
Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 160–170
Brussels, Belgium, October 31 – November 1, 2018. c©2018 Association for Computational Linguistics

https://doi.org/10.18653/v1/K18-2016

160

Universal Dependency Parsing from Scratch

Peng Qi,* Timothy Dozat,* Yuhao Zhang,* Christopher D. Manning
Stanford University
Stanford, CA 94305

{pengqi, tdozat, yuhaozhang, manning}@stanford.edu

Abstract

This paper describes Stanford’s system at
the CoNLL 2018 UD Shared Task. We
introduce a complete neural pipeline sys-
tem that takes raw text as input, and per-
forms all tasks required by the shared task,
ranging from tokenization and sentence
segmentation, to POS tagging and depen-
dency parsing. Our single system sub-
mission achieved very competitive perfor-
mance on big treebanks. Moreover, after
fixing an unfortunate bug, our corrected
system would have placed the 2nd, 1st, and
3rd on the official evaluation metrics LAS,
MLAS, and BLEX, and would have out-
performed all submission systems on low-
resource treebank categories on all metrics
by a large margin. We further show the ef-
fectiveness of different model components
through extensive ablation studies.

1 Introduction

Dependency parsing is an important component
in various natural langauge processing (NLP) sys-
tems for semantic role labeling (Marcheggiani and
Titov, 2017), relation extraction (Zhang et al.,
2018), and machine translation (Chen et al., 2017).
However, most research has treated dependency
parsing in isolation, and largely ignored upstream
NLP components that prepare relevant data for the
parser, e.g., tokenizers and lemmatizers (Zeman
et al., 2017). In reality, however, these upstream
systems are still far from perfect.

To this end, in our submission to the CoNLL
2018 UD Shared Task, we built a raw-text-
to-CoNLL-U pipeline system that performs all
tasks required by the Shared Task (Zeman et al.,

∗These authors contributed roughly equally.

2018).1 Harnessing the power of neural sys-
tems, this pipeline achieves competitive perfor-
mance in each of the inter-linked stages: tok-
enization, sentence and word segmentation, part-
of-speech (POS)/morphological features (UFeats)
tagging, lemmatization, and finally, dependency
parsing. Our main contributions include:
• New methods for combining symbolic statis-

tical knowledge with flexible, powerful neu-
ral systems to improve robustness;
• A biaffine classifier for joint POS/UFeats pre-

diction that improves prediction consistency;
• A lemmatizer enhanced with an edit classifier

that improves the robustness of a sequence-
to-sequence model on rare sequences; and
• Extensions to our parser from (Dozat et al.,

2017) to model linearization.
Our system achieves competitive performance

on big treebanks. After fixing an unfortunate bug,
the corrected system would have placed the 2nd,
1st, and 3rd on the official evaluation metrics LAS,
MLAS, and BLEX, and would have outperformed
all submission systems on low-resource treebank
categories on all metrics by a large margin. We
perform extensive ablation studies to demonstrate
the effectiveness of our novel methods, and high-
light future directions to improve the system.2

2 System Description

In this section, we present detailed descriptions
for each component of our neural pipeline system,
namely the tokenizer, the POS/UFeats tagger, the
lemmatizer, and finally the dependency parser.

1We chose to develop a pipeline system mainly because it
allows easier parallel development and faster model tuning in
a shared task context.

2To facilitate future research, we make our implementa-
tion public at: https://github.com/stanfordnlp/
UD-from-scratch.

https://github.com/stanfordnlp/UD-from-scratch
https://github.com/stanfordnlp/UD-from-scratch

161

2.1 Tokenizer

To prepare sentences in the form of a list of words
for downstream processing, the tokenizer compo-
nent reads raw text and outputs sentences in the
CoNLL-U format. This is achieved with two sub-
systems: one for joint tokenization and sentence
segmentation, and the other for splitting multi-
word tokens into syntactic words.

