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Language Technology Lab, University of Cambridge

English Faculty Building, 9 West Road, Cambridge CB3 9DA, United Kingdom
{ql261,iv250,alk23}@cam.ac.uk, diana@dianamccarthy.co.uk

Abstract

In this paper, we present a thorough inves-
tigation on methods that align pre-trained
contextualized embeddings into shared cross-
lingual context-aware embedding space, pro-
viding strong reference benchmarks for fu-
ture context-aware crosslingual models. We
propose a novel and challenging task, Bilin-
gual Token-level Sense Retrieval (BTSR). It
specifically evaluates the accurate alignment
of words with the same meaning in cross-
lingual non-parallel contexts, currently not
evaluated by existing tasks such as Bilingual
Contextual Word Similarity and Sentence Re-
trieval. We show how the proposed BTSR
task highlights the merits of different align-
ment methods. In particular, we find that us-
ing context average type-level alignment is ef-
fective in transferring monolingual contextual-
ized embeddings cross-lingually especially in
non-parallel contexts, and at the same time im-
proves the monolingual space. Furthermore,
aligning independently trained models yields
better performance than aligning multilingual
embeddings with shared vocabulary.

1 Introduction

Contextualized embeddings have been shown to
achieve superior performance compared to static
word embeddings in English (Peters et al., 2018;
Devlin et al., 2019). Despite recent efforts to better
understand their multilingual variants (Pires et al.,
2019), leveraging these available pretrained contex-
tualized embeddings to learn cross-lingual contex-
tualized embeddings is still an under-explored area:
past cross-lingual embedding alignment methods
have mainly focused on static embeddings (Ruder
et al., 2019). In this paper, we introduce a first study
that investigates and compares different ways of
aligning the pretrained contextualized embeddings.
In particular, we make the comparisons focused on
the following properties: (1) aligning contextual-

ized embeddings at the level of word tokens versus
word types; (2) different training signals: static dic-
tionaries, word alignment, or sentence alignment
from parallel data; and (3) aligning different model
variants: aligning from independently trained mod-
els versus aligning embeddings from a multilingual
model with shared vocabulary.

We evaluate the methods on a variety of context-
aware tasks. Besides two previously established
evaluation tasks (1) Bilingual Contextual Word
Similarity (Chi and Chen, 2018) and (2) Sentence
Retrieval (Conneau et al., 2017), we introduce a
new task: Bilingual Token-level Sense Retrieval
(BTSR). It is more challenging than the alterna-
tives as it requires the accurate cross-lingual re-
trieval of contextualized words on the token level
which are disambiguated both in the source and the
target language using non-parallel contexts. We
provide BTSR task data and run evaluations on two
language pairs: English–Chinese (EN–ZH) and
English–Spanish (EN–ES). The data and guide-
lines can be found at: https://github.com/
qianchu/BTSR

Our main findings are as follows. (1) Using
the average of the contextualized word represen-
tations as type-level anchors is effective and ro-
bust for aligning pre-trained contextualized em-
beddings cross-lingually, and can also improve the
monolingual contextualized space as it brings the
largest gains in English context-aware evaluation
compared to results from aligning on other levels.
(2) Using a dictionary with a few thousand entries
is able to yield performance comparable to lever-
aging training signals from parallel corpora. (3)
Aligning independently trained models performs
better than aligning embeddings from a multilin-
gual model trained with shared vocabulary.

https://github.com/qianchu/BTSR
https://github.com/qianchu/BTSR
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2 Related Work

Cross-lingual Word Embeddings. We conduct
our experiments using a popular projection-based
approach that learns an orthogonal mapping be-
tween pretrained embeddings (Xing et al., 2015;
Artetxe et al., 2016). The orthogonality of the
mapping is crucial as it preserves monolingual in-
variance and is empirically proven to be more ro-
bust (Smith et al., 2017; Xing et al., 2015). This
projection-based method can be applied post-hoc
on pretrained monolingual embeddings with an ex-
act analytical solution. Moreover, its performance
is often competitive to that of jointly trained cross-
lingual models using additional bilingual signals in
the form of parallel or comparable corpora (Ruder
et al., 2019; Glavaš et al., 2019).

