork, and Section 3 explains ourmethod. The
experiments and results are presented in Section 4,
followed by a discussion in Section 5 and conclu-
sions in Section 6.
2 Related Work

The task of shallow discourse parsing was initi-
ated by the development of the second version
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of the Penn Discourse Treebank (PDTB2) (Prasad
et al., 2008b) and further by the shared tasks at
CoNLL 2015 and 2016 (Xue et al., 2015, 2016).
Successful systems at these competitions were
those of Wang et al. (2015); Wang and Lan
(2016); Oepen et al. (2016). They followed the
pipeline model of (Lin et al., 2014), which con-
sists of successive tasks of connective identifica-
tion, argument labeling, and sense classification
for both explicit and implicit relations. Similar
to other approaches used for argument extraction
(e.g., (Wang et al., 2015; Laali et al., 2016; Oepen
et al., 2016)), these competing systems use stan-
dard supervised machine learning models in com-
bination with handcrafted linguistic features, such
as syntactic, positional, and lexical features.
For argument labeling (or ‘extraction’), the ex-

act boundaries of both arguments must be iden-
tified. At the CoNLL shared task 2016, Stepanov
and Riccardi (2016) reported the best scores for
argument extraction with F-measures of 49.64%
for Arg1 and 76.51% for Arg2. In contrast to the
systems mentioned before, their approach involves
conditional random fields (CRF) (Lafferty et al.,
2001), which are generally popular for the task of
sequence labeling. Also, Ghosh et al. (2011b,a)
formulate argument extraction as a token-level se-
quence labeling problem and use a pipeline of cas-
caded conditional random fields to mark up each
token in a window. On top of a connective classi-
fier, they first predict Arg2 due to the closeness to
the connective. For the prediction of Arg1, they
use the same feature set as for the former predic-
tion and additionally take the Arg2 predictions
into account. Similar to us, they use a window
around the connective (2 sentences before and af-
ter the sentence with the connective). They report
scores of about 79% F-measure for Arg2 and 57%
F-measure for Arg1 with their approach. Our ap-
proach differs from theirs in that we use tokens in-
stead of full sentences to create windows. This is
necessary because a single sentence might contain
multiple connectives and participate in more than
one discourse relation (cf. the examples shown in
Section 1).
A moving-window approach similar to ours is

used, for example, by Graves and Schmidhuber
(2005) in their work on phoneme classification.
The task is quite different for SDP argument label-
ing, however, as a word’s label highly depends on
the word’s context and the corresponding relation

the word is associated with. Thus, we cannot apply
such an approach directly and hence define an ag-
gregation procedure for combining the individual
per-window predictions.
Argument labeling with recurrent neural net-

works was done byWang et al. (2015) in their DCU
parser. In addition to word embeddings, they also
used hand-crafted features, such as POS tags, syn-
tactic relations, and lexical features. In contrast,
our aim is to explore to what extent the problem
can be solved without feature engineering. Thus,
the main inspiration for our approach is the recent
work of Hooda and Kosseim (2017), who use an
LSTM network on spans of text for labeling argu-
ments. The authors examine their approach on pre-
extracted argument spans where the size of spans
is determined by the maximal argument pair dis-
tance. This shows the feasibility of neural networks
to label discourse arguments in a restricted prob-
lem setting. Like in our work, they do not rely
on additional data other than word embeddings. In
contrast to them,we use the embeddings as they are
provided, without further adaption throughout the
training. In our experiments, we could not identify
gains in performance and thus save computation
time by reducing trainable parameters.
3 Method

The main goal of our work is to replace exist-
ing components in the general discourse parser
pipeline framework with our neural model. De-
pending on which component we want to substi-
tute, we need different methods for processing the
discourse.
Our first approach is to replace the argument ex-

traction module, which operates on the basis of
previously identified connectives. After that, we
introduce an extended model that jointly predicts
connectives and their arguments. As demonstrated
in Section 1, themain challenge in this task is that a
text contains multiple, potentially overlapping, re-
lations that have to be predicted.
Our approach is to decompose the text (and

thereby the SDP task) into a series of smaller texts,
viz. into a sequence of overlapping windows. For
each window, the statistical model is trained to rec-
ognize a possibly partial relation. Afterwards, a fi-
nal aggregation process combines the individual
window predictions and thus realizes the argument
extraction for a full text.
We describe the baseline discourse parser in
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Figure 2: Baseline architecture proposed by Lin et al.
(2014) that has been used throughout the experiments.