Tokenization and sentence segmentation. We
treat joint tokenization and sentence segmentation
as a unit-level sequence tagging problem. For
most languages, a unit of text is a single charac-
ter; however, in Vietnamese orthography, the most
natural units of text are single syllables.3 We as-
sign one out of five tags to each of these units: end
of token (EOT), end of sentence (EOS), multi-word
token (MWT), multi-word end of sentence (MWS),
and other (OTHER). We use bidirectional LSTMs
(BiLSTMs) as the base model to make unit-level
predictions. At each unit, the model predicts hier-
archically: it first decides whether a given unit is
at the end of a token with a score s(tok), then clas-
sifies token endings into finer-grained categories
with two independent binary classifiers: one for
sentence ending s(sent), and one for MWT s(MWT).

Since sentence boundaries and MWTs usually
require a larger context to determine (e.g., periods
following abbreviations or the ambiguous word
“des” in French), we incorporate token-level infor-
mation into a two-layer BiLSTM as follows (see
also Figure 1). The first layer BiLSTM operates
directly on raw units, and makes an initial predic-
tion over the categories. To help capture local unit
patterns more easily, we also combine the first-
layer BiLSTM with 1-D convolutional networks,
by using a one hidden layer convolutional network
(CNN) with ReLU nolinearity at its first layer, giv-
ing an effect a little like a residual connection (He
et al., 2016). The output of the CNN is simply
added to the concatenated hidden states of the Bi-
LSTM for downstream computation:

hRNN
1 = [

−→
h1,
←−
h1] = BiLSTM1(x), (1)

hCNN
1 = CNN(x), (2)

h1 = hRNN
1 + hCNN

1 , (3)

[s
(tok)
1 , s

(sent)
1 , s

(MWT)
1] =W1h1, (4)

where x is the input character representations,
3In this case, we define a syllable as a consecutive run

of alphabetic characters, numbers, or individual symbols, to-
gether with any leading white spaces before them.

BiLSTM1
Step t

Input Unit t

1-D CNN

!",$
(&'()) !",$

(+,-) !",$
()./)

!0,$
(&'()) !0,$

(+,-) !0,$
()./)

!$
(&'()) !$

(+,-) !$
()./)

σ +

+

+

Input

First layer

First layer
prediction &
gating

Second layer

Final prediction

Second layer
prediction

BiLSTM1
Step t

Figure 1: Illustration of the tokenizer/sentence
segmenter model. Components in blue represent
the gating mechanism between the two layers.

and W1 contains the weights and biases for a lin-
ear classifier.4 For each unit, we concatenate its
trainable embedding with a four-dimensional bi-
nary feature vector as input, each dimension cor-
responding to one of the following feature func-
tions: (1) does the unit start with whitespace; (2)
does it start with a capitalized letter; (3) is the unit
fully capitalized; and (4) is it purely numerical.

To incorporate token-level information at the
second layer, we use a gating mechanism to sup-
press representations at non-token boundaries be-
fore propagating hidden states upward:

g1 = h1 � σ(s(tok)
1) (5)

h2 = [
−→
h2,
←−
h2] = BiLSTM2(g1), (6)

[s
(tok)
2 , s

(sent)
2 , s

(MWT)
2] =W2h2, (7)

where � is an element-wise product broadcast
over all dimensions of h1 for each unit. This
can be viewed as a simpler alternative to multi-
resolution RNNs (Serban et al., 2017), where the
first-layer BiLSTM operates at the unit level, and
the second layer operates at the token level. Unlike
multi-resolution RNNs, this formulation is end-to-
end differentiable, and can more easily leverage
efficient off-the-shelf RNN implementations.

To combine predictions from both layers of the
BiLSTM, we simply sum the scores to obtain
s(X) = s

(X)
1 +s

(X)
2 , whereX ∈ {tok, sent, MWT}.

The final probability over the tags is then

pEOT = p+−− pEOS = p++−, (8)

pMWT = p+−+ pMWS = p+++, (9)

where p±±± = σ(±s(tok))σ(±s(sent))σ(±s(MWT)),
4We will omit bias terms in affine transforms for clarity.