However, projection-based cross-lingual embed-
dings are still predominantly concerned with static
word embeddings (Glavaš et al., 2019; Vulić et al.,
2019; Mohiuddin and Joty, 2019). Learning cross-
lingual contextualized embeddings is still a large
unexplored area with only two concurrent papers
at the moment. First, Aldarmaki and Diab (2019)
adopt the same projection-based approach as our
paper to align contextualized embeddings on the
token-level using parallel data. They find that
context-aware mapping using parallel data outper-
forms context-independent mappings from static
dictionaries on a parallel Sentence Retrieval task.
Second, Schuster et al. (2019) introduce anchor
embeddings as the average of contextualized em-
beddings of a word to perform alignment for con-
textualized models, and show its effectiveness in
cross-lingual dependency parsing. These two stud-
ies are not directly comparable, whereas our paper
provides a comprehensive and systematic compari-
son of various methods for learning cross-lingual
contextualized embeddings and introduces a new
and more challenging evaluation task.

Evaluation of (Contextualized) Cross-lingual
Embeddings. The traditional task to evaluate
cross-lingual embeddings is Bilingual Dictionary
Induction (BDI) (Vulić and Moens, 2013; Mikolov
et al., 2013a; Gouws et al., 2015): given a source
query word, the task is to retrieve the translation
word in the target language. The test words in
BDI are out-of-context and polysemy cannot be
addressed properly. The same issue is found in an-
other relevant lexical task, Cross-lingual Semantic
Similarity. (Camacho-Collados et al., 2017).

The only context-aware dataset for evaluating
cross-lingual embeddings on the word level is Bilin-
gual Contextual Word Similarity (BCWS) (Chi and
Chen, 2018). It challenges a system to predict
similarity scores between cross-lingual word pairs
with sentential context provided in both languages.
However, BCWS does not explicitly test for the
retrieval of meaning-equivalent cross-lingual con-
textualized embeddings, which is explicitly tested
in our test. Also, BCWS is only available for one
language pair: English-Chinese.

Another task used for evaluating contextualized
embeddings is Sentence Retrieval (Aldarmaki and
Diab, 2019): given a query source sentence, the
task is to retrieve the corresponding parallel sen-
tence in the target language. Sentences can be
represented as averages of contextualized embed-
dings of their constituent words. As the task does
not explicitly evaluate at the word level, even if
a system cannot accurately capture polysemy, it
can rely on other words in the sentence to retrieve
the correct parallel sentence. Therefore, Sentence
Retrieval may lead to superficially high scores.

Cross-lingual Word Sense Disambiguation.
Our new task is also related to Cross-lingual Word
Sense Disambiguation (Lefever and Hoste, 2009):
given a source language word in context, a sys-
tem needs to provide the correct sense labels as
clustered translation words in a number of target
languages. Another related task is Cross-lingual
Lexical Substitution (Sinha et al., 2009): the model
must provide plausible target language translations
for the source language lexical item in the source
language context. In contrast, our BTSR task: (1)
directly evaluates token-level word representations
without the need to predict sense labels from a
sense inventory and (2) it contextualizes both the
source query and the target candidates ensuring
full sense disambiguation. The core differences be-
tween the three tasks are illustrated in the following
examples below:

(1) Cross-lingual Word Sense Disambigution:
source query: the national [coach] of the Irish teams ...
answer: allenatore (Italian); Fußbaltrainer; National-
trainer; Trainer (German); entrenador(Spanish) ...

(2) Cross-lingual Lexical Substitution :
source query: She looked as [severely] as she could
muster at Draco.
answer: rigurosamente, seriamente

(3) BTSR:
source query: The reflections included in this docu-
ment are linked to discussions with many colleagues
and friends, in the present [tense].
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answer: Scott Peterson metió la pata elfondo y usó
el [tiempo] pasado mientras afirmaba que su esposa
asesinada estaba viva , lanzando una búsqueda (...)

