
Proceedings of the CoNLL–SIGMORPHON 2018 Shared Task: Universal Morphological Reinflection, pages 121–126,
Brussels, Belgium, October 31, 2018. c©2018 Association for Computational Linguistics

BME-HAS System for CoNLL–SIGMORPHON 2018 Shared Task:
Universal Morphological Reinflection

Judit Ács
Department of Automation and Applied Informatics
Budapest University of Technology and Economics

and
Institute for Computer Science and Control

Hungarian Academy of Sciences
judit@sch.bme.hu

Abstract
This paper presents an encoder-decoder neu-
ral network based solution for both subtasks
of the CoNLL–SIGMORPHON 2018 Shared
Task: Universal Morphological Reinflection.
All of our models are sequence-to-sequence
neural networks with multiple encoders and a
single decoder.

1 Introduction

Morphological inflection is the task of inflecting
a lemma given either a target form or some con-
textual information. Morphology has traditionally
been solved by finite state transducers (FST) that
employ a large number of handcrafted rules. The
discrete nature of such processes makes it diffi-
cult to directly translate transducers into neural
networks and to effectively train them using back-
propagation. There have been various attempts to
replace parts of the FST paradigm with neural net-
works (Aharoni and Goldberg, 2016).

SIGMORPHON first organized a shared task on
morphological inflection in 2016 (Cotterell et al.,
2016) which involved both inflection (inflect a
word given its lemma) and reinflection (inflect a
word given another inflected form of the same
lemma). The winning solution (Kann and Schütze,
2016) used a character sequence-to-sequence net-
work with Bahdanau’s attention (Bahdanau et al.,
2015). In the second edition of the shared task
(Cotterell et al., 2017) most teams used similar set-
tings.

2 Task formulation

In this section we briefly describe the objective of
the task and provide examples for each subtask.
A more comprehensive explanation is available on
the shared task’s website1 and in task description
paper (Cotterell et al., 2018).

1https://sigmorphon.github.io/sharedtasks/2018/

2.1 Task1: Type-level inflection
Inflection aims to find an inflected word given its
lemma and a set of morphological tags in Uni-
Morph MSD(Kirov et al., 2018). A few examples
are shown below (the second column is the target):
release releasing V;V.PTCP;PRS
deodourize deodourize V;NFIN
outdance outdancing V;V.PTCP;PRS
misrepute misrepute V;NFIN
vanquish vanquished V;PST
resterilize resterilizes V;3;SG;PRS

The shared task features over 100 languages
and 10 additional surprise language were released
before the submission deadline. Most languages
had three data settings: high (10 000 samples),
medium (1 000 samples) and low (100 samples),
except some low-resource languages that did not
have enough samples for high or medium settings.
Each language had a development set of 1 000 or
less samples.

2.2 Task2: Inflection in context
Task2 is a cloze task. We were given a sentence
with a number of missing word forms (usually 1
or 2) and our task is to inflect the word given its
lemma and context. Task2 two had two tracks: in
Track1 all the lemmas and morphosyntactic de-
scription are given in the sentence context (the
morphosyntactic description of the covered word
is covered too), and in Track2 only the word forms
of the context are given. Below are examples from
Track1:
Les le DET;DEF;FEM;PL
compagnies compagnie N;FEM;PL
aériennes aérien ADJ;FEM;PL
à à ADP
bas bas ADJ;MASC;SG
coût coût N;MASC;SG
ne ne ADV;NEG
_ connaı̂tre _
pas pas ADV;NEG
la le DET;DEF;FEM;SG
crise crise N;FEM;SG
. . PUNCT

121



decoderlemma encoder tag encoder

a l m a $ SOS N NOM PL $

lemma
attention

tag
attention

lemma
context

tag
context

tag
context

sigmoid

output projection

tanh

a

Figure 1: Two-headed attention model used for Task1.
The figure illustrates the first timestep of decoding.
The output of this step is fed back to the decoder in
the next timestep. Modules are colored gray, attention
heads yellow, inputs are purple, outputs are teal and en-
coder output matrices are salmon. Dotted arrows rep-
resent copy operations and dashed arrows represent at-
tention summaries. The color scheme is borrowed from
colorbrewer2.org

and the same sentence for Track2:

Les _ _
compagnies _ _
aériennes _ _
à _ _
bas _ _
coût _ _
ne _ _
_ connaı̂tre _
pas _ _
la _ _
crise _ _
. _ _

Both examples are taken from the development
sets. The training sets have no covered words, and
we generated training examples by covering a sin-
gle word at a time, and using the rest as its sen-
tence context.