162

and σ(·) is the logistic sigmoid function. pOTHER is
simply σ(−s(tok)). The model is trained to mini-
mize the standard cross entropy loss.

Multi-word Token Expansion. The tokenizer/
sentence segmenter produces a collection of sen-
tences, each being a list of tokens, some of which
are labeled as multi-word tokens (MWTs). We
must expand these MWTs into the underlying syn-
tactic words they correspond to (e.g., “im” to “in
dem” in German), in order for downstream sys-
tems to process them properly. To achieve this, we
take a hybrid approach to combine symbolic statis-
tical knowledge with the power of neural systems.

The symbolic statistical side is a frequency lex-
icon. Many languages, like German, have only a
handful of rules for expanding a few MWTs. We
leverage this information by simply counting the
number of times a MWT is expanded into differ-
ent sequences of words in the training set, and re-
taining the most frequent expansion in a dictionary
to use at test time. When building this dictionary,
we lowercase all words in the expansions to im-
prove robustness. However, this approach would
fail for languages with rich clitics, a large set of
unique MWTs, and/or complex rules for MWT ex-
pansion, such as Arabic and Hebrew. We capture
this by introducing a powerful neural system.

Specifically, we train a sequence-to-sequence
model using a BiLSTM encoder with an attention
mechanism (Bahdanau et al., 2015) in the form of
a multi-layer perceptron (MLP). Formally, the in-
put multi-word token is represented by a sequence
of characters x1, . . . , xI , and the output syntactic
words are represented similarly as a sequence of
characters y1, . . . , yJ , where the words are sep-
arated by space characters. Inputs to the RNNs
are encoded by a shared matrix of character em-
beddings E. Once the encoder hidden states henc

are obtained with a single-layer BiLSTM, each de-
coder step is unrolled as follows:

hdec
j = LSTMdec(Eyj−1 ,h

dec
j−1), (10)

αij ∝ exp(u>α tanh(Wα[h
dec
j ,henc

i])), (11)

cj =
∑
i

αijh
enc
i , (12)

P (yj = w|y<j) ∝ u>w tanh(W [hdec
j , cj]). (13)

Here, w is a character index in the output vocab-
ulary, y0 a special start-of-sequence symbol in the
vocabulary, and hdec

0 the concatenation of the last
hidden states of each direction of the encoder.

To bring the symbolic and neural systems to-
gether, we train them separately and use the fol-
lowing protocol during evaluation: for each MWT,
we first look it up in the dictionary, and return the
expansion recorded there if one can be found. If
this fails, we retry by lowercasing the incoming
token. If that fails again, we resort to the neural
system to predict the final expansion. This allows
us to not only account for languages with flexi-
ble MWTs patterns (Arabic and Hebrew), but also
leverage the training set statistics to cover both
languages with simpler MWT rules, and MWTs
in the flexible languages seen in the training set
without fail. This results in a high-performance,
robust system for multi-word token expansion.

2.2 POS/UFeats Tagger

Our tagger follows closely that of (Dozat et al.,
2017), with a few extensions. As in that work,
the core of the tagger is a highway BiLSTM (Sri-
vastava et al., 2015) with inputs coming from the
concatenation of three sources: (1) a pretrained
word embedding, from the word2vec embeddings
provided with the task when available (Mikolov
et al., 2013), and from fastText embeddings oth-
erwise (Bojanowski et al., 2017); (2) a trainable
frequent word embedding, for all words that oc-
curred at least seven times in the training set; and
(3) a character-level embedding, generated from
a unidirectional LSTM over characters in each
word. UPOS is predicted by first transforming
each word’s BiLSTM state with a fully-connected
(FC) layer, then applying an affine classifier:

hi = BiLSTM(tag)
i (x1, . . . ,xn), (14)

v
(u)
i = FC(u)(hi), (15)

P
(
y
(u)
ik |X

)
= softmaxk

(
W (u)v

(u)
i

)
. (16)