3 Methods

3.1 Monolingual Contextualized Embeddings

Compared to static word embeddings (Mikolov
et al., 2013b; Bojanowski et al., 2017), more re-
cent contextualized embeddings provide dynamic
representations for a word in context as hidden
layers in a deep neural network. They are typi-
cally obtained by unsupervised pretraining based
on language modeling objectives (Devlin et al.,
2019; Yang et al., 2019). The underlying con-
textualized method in our study is the pretrained
BERTbase cased model1 (Devlin et al., 2019).
BERT is trained using a transformer architecture
(Vaswani et al., 2017) with masked language mod-
elling (MLM) and next sentence prediction (NSP)
tasks. MLM predicts the vocabulary id of a ran-
domly masked word in a sentence based on the
word’s context. NSP trains text-pair representa-
tions to predict whether the text-pair contains con-
secutive sentences from a monolingual corpus.2

We work with two BERT variants. First, we ex-
plore aligning independently trained BERT models,
that is, models with separate model parameters for
each language. For English and Chinese, we align
independently trained Chinese and English mono-
lingual models. For Spanish and English, since
there is no pretrained BERT Spanish model, we
take the Spanish embeddings from the BERT mul-
tilingual model and align it with the monolingual
English model. We take this alignment as an ap-
proximation to aligning two independently trained
models. We have also experimented with directly
aligning embeddings obtained from the BERT mul-
tilingual model, which is a joint model trained with
the same model parameters with shared subword
vocabulary (Devlin et al., 2019). This means that
identical words in two different languages will ob-
tain the same embeddings.

1To produce the contextualized representation for a word
in context, we average the 12 hidden layers of the word’s sub-
word representations in BERT and then average the subword
representations as input for the cross-lingual alignment. We
leave other ways to extract the representations for future work.

2We have also experimented with ELMo in lieu of BERT
(Peters et al., 2018; Che et al., 2018). However, as we
reach similar conclusions in terms of relative performance,
while BERT-based cross-lingual embeddings outperform their
ELMo-based counterparts in absolute terms, we do not re-
port ELMo’s results for brevity. It should be noted that these
pretrained models used different training data.

3.2 Orthogonal Mapping and MIM
Given a dictionary with item pairs from source and
target languages (si, ti), and matrices S and T that
contain the vector representations corresponding
to the item pairs in the columns, we follow the
standard practice (Glavaš et al., 2019) to find an
orthogonal alignment matrix W that minimizes the
distance between the transformed matrix WS and
T . For improved performance, following Artetxe
et al. (2016), we normalize and mean center the
embeddings in S and T . The mapping is as follows:

W = arg min
W

‖WS − T‖2 s.t. WTW = I. (1)

The closed-form solution can be found by solving
the orthogonal Procrustes problem (Schönemann,
1966) as follows:

TST = UΣV T ;W = UV T (2)

We also optionally apply a post-processing
Meeting-in-the-Middle (MIM) technique, recently
proposed by Doval et al. (2018). It first calculates
the average of each dictionary item representation
in a pair after the orthogonal mapping: we denote
the matrix U as the matrix where each column is
such an average vector. Then, it finds a linear map-
ping M from both the source language (denoted
as Ms) and the target language (Mt) after the pre-
vious step of orthogonal mapping to minimize the
distance to U via a closed-form solution. Equation
(3) formulates how to find Ms, and we do the same
from target to source.

Ms = arg min
Ms

‖MsWS − U‖2 (3)

We apply the orthogonal mapping and MIM both
on static embeddings (for baselines) and contextual-
ized embeddings. For mapping the contextualized
embeddings, we either extract type-level embed-
dings from the contextualized models to serve as
anchors for the alignment using static dictionaries,
or we use parallel sentences as dictionary items to
directly align contextualized word representations
on the token level. We discuss this in what follows.

3.3 Alignment Levels
We explore aligning contextualized models on two
levels: type-level and token-level. Type-level word
representation refers to static word representation
that assigns one fixed embedding to a word. All
the traditional word embedding models (e.g., skip-
gram, CBOW, fastText) provide such embeddings,
and cross-lingual alignment is typically applied on
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these type-level embeddings (Ruder et al., 2019).
Token-level word representation refers to dynamic
representations for words in context, i.e., contextu-
alized word representations.

Contextualized models such as BERT provide
token-level embeddings by default: a natural way
to align these embeddings is token-level alignment.
This has been proposed concurrently to our work by
Aldarmaki and Diab (2019). This method requires
token-level training data , e.g., from a word-aligned
parallel corpus.