Section 3.1. The window model for predicting just
arguments is explained in Section 3.2, and its ex-
tension to also handle connectives in Section 3.3.
Thereafter, we turn to more training and evaluation
details in Section 4.
3.1 Baseline: Shallow Discourse Parser

Our baseline discourse parser is inspired by the ar-
chitecture of the (Lin et al., 2014) parser and con-
sists of several components within a pipeline (see
Figure 2). First, explicit relations are identified by
classifying connectives, deciding the relative posi-
tion of the first argument (whether it is contained
in the previous sentence or the same sentence as
the second argument), then delimiting the argu-
ments, and finally recognizing the sense. In a sec-
ond phase, implicit relations are classified between
adjacent sentences where no explicit relations were
found. For the argument extraction component, Lin
et al. use a constituent-level approach by iterating
over possible subtrees within a sentence and select-
ing the most likely Arg1 and Arg2.
3.2 Window-based Argument Prediction

For our first approach, we propose a neural network
as shown in Figure 3 to predict discourse relations
given a sequence of words. Specifically, it oper-
ates on a window of words, which we build around
a connective that we assume to have been identi-
fied by a previous module in the pipeline. Then, for
each token the prediction task is defined as a four-
way classification problem, i.e., the label is one

word window

BiLSTM

Dense (relu)

Dropout (0.2)

Embedding (Glove)

Dense (softmax)

label window

Figure 3: Bidirectional LSTMmodel architecture. First,
tokens in a window are processed sequentially using the
recurrent network. Then, each time step is transformed
independently using one dense layer for transformation
and one dense layer for the final prediction.

of None, Arg1, Arg2, or Conn1, as in the work
by Hooda and Kosseim (2017) and similar to the
window-based approach of Ghosh et al. (2011a).
Each word in the input sequence is embed-

ded into lower-dimensional space. Because of the
small size of the PDTB corpus, we use pretrained
word embeddings, and these are further processed
with a bidirectional Long Short-TermMemory net-
work (BiLSTM). LSTMs have shown better per-
formance compared to simple recurrent neural net-
works due to their higher capacity for storing im-
portant information over longer distances. Further
improvements are gained through the bidirectional
processing of sequential information (Graves and
Schmidhuber, 2005). We keep hidden states for
each time step and propagate them to the next layer.
For our BiLSTM model, the hidden states are pro-
cessed independently by a dense layer and finally
are given to the top output layer (see Figure 3). Be-
tween the two dense layers, an additional dropout
layer is used for better generalization.
3.3 Joint Prediction of Arguments and

Connectives

To apply our model on a text without pre-identified
connectives (i.e., to jointly predict connectives and
their arguments), we need to adapt training and in-

1Notice that while the previously-given connective was
used to define the position of the window, we still predict con-
nectives in this model in order to support argument identifica-
tion (but we will not evaluate the performance on connectives
in this model).
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Figure 4: Overview of the proposed method consisting
of decomposition, prediction, and aggregation.

ference, as the number of discourse relations and
their positions are not known in this scenario. Also,
as shown in the introductory example in Table 1,
assigning classes to tokens is not a global decision,
but has to be decided locally depending on the re-
lation currently predicted. For this reason, we in-
troduce the decomposition of the task into (i) han-
dling multiple overlapping windows and (ii) a sub-
sequent aggregation of the window-level predic-
tions into the final set of predicted relations. The
challenge in this aggregation approach is to iden-
tify valid predictions and further combine multiple
possibly contradictory predictions pointing to the
same relation. While we restrict our work here to
explicit relations, we will show in our last experi-
ment in Section 4.6 that this approach can also be
applied to the case of implicit relations, merely by
changing the data that the model is trained on.
3.3.1 Decomposition
The first part of our joint prediction method is to
decompose the text into multiple overlapping win-
dows that contain token embeddings. This is done
by, first, padding the text at the beginning and at
the end such that each token represents the center
of one created window.
Then, for each window, we predict whether it