To predict XPOS, we similarly start with trans-
forming the BiLSTM states with an FC layer. In
order to further ensure consistency between the
different tagsets (e.g., to avoid a VERB UPOS with
an NN XPOS), we use a biaffine classifier, condi-
tioned on a word’s XPOS state as well as an em-
bedding for its gold (at training time) or predicted
(at inference time) UPOS tag y(u)i∗ :

v
(x)
i = FC(x)(hi), (17)

s
(x)
i = [E

(u)

y
(u)
i∗
, 1]>U(x)[v

(x)
i , 1], (18)

P
(
y
(x)
ik |y

(u)
i∗ , X

)
= softmaxk

(
s
(x)
i

)
. (19)

163

UFeats is predicted analogously with separate pa-
rameters for each individual UFeat tag. The tagger
is also trained to minimize the cross entropy loss.

Some languages have composite XPOS tags,
yielding a very large XPOS tag space (e.g., Arabic
and Czech). For these languages, the biaffine clas-
sifier requires a prohibitively large weight tensor
U(x). For languages that use XPOS tagsets with a
fixed number of characters, we classify each char-
acter of the XPOS tag in the same way we clas-
sify each UFeat. For the rest, instead of taking the
biaffine approach, we simply share the FC layer
between all three affine classifiers, hoping that the
learned features for one will be used by another.

2.3 Lemmatizer

For the lemmatizer, we take a very similar ap-
proach to that of the multi-word token expansion
component introduced in Section 2.1 with two key
distinctions customized to lemmatization.

First, we build two dictionaries from the train-
ing set, one from a (word, UPOS) pair to the
lemma, and the other from the word itself to the
lemma. During evaluation, the predicted UPOS
is used. When the UPOS-augmented dictionary
fails, we fall back to the word-only dictionary
before resorting to the neural system. In look-
ing up both dictionaries, the word is never lower-
cased, because case information is more relevant
in lemmatization than in MWT expansion.

Second, we enhance the neural system with an
edit classifier that shortcuts the prediction process
to accommodate rare, long words, on which the
decoder is more likely to flounder. The concate-
nated encoder final states are put through an FC
layer with ReLU nonlinearity and fed into a 3-
way classifier, which predicts whether the lemma
is (1) exactly identical to the word (e.g., URLs and
emails), (2) the lowercased version of the word
(e.g., capitalized rare words in English that are not
proper nouns), or (3) in need of the sequence-to-
sequence model to make more complex edits to
the character sequence. During training time, we
assign the labels to each word-lemma pair greed-
ily in the order of identical, lowercase, and se-
quence decoder, and train the classifier jointly with
the sequence-to-sequence lemmatizer. At evalua-
tion time, predictions are made sequentially, i.e.,
the classifier first determines whether any shortcut
can be taken, before the sequence decoder model
is used if needed.

2.4 Dependency Parser

The dependency parser also follows that of (Dozat
et al., 2017) with a few augmentations. The high-
way BiLSTM takes as input pretrained word em-
beddings, frequent word and lemma embeddings,
character-level word embeddings, summed XPOS
and UPOS embeddings, and summed UFeats em-
beddings. In (Dozat et al., 2017), unlabeled attach-
ments are predicted by scoring each word i and its
potential heads with a biaffine transformation

ht = BiLSTM(parse)
t (x1, . . . ,xn), (20)

v
(ed)
i ,v

(eh)
j = FC(ed)(hi),FC(eh)(hj), (21)

s
(e)
ij = [v

(eh)
j , 1]>U (e)[v

(ed)
i , 1], (22)

= Deep-Biaff(e)(hi,hj), (23)

P
(
y
(e)
ij |X

)
= softmaxj

(
s
(e)
i

)
, (24)

where v(ed)
i is word i’s edge-dependent repre-

sentation and v(eh)
i its edge-head representation.