As an alternative, we obtain static type-level rep-
resentations in the same space as our contextualized
embeddings and use these type-level representa-
tions as anchors to learn the crosslingual mapping.
The type-level anchors can be seen as taking a
representative sample of the infinite space of the
contextualized embeddings. The mapping learned
via the anchors will hopefully be generalizable to
align the dynamic token-level contextualized em-
beddings as well. The advantage of this approach
is that we can align the contextualized embeddings
with a standard dictionary now that we have one
representation per word.

We experiment with two different kinds of an-
chor type-level embeddings: iso type and avg type.
The iso type refers to type-level embeddings that
are produced by simply inputting the word in iso-
lation to the contextualized model. Avg type em-
beddings are obtained by taking the average of
the contextualized representations of a word.3 The
context-average avg type embeddings has been pro-
posed recently by Schuster et al. (2019). In this
work, we provide a systematic comparison of em-
beddings aligned on the token level, and on the two
kinds of type-level alignments.

3.4 Alignment Training Signal
We explore a number of different supervision sig-
nals for learning the alignment between monolin-
gual embeddings. First, we evaluate traditional
methods that exploit word-level training signals
(Ruder et al., 2019). We use (1) a static manually
created (i.e., external) dictionary to obtain the align-
ment, and (2) we rely on word alignments from a
parallel corpus as the source of the training sig-
nal. For word alignments, we either treat them as a
large dictionary to perform type-level alignment or
we additionally leverage the context in the aligned

3In practice, we take 1000 random samples for a word
from the training data of the parallel corpora used in our
experiments.

sentences to extract a dynamic contextualized dic-
tionary to perform token-level alignment.

We also exploit the training signal coming from
the aligned parallel sentences alone without word
alignments. We first create sentence representa-
tions by averaging type-level or token-level embed-
dings, and then align the parallel sentence represen-
tations from source to target language.

The configurations for learning cross-lingual
contextualized word embeddings explored in this
work are summarized in Table 1, and we rely on
the configuration labels from the table throughout
the paper. Type-level configurations which ignore
context are treated as baselines.

4 Bilingual Token-level Sense Retrieval
Task (BTSR)

Task Description. In §2, we already discussed
the main properties of the two other tasks that can
be used to evaluate cross-lingual context-aware em-
beddings: BCWS and parallel Sentence Retrieval.
In short, BCWS only measures similarity between
cross-lingual word pairs in context, and it does not
evaluate the translation capacity of different meth-
ods. The Sentence Retrieval task does not evaluate
on the word level and can be solved by relying on
the context alone.

To bridge this gap in evaluation, we introduce
a new task: Bilingual Token-level Sense Retrieval
(BTSR). It tests for the retrieval of meaning-
equivalent cross-lingual contextualized word em-
beddings relying on non-parallel context informa-
tion. Our task can be seen as a contextualized
variant of the BDI task. Its comparison to the tradi-
tional BDI task is provided in Table 2.

In what follows, we define the BTSR task for-
mally and provide details on how the task data is
created. To build a representative sample of contex-
tualized words in the source and target languages,
we collect translation pairs and contextualize the
word pairs into token-level representations. Then
we manually check a sample of the contextualized
word pairs to ensure correspondence of sense on
the token-level. To understand the effect of the size
of the search space, we experiment with 20k and
200k candidates respectively.

Formal Definition. In BTSR, we define S :
s1tk,1, s

1
tk,2, s

2
tk,1, . . . , s

n
tk,m as a set of queries from

the source language. A query sitk,j is a token-
level contextualized representation of the ith source
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Component Options Label
Alignment Signal Word alignment from parallel data wa

Sentence alignment from parallel data sa
MUSE training dictionary dict

Alignment Level Token-level alignment token
Type-level alignment from context average avg type
Type-level alignment from inputting the word in isolation iso type
Type-level alignment in static embeddings (eg. Fasttext) type

Models monolingual English BERT model mono en
monolingual Chinese BERT model mono zh
BERT multilingual English model multi en
BERT multilingual Spanish model multi es
Fasttext baseline fasttext

Alignment techniques the original orthogonal linear transformation orig
post-processing linear transformation after the orthogonal transformation mim

Evaluation level Evaluated on token-level representations [token]
Evaluated on type-level representations [type]

Table 1: Different components used for the model configurations in our evaluation.