contains a (possibly partial) relation or not, and
which tokens belong to a particular part of the re-
lation. Thus, for each token our model predicts one

of four classes, None, Arg1, Arg2, or Conn.
We illustrate the process using the first exam-

ple from Table 1. We cannot simply split the
paragraph into windows and assign classes, be-
cause individual tokens have different labels de-
pending on the context. Therefore, we choose
the centering of the beginning of Arg2 as a
sufficient criterion (for generality to potentially
cover both explicit and implicit relations, we
did not choose the connective position as iden-
tifier). Thus, we extract three windows around
the words “[if][you][think]”, “[.][you][’re]”, and
“[and][you][are]”. Because it is possible that a
window’s center is placed at the beginning or the
end of a text, those have to be padded for having
the same size as other complete windows.
The main challenge in jointly predicting con-

nectives and their arguments is caused by multiple
relations with overlapping arguments. To handle
this, we create a unique identifier for each relation
by using the position where the second argument
of a relation begins. This forces the model to rec-
ognize relations only in the case when their second
argument is centered in the window, and otherwise
ignore them as being not in the focus of the current
window.
For training the model, the data is prepared in

such a way that it satisfies the properties above. For
each relation instance in the PDTB, we use a fixed-
size window that is placed on the text such that
the relation has Arg2 centered in this window. To
further augment the data, we do not only use per-
fectly centered relations but additionally move the
window one and two words to the left and to the
right. Thus, for each relation in a text, we create
five training instances. For each window, we keep
the words and their argument labels, i.e., whether
for a particular relation, a word belongs to one of
the arguments, to the connective, or to neither of
them. These windows, which correspond to a rela-
tion, are collected as positive training samples. Ad-
ditionally, all windows that have not been extracted
so far are gathered as negative training samples.
For these negative training samples, although they
might identify relations partially, all word labels
are set to None. In this way, we want to force the
model to learn to identify only relations for which
Arg2 is centered within a window.
In short, this process tries to include both argu-

ments of the relation within a single window, but
for longer arguments, this is not guaranteed. In this
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approach, relations where an argument’s span is
beyond the window size remain incomplete for the
training procedure.
3.3.2 Aggregation
After training a model for individual windows,
the remaining challenge is to assemble the final
set of relation predictions from all individual win-
dow predictions. We can distinguish the following
cases: A window can contain

• only None labels (and thus no relation is to be
extracted at all), or

• an invalid relation, where one or both argu-
ments are empty, or

• a partial relation, where one or both of the ar-
guments is incomplete, or

• a completely predicted relation.
To explain the aggregation step in detail, we de-
fine relations more formally and then describe the
aggregation of individual relations based on their
distance.

A relation is defined as a tuple R(a1, a2, c) of
three sets, one for the first argument, the second
argument, and the connective. Each of these sets
contains the position indices of the includedwords,
and hence these three sets are, by definition, dis-
joint. Wemaintain this property throughout the ag-
gregation process of two relations.
Given two relations r1, r2, we define the merge

of two relations, r = r1 ∪ r2, as follows:
rc = (rc1 ∪ rc2) (1)
ra2 = ra21 ∪ ra22 ⧵ rc (2)
ra1 = (ra11 ∪ ra12 ) ⧵ (rc ∪ ra2) (3)

The crucial step is to decide whether two rela-
tions that are labeled in two consecutive windows
are to be merged, i.e., to decide whether they de-
note the same relation. To this end, we measure
the distance between two relations andmerge them
if the distance is below a certain threshold. Here
we make use of the Jaccard distance as a distance
metric for sets (but other metrics could be used as
well). The Jaccard distance is based on the Jaccard
index, which measures the similarity between fi-
nite sets by comparing the union and intersection
of those sets:

J (A,B) = 1 −
|A ∩ B|
|A ∪ B|

None Arg1 Arg2 Conn
Exp1 70.68 % 14.43 % 13.79 % 1.10 %
Exp2 85.34 % 7.21 % 6.89 % 0.56 %
Exp3 82.78 % 8.60 % 8.37 % 0.25 %

Table 3: Class label ratio calculated on the extracted
training windows.