Task2 also featured low, medium and high re-
source settings with roughly 1 000, 10 000 and
100 000 tokens respectively.

3 Task1 model: two-headed attention

In this section we describe our system for Task 1:
Type-level inflection. We explain our experimen-
tal setup and the random hyperparameter search,
and finally we list three slightly different submis-
sions and their results.

3.1 Two-headed attention seq2seq

Inflection can be formulated as a mapping of two
sequences, namely a lemma and a sequence of
tags, to one sequence, the inflected word form.
The lemma and the inflected word forms are char-
acter sequences that usually share a common al-
phabet while the tags are a sequence of language-
specific morphological codes. Figure 1 illustrates
our architecture. We use separate encoders for
the lemma and the morphological tags and a sin-
gle decoder. Both encoders employ character/tag
embeddings and bidirectional LSTMs, where the
outputs are summed over the two directions. The
two encoders’ hidden states are then linearly pro-
jected to the decoder’s hidden dimension and used
to initialize the decoder’s hidden state. This allows
using different hidden dimensions in each mod-
ule. Decoding is done in an autoregressive fash-
ion, one character at a time. At each timestep the
decoder reads a single character: SOS (start-of-
sequence) at first, the ground truth during training
(teacher forcing) and the previous output during
inference. The decoder uses a character level em-
bedding, which may or may not be shared with the
lemma encoder (c.f. 3.2), then it passes the embed-
ded symbol to a unidirectional LSTM. Its output
is used by two attention modules, hence the name
two-headed attention, to compute a context vec-
tor using Luong’s attention (Luong et al., 2015).
The lemma and tag context vectors are concate-
nated with the decoder output, then passed through
a tanh, an output projection and finally a sigmoid
layer which produces a distribution over the char-
acter vocabulary of the language. Greedy decod-
ing is used.

3.2 Experimental setup

All experiments were implemented in Python 3.6
and PyTorch 0.4. We used three different Debian
servers, two with NVIDIA GTX TITAN GPUs
(12GB) and one with a GTX 980 (4GB). We cre-
ated our own experiment framework that allows
running and logging a large number of experi-

122



ments. The framework is available on Github2 and
the configurations and scripts used for this shared
task are available in a separate repository3. The
latter repository contains all best configurations
including the random seeds (we generate the ran-
dom seeds at the beginning of each experiments,
then save them for reproducibility).

All experiments shared a number of configura-
tion options while the others were randomly op-
timized. We list the ones we fixed here and the
others in 3.3. Each experiment used a batch size
of 128 for both training and evaluation except the
ones on the Kurmanji language because the de-
velopment dataset contained very long sequences
and we had to reduce the batch size to 16 to fit
into memory (12GB). We used the Adam opti-
mizer with learning rate 0.001 and we stopped
each experiment when the development loss did
not decrease on average in the last 5 epochs com-
pared to the previous 5 epochs. We ran at least 20
epochs before stopping even if the early stopping
condition was satisfied to avoid early overfitting,
which happened in about 10% of the experiments.
We also set a hard upper limit for the number of
epochs (200) but this was reached only two times
out of 1 886 experiments. The average number of
epochs before reaching the early stopping condi-
tion was 51 and only 2.7% of experiments ran for
more than 100 epochs. After each epoch, we saved
the model if its development loss was lower than
the previous minimum. We used cross entropy as
the loss function.