This approach, however, does not explicitly take
into consideration relative locations of heads and
dependents during prediction; instead, such pre-
dictive location information must be implicitly
learned by the BiLSTM. Ideally, we would like the
model to explicitly condition on (i − j), namely
the dependent i and its potential head j’s location
relative to each other, in modeling p(yij).5

Here, we motivate one way to build this into
the model. First we factorize the relative loca-
tion of word i and head j into their linear order
and the distance between them, i.e., P (yij |sgn(i−
j), abs(i − j)), where sgn(·) is the sign function.
Applying Bayes’ rule and assuming conditional
independence, we arrive at the following

P (yij |sgn(i− j), abs(i− j)) ∝ (25)

P (yij)P (sgn(i− j)|yij)P (abs(i− j)|yij).
In a language where heads always follow their de-
pendents, P (sgn(i − j) = 1|yij) would be ex-
tremely low, heavily penalizing rightward attach-
ments. Similarly, in a language where dependen-
cies are always short, P (abs(i−j)� 0|yij) would
be extremely low, penalizing longer edges.
P (yij) can remain the same as computed in

Eq. (24). P (sgn(i− j)|yij) can be computed sim-
ilarly with a deep biaffine scorer (cf. Eqs. (20)–
(23)) over the recurrent states. This results in the
score of j preceding i; flipping the sign wherever
i precedes j turns this into the log odds of the ob-

5Henceforth we omit the (e) superscript and X .

164

served linearization. Applying the sigmoid func-
tion then turns it into a probability:

s
(l)
ij = Deep-Biaff(l)(hi,hj), (26)

s
′(l)
ij = sgn(i− j)s(l)ij , (27)

P (sgn(i− j)|yij) = σ
(
s
′(l)
ij

)
. (28)

This can be effortlessly incorporated into the edge
score by adding in the log of this probability
− log(1 + exp(−s′(l)ij)). Error is not backpropa-
gated to this submodule through the final attach-
ment loss; instead, it is trained with its own cross
entropy, with error only computed on gold edges.
This ensures that the model learns the conditional
probability given a true edge, rather than just
learning to predict the linear order of two words.

For P (abs(i − j)|yij), we use another deep bi-
affine scorer to generate a distance score. Dis-
tances are always no less than 1, so we apply
1 + softplus to predict the distance between i and
j when there’s an edge between them:

s
(d)
ij = Deep-Biaff(d)(hi,hj), (29)

s
′(d)
ij = 1 + softplus

(
s
(d)
ij

)
. (30)

where softplus(x) = log(1 + exp(x)). The dis-
tribution of edge lengths in the treebanks roughly
follows a Zipfian distribution, to which the Cauchy
distribution is closely related, only the latter is
more stable for values at or near zero. Thus, rather
than modeling the probability of an arc’s length,
we can use the Cauchy distribution to model the
probability of an arc’s error in predicted length,
namely how likely it is for the predicted distance
and the true distance to have a difference of δ(d)ij :

Zipf(k;α, β) ∝ (kα/β)−1, (31)

Cauchy(x; γ) ∝ (1 + x2/γ)−1 (32)

δ
(d)
ij = abs(i− j)− s′(d)ij , (33)

P (abs(i− j)|yij) ∝ (1 + δ
2(d)
ij /2)−1. (34)

When the difference δ(d)ij is small or zero, there
will be effectively no penalty; but when the model
expects a significantly longer or shorter arc than
the observed distance between i and j, it is dis-
couraged from assigning an edge between them.
As with the linear order probability, the log of the
distance probability is added to the edge score, and
trained with its own cross-entropy on gold edges.6

6Note that the penalty assigned to the edge score in this
way is proportional to ln δ

(d)
ij for high δ(d)

ij ; using a Gamma

At inference time, the Chu-Liu/Edmonds algo-
rithm (Chu and Liu, 1965; Edmonds, 1967) is used
to ensure a maximum spanning tree. Dependency
relations are assigned to gold (at training time)
or predicted (at inference time) edges y(e)i∗ using
another deep biaffine classifier, following (Dozat
et al., 2017) with no augmentations:

s
(r)
i = Deep-Biaff(r)