We define the distance of two relations
Jrel(r1, r2) as the mean of the two Jaccard
distances between the relation’s arguments.

Jrel(r1, r2) =
J (ra11 , ra12 ) + J (ra21 , ra22 )

2

Note that for the calculation of the distances of the
second arguments, we regard the connective as part
of second arguments. This gives some, but not too
much, influence to the connectives on the distance
measure, compared to the influence of the argu-
ments.
4 Experiments and Results

As described above, we experiment with two tasks
of different complexity. The first experiment is
a simplification of the general argument labeling
problem,where a connective has already been clas-
sified. Because the position of the window is thus
already determined, no aggregation is necessary
for this scenario. For the second and third experi-
ment, the exact positions of relations are not given
and thus we follow our sliding-window approach.
In all our evaluations, we use precision, recall, and
F1 score of exact matches, in order to be compara-
ble with the previous work.
All models are trained for 25 epochs on the cor-

responding training set, specific for a certain task.
We use pretrained word embeddings with 300 di-
mensions as described later in Section 4.1. Each
LSTM has a hidden layer of size 512. The out-
put of each LSTM is concatenated per step, thus,
the output of the BiLSTM results in 1024 dimen-
sions per step. The dense layer with ReLU acti-
vation function on top of the BiLSTM has 64 di-
mensions, and the dropout works with a 0.2 prob-
ability. Finally, all models are trained using the
Adam optimizer (Kingma and Ba, 2015). Because
the classes are unbalanced throughout the experi-
ments (compare Table 3) the cross-entropy loss is
weighted (King and Zeng, 2001) according to the
per-class occurrences in the extracted training win-
dows.
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4.1 Word Embedding

After the extraction of a vocabulary from the train-
ing corpus, we identify each token by a unique in-
dex. Every word that is not listed in the vocabu-
lary is substituted by a special index for unknown
words.
Because of the small size of the corpus, it is

common to use pretrained embeddings (Mikolov
et al., 2013) instead of training them solely on
the given training corpus. In our experiments,
we use global vectors for word representations
(GloVe) (Pennington et al., 2014), similar as done
by Hooda and Kosseim (2017). In general, GloVe
embeddings have yielded promising results for a
variety of related tasks. Hence, in the present study,
we use GloVe without comparatively evaluating
different pretrained embeddings.
Since both models, the word embedding model

and ours, are trained on different corpora, the vo-
cabularies also differ. First, we initialize all words
with a random embedding. Then, for each word
that is found in the set of pretrained embeddings,
we replace the random embedding by its pretrained
equivalent.
A minor disadvantage of word embeddings is

that they are learned on a syntactic level. This
means that although two words look similar in
terms of characters, they might have different
meanings depending on the words in their con-
text. As a consequence, we follow the idea of using
LSTMs on top of the word embeddings in order to
account for the context in the individual represen-
tation.
In contrast to Hooda and Kosseim (2017), we

avoid dynamically retraining the word vectors
throughout the training process. Our earlier exper-
iments showed that in our setting, training the em-
beddings has no positive effect on the final result,
and thus, by avoiding this step, we also reduce the
number of parameters that have to be trained.
4.2 Data Preparation

In our experiments, we follow the CoNLL shared
task on shallow discourse parsing and work on
their prepared dataset. This dataset differs slightly
from the original PDTB2 corpus which is caused
by the merge of a few sense labels and the clean-
ing of the PDTB data. For each relation in the
CoNLL corpus, we extract a fixed-size window
where the second argument is centered, i.e., where
Arg2 starts in the middle of the window. To pro-

Explicit Implicit
Perc. Span

Length
Distance Span

Length
Distance

min 2 0 2 0
20 % 14 2 20 2
40 % 21 2 29 2
60 % 29 3 38 2
80 % 44 4 49 3
max 1167 987 437 249

Table 4: Statistics calculated from the CoNLL2016
dataset. Overview of span lengths containing both ar-
guments and distances of arguments for specific per-
centiles.