3.3 Random parameter search

Our initial experiments suggested that the model
is very sensitive to random initialization and the
same configuration can result in models with very
different performance. This is probably due to
the limited training data even in high setting and
the large number of parameters of the model. We
chose three languages, Breton, Latin and Lithua-
nian, and ran a large number of experiments with
random configuration on them. The reason these
were chosen is that the development accuracy on
these were in the mid-ranges among all the lan-
guage during our initial experiments. The follow-
ing random experiments were all run on the high
training sets. Common parameters (c.f. 3.2) were
loaded from a base configuration and some param-

2https://github.com/juditacs/deep-morphology
3https://github.com/juditacs/sigmorphon2018

Table 1: Parameter ranges

Parameter Values

dropout 0.1, 0.3, 0.4, 0.6
share vocab true, false

inflected embedding size 10, 20, 30, 50
inflected hidden size 128, 256, 512, 1024
inflected num layers 1, 2

lemma embedding size 10, 20, 30, 50
lemma hidden size 128, 256, 512, 1024
lemma num layers 1, 2, 3, 4

tag embedding size 5, 10, 20
tag hidden size 64, 128, 256
tag num layers 1, 2, 3, 4

eters were overriden with a value uniformly sam-
pled from a predefined set. The range of values
are listed in Table 1. Both encoders (lemma and
tag) and the decoder (listed as inflected) have three
varying parameters: the size of the embedding,
the number of hidden LSTM cells and the num-
ber of LSTM layers. We also varied the dropout
rate for both the embedding and the LSTMs and
the whether to share the vocabulary and the em-
bedding among the lemma and the decoder or not.

The running time of an experiment is dependent
on the average length of the input sequences and
the size of the vocabulary. It turns out that these
vary greatly among the languages in the dataset.
As listed in Table 2 Breton is much ”smaller” in
both alphabet and sequence length than Lithuanian
or Latin and this was evident from the difference
in average running time.

Table 3 summarizes the results of our random
parameter search. Since the average running time
of different language experiments is very differ-
ent, we ended up running many more Breton ex-
periments in roughly the same time. The standard
deviation of results is quite large, especially for
Breton, which we attribute to the small alphabet,
the short sequences and the small number of lem-
mas (44) as opposed to Latin (6517) or Lithuanian
(1443).

We observed that models with the same param-
eters often result in very different word accuracy.
To test this, we took the best performing config-
uration for each language and trained 20 models
(by language) with identical parameters but differ-
ent random seeds. Table 4 shows that identical pa-

123



Table 2: Dataset statistics.
Breton Latin Lithuanian

alphabet size 27 55 58
inflected maxlen 14 23 32
inflected types 1790 9896 9463
lemma maxlen 11 19 28
lemma types 44 6517 1443
tag types 20 33 34
tags maxlen 9 7 6

Table 3: Summary of the parameter search. The run-
ning time is given in minutes.

Breton Latin Lithuanian

experiments 1033 610 243

dev acc
mean 70.92 62.32 80.25
max 93.00 78.90 88.40
std 28.70 11.30 8.37

time mean 0.83 5.42 8.61

rameters can result in models with very different
performance.

3.4 Submission

We took the 5 highest scoring model for each lan-
guage and trained a model with those parameters
for each language and each data size, thus training
15 models per dataset. Our first submission is sim-
ply the model with the highest development word
accuracy. The second submission is the result of
majority voting by all 15 models. The third one is
the same as the first one but we changed the evalu-
ation batch size from 128 to 16. This results fewer
pad symbols on average. Table 5 lists the mean
performance of each submission.

Table 4: Accuracy statistics of 20 models trained with
the same parameters but different random seed.

Breton Latin Lithuanian

train acc mean 96.29 92.58 96.69
std 1.39 3.21 2.25
min 94.30 84.57 90.51
max 99.04 97.14 99.08

dev acc mean 87.35 74.73 86.95
std 2.41 3.17 2.32
min 84.00 69.00 81.80
max 92.00 79.10 90.60

Table 5: The mean accuracy of our Task1 submissions.