BDI BTSR

uniform 制服 ..[uniforms] were black... 他的[制服].. (His [uniform]..)
subdue 制服 ..mosquito was [subdued].. ..[制服]刺客.. (...[subdue] the assas-

sin...)
uniform 一致 the [uniform] convergence of the regular

solution
...[一致]漸近穩定...定理 (the theorem
of [uniform] asymptotic stability...)

Table 2: BTSR: examples and a comparison with traditional (non-contextualized) BDI.

word that corresponds to the word’s jth sense. Sim-
ilarly, we define T : t1tk,1, t

1
tk,2, . . . , t

p
tk,q as a set

of candidates in the target language where each
candidate is a contextualized token-level word that
represents a specific sense of a word in the target
language. For each query stk, the task is to find a
target contextualized token-level word ttk that has
the same word sense as in the query. Sim(stk, ttk)
is a function that computes the similarity of stk and
ttk. In our experiments, we use cosine similarity.
Using Sim(stk, ttk), for each query, we retrieve
ttk,i1 , . . . , ttk,iK : the top K most similar token-
level contextualized words from the target set T in
the cross-lingual space as the nearest neighbours.
We report Precision@K, i.e. precision of finding
the gold ttk in the top K retrieved candidates.

Collecting Translation Pairs. We select a repre-
sentative set of query words from WordNet (Miller,
1998) (one unique word per WordNet synset). For
each source word, we retrieve its WordNet senses
and the corresponding translations in the target lan-
guage from Multilingual WordNet (Bond and Fos-
ter, 2013). As WordNet senses are too fine-grained,
we collapse senses into clusters if they contain the
same translation for the source word. For example,
“uniform” has five WordNet senses which are trans-
lated into four distinct Chinese words: 制服(the
clothes worn by a particular group),一致(the trans-
lation of two senses: consistent and undifferenti-

ated)4,不變(unchanged) and相同(the same) . We
take these four Chinese words to form four transla-
tion pairs with “uniform”.

Word Pair Contextualization. For each word
in a word pair, we “contextualize” the word by se-
lecting a sentence in which the word appears, and
ensure that the resulting contextualized word can be
translated into the other word. Therefore, if a pol-
ysemous word occurs in multiple word pairs with
distinct translations, it will be accompanied with
different contexts that correspond to each transla-
tion. We achieve this by selecting a pair of parallel
sentences in which the source word and the tar-
get word from the word pair are aligned after we
run word alignment. The context in the source
language in this parallel sentence pair is used to
“contextualize” the source word. When we select
context for the target word, we choose a different
parallel sentence in which the two words in the pair
are aligned. Therefore, the final contexts for the
source and target word in the word pair are indeed
non-parallel.

The use of non-parallel contexts here is crucial
because when we perform the token retrieval task,
parallel contexts can be superficially retrieved by
simply matching the contexts rather than repre-

4Notice the senses are different thus contexts are needed
to find the pair corresponding to the same meaning.
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senting the words in context appropriately. We
empirically verified that a simplistic context av-
erage baseline outperforms contextualized word
embeddings in a variant of our task which relies on
parallel contexts.

We set aside 1M parallel sentences from the
UMCorpus (Tian et al., 2014) (EN–ZH) and the
WMT13 news dataset (Bojar et al., 2013) (EN–ES)
for extracting the sentence contexts. We end up
with 14,604 distinct word pairs with contexts ex-
tracted for EN–ZH, and 9,623 pairs for EN–ES.

Creation of Test Data. As the contexts are non-
parallel in a word pair, we need to check if the
contextualized words in a word pair genuinely rep-
resent the same meaning. We manually checked a
sample of the word pairs extracted in the previous
step to produce the final test set for BTSR. To pro-
duce the sample, we selected the translation pairs
that satisfy any of the following constraints: 1) tar-
get or source word belongs to the top 250 frequent
words in each language, 2) target or source word
belongs to the top 250 most ambiguous words in
each language. We take the number of sense clus-
ters as introduced above as a measure of ambiguity
for each word.

The first author then provided an initial manual
annotation of the samples for both EN–ES and EN–
ZH on whether the contextualized words in a pair
correspond to the same meaning. The samples from
the two language pairs were subsequently anno-
tated by one native Chinese speaker and one native
Spanish speaker respectively. The final agreement
rate calculated as pairwise inter-annotator agree-
ment on a binary choice5 for EN–ZH is 94.5%,
and 94.7% for EN–ES. Finally, we take the sub-
sets where all annotators agree as the test sets for
EN–ZH (1,181 pairs) and EN–ES (994 pairs).