Precision Recall F1
Explicits

Conn 83.42 79.82 81.58
Arg1 28.75 27.51 28.12
Arg2 45.54 43.57 44.54

Arg1+Arg2 27.70 26.51 27.09
Non-Explicits

Arg1 67.85 36.05 47.08
Arg2 67.65 35.94 46.94

Arg1+Arg2 59.94 31.84 41.59
All

Conn 83.42 79.82 81.58
Arg1 51.32 34.89 41.54
Arg2 58.28 39.62 47.17

Arg1+Arg2 45.38 30.86 36.74

Table 5: Evaluation of our baseline pipeline architec-
ture. 2

duce more training data, we also extract windows
that are shifted by small margins (up to two posi-
tions) to the left and to the right. Each of these win-
dows constitutes a positive example of a discourse
relation the model should learn. Conversely, every
window of the same size where Arg2 is not cen-
tered is added as a negative example. Even though
a negative example may contain parts of some ar-
guments, the words are labeled with None in or-
der to force the model to only recognize relations
where Arg2 starts in the middle of the window.
We keep punctuation as part of the vocabulary, as
it might capture relevant discourse information.
In our evaluations, all models are trained on a

window size of 100 tokens. Based on the span
lengths found in the corpus, shown in Table 4, we
choose this window size, as it captures a solid ma-
jority (over 80%) of the relations.
4.3 Baseline
The baseline model is inspired by Lin et al. (2014)
who proposed a pipeline approach of several com-
ponents. For our comparison, we focus on those
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Label Precision Recall F1
Arg1 46.69 44.59 45.62
Arg2 68.94 65.83 67.35

Arg1+Arg2 48.16 45.99 47.05

Table 6: Exact match of explicit arguments for a given
connective.

components that are responsible for argument ex-
traction: the connective classifier, argument posi-
tion classifier and argument extractor in the explicit
case, as well as the extraction of non-explicit argu-
ments (cf. Figure 2). In contrast to our own model,
which works on token level prediction, Lin et al.’s
argument extraction model works on subtree level.
The performance reported in Table 5 shows

the evaluation scores following the CoNLL shared
task for our reimplementation of the pipeline de-
scribed by Lin et al. Although these numbers are
lower than those reported for the original imple-
mentation (e.g. predicting both explicit arguments
is 10% worse), they may serve as a comparison
and indicate that a re-implemenation of this sys-
tem is not trivial. The values give different per-
spectives on the data, a full evaluation (All), and
more detailed views on both parts (Explicits and
Non-Explicits), which correlate with the structure
of the architecture.
4.4 Connective Arguments
In the first experiment, we train a model to substi-
tute the components for argument position and ar-
gument extraction similar to Ghosh et al. (2011a).
The training data contains only positive explicit
samples, since the model is never applied to other
situations than these. With our procedure de-
scribed above, we extract 73.610 samples from the
corpus. For inference, we use a fixed-size window
centered around the previously identified connec-
tive. The labeled indices for Arg1 and Arg2 are
taken without any further processing.
The results in Table 6 show an increase of the

values for Arg1 and Arg2 compared to our base-
line.
4.5 Explicit Argument Extraction
The second experiment generalizes the window-
based model and predicts arbitrary explicit rela-
tions for a text. This is challenging compared to
the former experiment, because the connective is
missing and therefore the model does not know the
exact position of a relation. For this reason, we in-

Label Precision Recall F1
Conn 69.25 44.56 54.23
Arg1 36.52 23.50 28.59
Arg2 62.96 40.51 49.30

Arg1+Arg2 40.29 25.93 31.55

Table 7: Exact match of explicit arguments for joint pre-
diction of connectives and their arguments.