Subm Data size Accuracy Ranking

#1
High 93.884884 7
Medium 67.430392 8
Low 3.742718 22

#2
High 94.662791 3
Medium 67.258824 10
Low 2.429126 25

#3
High 93.973256 6
Medium 67.357843 9
Low 3.634951 23

4 Task2: Inflection in Context

In this section we describe our system for Task2
- Track1, then explain how the model for Track2
differs from the model for Track1.

The development datasets for Task2 have two
versions: covered and uncovered. An example is
provided in 2.2.

Figure 2 illustrates the model at a single
timestep (decoding one character). The model has
several inputs (colored purple):

target lemma The lemma of the target word. The
inflected form of this lemma is the expected
output.

left/right token context The other (inflected) to-
kens in the sentence. Left context refers to
the tokens preceding the covered token and
right context refers to the ones succeeding it.

left/right lemma context The lemmas of the pre-
ceding and succeeding tokens.

left/right tag context The corresponding tags of
the preceding and succeeding tokens.

previously decoded symbol Start-of-sequence at
the first timestep, then the last symbol pro-
duced by greedy decoding.

The left and right contexts are encoded sepa-
rately in the following way. Each token and lemma
are encoded by a bidirectional character LSTM,
preceded by a character embedding, and the tag
sequence of the corresponding token are encoded
by a separate biLSTM and tag embedding. The
lemma and the token share their alphabet and our
experiments showed that sharing the encoder re-
sults in a slight improvement in accuracy. By tak-
ing the last output of each of the three encoders,

124



left tokeni

left lemmai

left tagsi

token encoder

lemma encoder

tag encoder

. . .

context LSTM

le
ft

co
nt

ex
t

right tokeni

right lemmai

right tagsi

token encoder

lemma encoder

tag encoder

. . .

context LSTM

ri
gh

tc
on

te
xt

decoder

SOS

target lemma
encoder

l e m m a

attention

sigmoid

output projection

tanh

a

Figure 2: Task2 architecture. The figure illustrates the first timestep of decoding. The output of this step is fed
back to the decoder in the next timestep. The target lemma encoder’s hidden state is used to initialize the decoder
hidden state (not pictured for the sake of clarity). The same coloring scheme is used as in 1.

we acquire three fixed dimensional vector repre-
sentation for each token. We concatenate these
and use another biLSTM (context LSTM) to cre-
ate a single vector representation of the left/right
context. The context LSTM is shared by the left
and the right context. The target lemma is en-
coded by the same encoder as the other lemmas
and inflected tokens and the output is used by the
attention mechanism. The last hidden state of the
encoder is used to initialize the hidden state of the
decoder. Decoding is similar to the autoregressive
process used in Task1 but there is only one atten-
tion mechanism and it attends to the target lemma
encoder outputs. Attention weights are computed
using the concatenation of the decoder output at a
single timestep and the left and right context vec-
tors. The output of the attention module is con-
catenated with the decoder output, passed through
a tanh and an output projection and finally a soft-
max layer outputs a distribution over the character
alphabet of the language. Similarly to our Task1
model, the ground truth is fed to the decoder at
training time and the greedily decoded character
at inference time. The cross entropy of the output
distributions and the ground truth is used as a loss
function.

Our model for Track2 is very similar to the
model for Track1, except the left and right lemma

and tag encoders are missing and the context vec-
tors are derived only from the left and right tokens.

4.1 Experimental setup

Since our experiments for Task2 were significantly
slower than the ones for Task1, we were unable to
run extensive parameter search. We did perform a
smaller version of the same random search using
the parameter ranges listed in Table 6. We chose
the French dataset with medium setting, which is
about 10 000 tokens. The average length of one
experiment was 100 minutes and we were able to
run 38 experiments. We ran the best configuration
of the 38 on each language and each data size at
least once. Since our parameter search was very
limited, we also varied the parameters manually
and tried other combinations. The exact configu-
rations are available on the GitHub repository. All
experiments were run on NVIDIA GTX TITAN X
GPUs (12GB), since they did not fit into the mem-
ory of the smaller cards (4GB).