Target Candidates. We treat the token-level rep-
resentations of the target words from all words pairs
in the contextualization process described above
as our candidate space. To make the target can-
didate space more representative of the language,
we supplement the space with words outside of the
WordNet inventory from monolingual Wikipedia
dumps in the target language. For each of these
words, we randomly select a sentence in which it
occurs to contextualize the word into a token-level

5For each language pair, it is calculated as the percentage
of token pairs marked correct by both annotators (the first
author and one native speaker of the language) divided by the
number of all the token pairs.

target candidate. We experiment with 20k target
candidates and 200k target candidates.

5 Experiments

Training Setup. To test the effects of corpora
size on the induction of the cross-lingual align-
ment, we vary the size of the parallel corpus from
100 up to 200k parallel sentences in the UMCorpus
and the WMT13 corpus. Word alignment was pro-
duced by IBM Model 2 using Fastalign (Dyer et al.,
2013). We also induce cross-lingual alignments
relying on static dictionaries provided by MUSE
(Conneau et al., 2017). BERT variants (see §3.1)
are taken from Devlin et al. (2019). For comparison
with BERT, we also run fasttext (Bojanowski et al.,
2017) to produce baseline static embeddings using
the same training Wikipedia corpora for English,
Chinese and Spanish.

5.1 Bilingual Contextual Word Similarity

We first evaluate the models on two previous evalua-
tion tasks: BCWS and Sentence Retrieval. For both
tasks, we compute cosine similarity to measure the
distance between representations. For BCWS, we
evaluate embedding distance against human anno-
tations via Spearman correlation. Results on the
BCWS task for EN–ZH are shown in Figure 1. The
main finding is that all cross-lingual contextual-
ized embeddings in our comparison surpass the
previous state-of-the-art (SOTA) based on a cross-
lingual multi-sense model (Chi and Chen, 2018) as
soon as they are fed 5K or more parallel sentences.
Note that the previous SOTA model was trained
on the full EN–ZH parallel corpus of around 2M
sentences. Although BERT was pretrained on a
corpus comprising 3.3B words , it is reasonable to
assume that it is easier to procure abundant mono-
lingual data than parallel data. Therefore, aligning
pretrained monolingual embeddings using only a
small amount of parallel data rather than training on
a large parallel corpus is a more favorable choice.

Alignment based on independent monolingual
models (mono en→mono zh) is particularly effec-
tive, achieving human-level performance. While
different methods achieve comparable results,
avg type consistently takes the lead.

5.2 Sentence Retrieval

For the Sentence Retrieval task, we compute co-
sine similarity between the query sentence repre-
sentation and sentence representations in the tar-
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token wa orig [token]
avg_type sa orig [token]
token sa orig [token]
avg_type wa orig [token]
avg_type dict orig [token]

iso_type sa orig [token]
iso_type wa orig [token]
previous SOTA
human upperbound

Figure 1: BCWS (Spearman’s ρ). The horizontal axis
indicates the number of parallel sentences used for
learning the alignment transformation. Please refer to
Table 1 for understanding the method acronyms in the
legend. For example, ‘token wa orig [token]’ refers
to token-level orthogonal mapping trained with word
alignment and it is evaluated on token-level data.

get language in the test set of UMcorpus (English-
Chinese) and WMT13 corpus (English-Spanish).
Precision results for finding the parallel sentence
in the top 5 candidates are reported in Figure 2.
We find that evaluating with contextualized em-
beddings on the token-level (all the [token] lines)
performs consistently better than type embedding
baselines. Among the different ways to transfer the
contextualized embeddings, aligning directly on
the token level with parallel data outperforms align-
ing via type-level anchoring. Concerning the align-
ment training signal, sentence alignment starts low
but is able to yield comparable results with word
alignment after 50K sentences. For the EN–ZH
Sentence Retrieval, aligning independently trained
BERT models outperforms aligning embeddings
with shared vocabulary. For the EN–ES Sentence
Retrieval task, aligning from both independent
models and from shared embeddings achieves ceil-
ing performance.