Precision Recall F1
Explicits

Conn 71.35 62.73 66.76
Arg1 33.16 29.15 31.03
Arg2 52.47 46.13 49.09

Arg1+Arg2 37.25 32.75 34.86
Non-Explicits

Arg1 41.99 29.26 34.49
Arg2 44.32 30.88 36.40

Arg1+Arg2 40.16 27.99 32.99
All

Conn 71.35 62.73 66.76
Arg1 40.95 31.77 35.78
Arg2 51.47 39.94 44.98

Arg1+Arg2 41.83 32.45 36.55

Table 8: Evaluation of the joint extraction of explicit
and non-explicit arguments.

troduced the decomposition of a discourse with the
sliding window approach and further introduce an
aggregation method to get the final set of predicted
relations.
The training data additionally contains negative

explicit samples in contrast to the first experiment.
The same amount of negative instances as posi-
tive instances is sampled from all possible nega-
tive instances. We extract twice as much training
instances as before.
As shown in Table 7, the scores for connec-

tive identification are not as high as achieved with
a specialized model (as in the baseline). Further,
the sores for argument extraction also decrease
for Arg2 slightly and for Arg1 even more. This
is probably caused by the unbalanced data, as
None labels occur much more often than other la-
bels (see Table 3).
4.6 Explicit/Implicit Arguments Extraction
In the final experiment, we examine the full capac-
ity of our model by using it for jointly predicting
both explicit and implicit relation arguments. The
training data consists of explicit and implicit rela-
tion instances, and for each positive sample, one
negative sample is added to the training data. In
sum, the model is trained on 325.350 instances.
As expected, the number for identifying non-
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explicit relations is lower than the baseline (see
Table 8). In contrast to our model, the baseline
always selects two adjacent unlabeled sentences,
which achieves good results despite its simplicity.
Our models seems unable to recognize any sensi-
ble underlying pattern.
5 Discussion

Usually, different specialized models are com-
bined to label arguments, either on a constituent-
level (Lin et al., 2014; Kong et al., 2014) or
on a token-level (Ghosh et al., 2011a,b). As we
explained earlier, though, a crucial difference is
their usage of highly-engineered linguistic features
(e.g., cue words, syntactic classes, word pair re-
lations, production rules), which our system does
not use. Instead, it relies solely on word (token) se-
quences encoded by pretrained embeddings, which
thus represent a certain amount of semantic infor-
mation.
Our comparison with the re-implemented

pipeline architecture is quite weak, as our imple-
mentation does not perform as good as the original
work that relies on manually-engineered rules.
While our approach can obviously not compete

with the knowledge-intensive approaches ofOepen
et al. (2016) and Stepanov and Riccardi (2016), a
fair comparison is that to the similar approach of
Wang et al. (2015); here, our system clearly outper-
forms the earlier result. They report exact match
F-measure of 36.32% for Arg1 and 41.70% for
Arg2. Compared to that system, our first experi-
ment’s approach where the connective was given
(Section 4.4) performs much better. In comparison
with our second experiment, our system’s scores
are lower for Conn and Arg1, but still higher for
Arg2 and both arguments extraction. A big prob-
lem in joint connective–argument extraction is the
limited amount of data and the unbalanced class
labels. We tried to work on the second problem
by using weighted losses based on the class occur-
rences.
6 Conclusions and Future Work

In this work, we integrate a BiLSTM model in
the shallow discourse parsing framework. We de-
scribed tasks of different complexity in argument
labeling and explained different ways of applying
our neural model. For the general task of argument
labeling, we adapt a token-level window-based ap-
proach and introduce a novel aggregation method,

which is needed for combining individual predic-
tions into the final set of relation arguments. We
explored the limits of this approach by studying
the joint prediction of the arguments of explicit and
implicit relations.
The aggregation of partial relations is done us-

ing a distance threshold. For gaining possible im-
provements on the final results, it may well be
worth studying different methods for merging con-
flicting relation predictions as well as defining dif-
ferent ways of computing the distances of individ-
ual predictions.
Because of the simplified nature of our archi-

tecture, we think that there are further interesting
potentials for future work. Formulating the new
window-training problem makes it possible to eas-
ily replace our proposed model by other architec-
tures with more capacity. At the same time, we
see this way of solving argument extraction as one
step toward reducing the complexity and degree
of error propagation in the more traditional SDP
pipeline architecture.
We release the source code of our system3 to

promote future research.
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