(
hi,hy(e)

i∗

)
, (35)

P
(
y
(r)
ik |y

(e)
i∗
)
= softmaxk

(
s
(r)
i

)
. (36)

3 Training Details

Except where otherwise stated, our system is a
pipeline: given a document of raw text, the to-
kenizer/sentence segmenter/MWT expander first
splits it into sentences of syntactic words; the tag-
ger then assigns UPOS, XPOS and UFeat tags
to each word; the lemmatizer takes the predicted
word and UPOS tag and outputs a lemma; finally,
the parser takes all annotations as input and pre-
dicts the head and dependency label for each word.

All components are trained with early stopping
on the dev set when applicable. When a dev
set is unavailable, we split the training set into
an approximately 7-to-1 split for training and de-
velopment. All components (except the depen-
dency parser) are trained and evaluated on the de-
velopment set assuming all related components
had oracle implementations. This means the to-
kenizer/sentence segmenter assumes all correctly
predicted MWTs will be correctly expanded, the
MWT expander assumes gold word segmentation,
and all downstream tasks assume gold word seg-
mentation, along with gold annotations of all pre-
requisite tasks. The dependency parser is trained
with predicted tags and morphological features
from the POS/UFeats tagger.

Treebanks without training data. For tree-
banks without training data, we adopt a heuristic
approach for finding replacements. Where a larger
treebank in the same language is available (i.e., all
PUD treebanks and Japanese-Modern), we used
the models from the largest treebank available in
that language. Where treebanks in related lan-
guages are available (as determined by language
families from Wikipedia), we use models from
the largest treebank in that related language. We

or Poisson distribution to model the distance directly, or using
a normal distribution instead of Cauchy, respectively, assigns
penalties roughly proportional to δ(d)

ij , ln Γ(δ
(d)
ij), and δ2(d)

ij .
Thus, the Cauchy is more numerically stable during training.

165

ended up choosing the models from English-EWT
for Naija (an English-based pidgin), Irish-IDT for
Breton (both are Celtic), and Norwegian-Nynorsk
for Faroese (both are West Scandinavian). For
Thai, since it uses a different script from all other
languages, we use UDPipe 1.2 for all components.

Hyperparameters. The tokenizer/sentence seg-
menter uses BiLSTMs with 64d hidden states
in each direction and takes 32d character em-
beddings as input. During training, we employ
dropout to the input embeddings and hidden states
at each layer with p = .33. We also randomly
replace the input unit with a special <UNK> unit
with p = .33, which would be used in place of any
unseen input at test time. We add noise to the gat-
ing mechanism in Eq. (6) by randomly setting the
gates to 1 with p = .02 and setting its temperature
to 2 to make the model more robust to tokeniza-
tion errors at test time. Optimization is performed
with Adam (Kingma and Ba, 2015) with an ini-
tial learning rate of .002 for up to 20,000 steps,
and whenever dev performance deteriorates, as is
evaluated every 200 steps after the 2,000th step,
the learning rate is multiplied by .999. For the
convolutional component we use filter sizes of 1
and 9, and for each filter size we use 64 channels
(same as one direction in the BiLSTM). The con-
volutional outputs are concatenated in the hidden
layer, before an affine transform is applied to serve
as a residual connection for the BiLSTM. For the
MWT expander, we use BiLSTMs with 256d hid-
den states in each direction as the encoder, a 512d
LSTM decoder, 64d character embeddings as in-
put, and dropout rate p = .5 for the inputs and
hidden states. Models are trained up to 100 epochs
with the standard Adam hyperparameters, and the
learning rate is annealed similarly every epoch af-
ter the 15th epoch by a factor of 0.9. Beam search
of beam size 8 is employed in evaluation.

The lemmatizer uses BiLSTMs with 100d hid-
den states in each direction of the encoder, 50d
character embeddings as input, and dropout rate
p = .5 for the inputs and hidden states. The de-
coder is an LSTM with 200d hidden states. During
training we jointly minimize (with equal weights)
the cross-entropy loss of the edit classifier and the
negative log-likelihood loss of the seq2seq lem-
matizer. Models are trained up to 60 epochs with
standard Adam hyperparameters.