5.3 Bilingual Token-level Sense Retrieval

We report Precision@5 scores for 20k target words
in Figure 3. We also report the results from align-
ing using 200k parallel sentences on BTSR with
200k target words and applying the additional MIM
technique in Table 3.

Baselines. We evaluate four baselines that help
us better understand the models’ performance in
this task. For BL(word) methods, we discard the
contexts and use only the query and target word’s
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(c) mono en→multi es
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(d) multi en→multi es

avg_type wa orig [token]
token wa orig [token]
token sa orig [token]
avg_type sa orig [token]
avg_type dict orig [token]
iso_type wa orig [token]

iso_type sa orig [token]
avg_type wa orig [type]
avg_type sa orig [type]
fasttext type sa orig [type]
fasttext type wa orig [type]

Figure 2: Results on the Sentence Retrieval task from
the testset of UMcorpus and WMT13 corpus; the
scores are Precision@5 (%). The horizontal axis indi-
cates the number of parallel sentences used for learning
the alignment transformation. Please refer to Table 1
for understanding the method acronyms.

type representations. Therefore, polysemous words
in the dataset will have only one static representa-
tion. We implement both a fasttext baseline and a
context-average type embedding baseline for each
contextualized model. We also provide baselines
which use context but ignore the word in focus
(BL(context)). These baselines take an average of
the context embeddings both at the token level and
at the type level of the contextualized models. In-
stead of finding the best translation word in context,
these baselines retrieve the target sentence with the
best translation of the source context.6 Finally, we
evaluate a simple baseline that combines both word
and context as an average of the two representa-
tions. Context representation here is the average
of the context embeddings. Both word and context
embeddings here are calculated using the avg type
embeddings.

Discussion. The low performance of all the base-
lines suggest that the proposed task is more chal-
lenging than the alternatives: it can not be easily

6On our trivial parallel variant of the task, this context
baseline gives the best performance.
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token avg type iso type
wa sa wa sa wa sa

mono en→mono zh 30.84 28.87 32.04 31.7 25.43 26.46
+ mim 29.98 30.15 34.79 34.45 26.37 27.15
multi en→multi zh 17.14 16.97 19.9 20.84 16.8 18.17
+ mim 15.93 16.62 21.62 21.79 14.81 14.9
mono en→multi es 33.47 30.15 34.37 33.37 29.25 28.44
+mim 32.46 30.55 35.38 33.57 27.34 25.43
multi en→multi es 27.14 25.43 29.35 29.25 27.04 26.33
+mim 28.44 27.94 31.86 31.76 26.73 25.03

Table 3: BTSR results with 200k candidates; alignment learned from 200k parallel sentences. Please refer to
Table 1 for the explanation of the acronyms.
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Figure 3: EN–ZH and EN–ES BTSR results; Preci-
sion@5 (%). The horizontal axis indicates the number
of parallel sentences used for learning the alignment
transformation. Please refer to Table 1 for understand-
ing the method acronyms.

tackled by looking at word in isolation (i.e., at type-
level representations) or the context alone, or a
simple combination of context and the query word.

Regarding the alignment level, compared to the
Sentence Retrieval task, the benefit of dynamic
token-level alignment from parallel corpora now
disappears. Aligning the contextualized embed-
dings via context-average anchor type embeddings,
i.e. avg type alignment, (which consistently out-
perform iso type embeddings) is the best model in
most cases, or yields comparable performance with
token-level alignment. Their advantage becomes
more pronounced in the experiments with 200K

target candidates, see Table 3. We suspect that this
method is particularly robust when generalizing to
words in non-parallel contexts: we find the same
pattern in the BCWS task which is also constructed
with nonparallel sentences.

Applying MIM brings consistent improvement
for the best (avg type) alignment method. Such
improvements for the other methods are less sta-
ble. This suggests MIM is only effective when
the alignment methods already learn a high-quality
cross-lingual space before applying MIM.

As for training signals, relying only on a small
dictionary (5K word pairs) yields comparable re-
sults with the methods that are trained on large
amounts of parallel data. This suggests that a small
seed dictionary may be enough to transfer the con-
textualized embeddings cross-lingually and be able
to disambiguate words in context cross-lingually.