Task2 uses a subset of the parameters that Task1
uses, so we were able to train the ”same” config-
uration emerged as the best one during the limited
hyperparameter search. We also tried using 2 lay-
ers instead of 1 layer in every encoder and decoder.
Unfortunately time constraints did not allow run-
ning more experiments.

125



Table 6: Predefined parameter ranges used for Task2
parameter search.

Parameter Values

batch size 8, 16, 32, 64
dropout 0.0, 0.2
early stopping window 5, 10
char embedding size 30, 40, 50
context hidden size 64, 128, 256
context num layers 1, 2
decoder num layers 1
tag embedding size 10, 20, 30
tag num layers 1, 2
word hidden size 64, 128, 256
word num layers 1, 2

Table 7: Task2 results.
Track1 Track2

high med low high med low

de 73.21 56.83 30.64 64.61 52.17 27.81
en 76.23 66.77 61.33 69.89 64.05 56.90
es 56.10 42.50 29.17 41.65 32.12 27.77
fi 53.75 22.11 10.29 30.24 17.15 8.89
fr 67.21 51.12 26.27 45.42 23.63 9.57
ru 67.67 38.76 21.59 56.73 33.73 19.68
sv 65.64 41.91 26.06 54.26 34.89 22.34

4.2 Submission and results

For both Track1 and Track2 we only submitted
one system, the output of the highest scoring
model on the development dataset. In both tracks,
we finished in 2nd place. Table 7 lists our detailed
results.

5 Conclusion

We presented our submissions for the
CoNLL–SIGMORPHON 2018 Shared Task:
Universal Morphological Reinflection. We em-
ployed variations of sequence-to-sequence or
encoder-decoder networks with Luong attention.
Our experiments for Task1 suggest that at the
current data size, the model is very sensitive to
random initialization, so we used an ensemble
of many systems, which placed 2nd of all teams
in the high data setting. We also placed 2nd in
both tracks of Task2. Our code and configuration
files including the random seeds are available on
Github.

References
Roee Aharoni and Yoav Goldberg. 2016. Morphologi-

cal inflection generation with hard monotonic atten-
tion. arXiv preprint arXiv:1611.01487.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In International Con-
ference on Learning Representations (ICLR 2015).

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Arya D.
McCarthy, Katharina Kann, Sebastian Mielke, Gar-
rett Nicolai, Miikka Silfverberg, David Yarowsky,
Jason Eisner, and Mans Hulden. 2018. The CoNLL–
SIGMORPHON 2018 shared task: Universal mor-
phological reinflection. In Proceedings of the
CoNLL–SIGMORPHON 2018 Shared Task: Univer-
sal Morphological Reinflection, Brussels, Belgium.
Association for Computational Linguistics.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Patrick
Xia, Manaal Faruqui, Sandra Kübler, David
Yarowsky, Jason Eisner, and Mans Hulden.
2017. The CoNLL-SIGMORPHON 2017 shared
task: Universal morphological reinflection in
52 languages. In Proceedings of the CoNLL-
SIGMORPHON 2017 Shared Task: Universal Mor-
phological Reinflection, Vancouver, Canada. Asso-
ciation for Computational Linguistics.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 shared task—
morphological reinflection. In Proceedings of the
2016 Meeting of SIGMORPHON, Berlin, Germany.
Association for Computational Linguistics.

Katharina Kann and Hinrich Schütze. 2016. MED: The
LMU system for the SIGMORPHON 2016 shared
task on morphological reinflection. ACL 2016,
page 62.

Christo Kirov, Ryan Cotterell, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Patrick
Xia, Manaal Faruqui, Sebastian Mielke, Arya D.
McCarthy, Sandra Kübler, David Yarowsky, Ja-
son Eisner, and Mans Hulden. 2018. UniMorph
2.0: Universal Morphology. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1412–1421. Associa-
tion for Computational Linguistics.

126