When comparing model variants, we see an
advantage of aligning independent models over
aligning shared models as we increase the train-
ing data. This advantage becomes more obvious
with 200K target candidates, see Table 3. For EN–
ES results in Figure 3, we observe that all align-
ment methods which use the shared model (i.e.,
multi en→multi es) start higher than results from
aligning independently trained mono en→multi es.
With the ‘avg type wa orig’ method for exam-
ple, aligning mono en→multi es starts at 29.04(%)
whereas multi en→multi es starts at 34.07(%)
given 100 parallel sentences. This is intuitive as
English and Spanish share a larger portion of their
vocabulary compared to English and Chinese: this
gives the multilingual model a head start, but it is
quickly surpassed by aligning from independently-
trained models, especially via the avg type align-
ment, as we increase training data.

In sum, we show that (1) BTSR is a challeng-
ing task; (2) unlike in Sentence Retrieval, context
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English original token avg type iso type
mono en multi en wa mim sa mim wa mim sa mim wa mim sa mim

mono en→mono zh 76.37 - 76.9 77.98 78.16 78.28 73.82 74.37
mono en→multi es 76.37 - 75.89 76.76 77.2 76.83 73.12 72.05
multi en→multi zh - 72.6 73.56 75.31 74.89 75.1 68.55 68.07
multi en→multi es - 72.6 72.3 73.78 74.1 73.72 68.43 66.99

Table 4: Evaluating alignment methods and model variants on the monolingual SCWS dataset which measures
word similarity in context (in English). Spearman’s ρ (× 100%). Previous best reported score is 69.3 (Neelakantan
et al., 2014). Please refer to Table 1 for the explanations of the acronyms.

average type-level alignment performs the best in
our task and in the BCWS task where the con-
texts are non-parallel, and can be further improved
with the MIM technique. (3) Using a small dic-
tionary is sufficient to transfer the contextualized
embeddings via type-level alignment. (4) Align-
ing from a shared model gives a head start when
two languages contain some shared vocabulary, but
aligning from independently trained monolingual
embeddings is able to achieve better performance
given sufficient training data (5) Overall, increasing
the search space from 20K to 200K target words
results in a decrease of 10% in precision in BTSR,
but the relative performance of different methods
is more consistent and more pronounced.

Monolingual Contextual Evaluation. We also
examine whether the cross-lingual alignment with
MIM post-processing can improve the monolingual
contextualized embeddings by evaluating the EN
models on the Stanford Contextualized Word Sim-
ilarity Task (Huang et al., 2012) which measures
similarity of word pairs with context in English. We
evaluate the alignments learned from using 200K
parallel sentences. The results are in Table 4. It
seems that aligning independently trained models,
which have better monolingual performance, out-
performs aligning from shared models as found in
BTSR. Also, we see consistent improvement over
the original monolingual space after MIM, espe-
cially with avg type alignment level. This indicates
that the avg type alignment level is effective not
only in transferring the contextualized embeddings
to the target language, but it can also improve the
context-aware monolingual space.

We also observe that the EN contextualized
models in their original space (both mono en and
multi en) outperform SOTA (69.3%), a multi-sense
static embedding model (Neelakantan et al., 2014).
This indicates that the present contextualized em-
beddings are already capturing context effect in-
cluding sense-level information without explicitly

assigning embeddings to discrete sense categories.

6 Conclusion

We have conducted novel comparisons and anal-
yses of various alignment methods for aligning
contextualized embeddings cross-lingually. We
have also introduced a novel task, Bilingual Token-
level Sense Retrieval, which directly evaluates the
retrieval of meaning-equivalent cross-lingual con-
textualized embeddings. The proposed task is chal-
lenging and enables a finer-grained analysis of dif-
ferent cross-lingual alignment methods. We have
found that using context-average type-level align-
ment (avg type) is effective and robust in trans-
ferring monolingual contextualized embeddings
cross-lingually and at the same time improves the
monolingual space. Using a small static dictio-
nary as the alignment signal provides comparable
results to word alignment methods relying on paral-
lel corpora. We have also found that aligning inde-
pendently trained monolingual embeddings yields
better performance than aligning embeddings from
a shared model. As our paper focuses only on the
projection-based alignment methods, future work
may explore other ways to learn the cross-lingual
contextualized embeddings, e.g., based on joint
training (Mulcaire et al., 2019).
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