The tagger and parser share most of their hy-
perparameters. We use 75d uncased frequent

word and lemma embeddings, and 50d POS tag
and UFeat embeddings. Pretrained embeddings
and character-based word representations are both
transformed to be 125d. During training, all em-
beddings are randomly replaced with a <drop>
symbol with p = .33. We use 2-layer 200d BiL-
STMs for the tagger and 3-layer 400d BiLSTMs
for the parser. We employ dropout in all feed-
forward connections with p = .5 and all recur-
rent connections (Gal and Ghahramani, 2016) with
p = .25 (except p = .5 in the tagger BiLSTM).
All classifiers use 400d FC layers (except 100d
for UFeats) with the ReLU nonlinearity. We train
the systems with Adam (α = .003, β1 = .9,
β2 = .95) until dev accuracy decreases, at which
point we switch to AMSGrad (Reddi et al., 2018)
until 3,000 steps pass with no dev accuracy in-
creases.

4 Results

The main results are shown in Table 1. As can be
seen from the table, our system achieves competi-
tive performance on nearly all of the metrics when
macro-averaged over all treebanks. Moreover, it
achieves the top performance on several metrics
when evaluated only on big treebanks, showing
that our systems can effectively leverage statisti-
cal patterns in the data. Where it is not the top per-
forming system, our system also achieved compet-
itive results on each of the metrics on these tree-
banks. This is encouraging considering that our
system is comprised of single-system components,
whereas some of the best performing teams used
ensembles (e.g., HIT-SCIR (Che et al., 2018)).

When taking a closer look, we find that our
UFeats classifier is very accurate on these tree-
banks as well. Not only did it achieve the top
performance on UFeats F1, but also it helped the
parser achieve top MLAS as well on big treebanks,
even when the parser is not the best-performing
as evaluated by other metrics. We also note the
contribution from our consistency modeling in the
POS tagger/UFeats classifier: in both settings the
individual metrics (UPOS, XPOS, and UFeats)
achieve a lower advantage margin over the refer-
ence systems when compared to the AllTags met-
ric, showing that these reference systems, though
sometimes more accurate on each individual task,
are not as consistent as our system overall.

The biggest disparity between the all-treebanks
and big-treebanks results comes from sentence

166

(a) Results on all treebanks

System Tokens Sent Words Lemmas UPOS XPOS UFeats AllTags UAS CLAS LAS MLAS BLEX

Stanford 96.19 76.55 95.99 88.32 89.01 85.51 85.47 79.71 76.78 68.73 72.29 60.92 64.04
Reference 98.42† 83.87† 98.18‡ 91.24? 90.91‡ 86.67∗ 87.59‡ 80.30∗ 80.51† 72.36† 75.84† 61.25∗ 66.09?

∆ –2.23 –7.32 –2.19 –2.92 –1.90 –1.16 –2.12 –0.59 –3.73 –3.63 –3.55 –0.33 –2.05

Stanford+ 97.42 85.46 97.23 89.17 89.95 86.50 86.20 80.36 79.04 70.39 74.16 62.08 65.28

∆ –1.00 +1.59 –0.95 –2.07 –0.96 –0.17 –1.39 +0.06 –1.47 –1.97 –1.68 +0.83 –0.81

(b) Results on big treebanks only

System Tokens Sent Words Lemmas UPOS XPOS UFeats AllTags UAS CLAS LAS MLAS BLEX

Stanford 99.43 89.52 99.21 95.25 95.93 94.95 94.14 91.50 86.56 79.60 83.03 72.67 75.46
Reference 99.51† 87.73† 99.16† 96.08? 96.23† 95.16† 94.11∗ 91.45∗ 87.61† 81.29† 84.37† 71.71∗ 75.83?

∆ –0.08 +1.79 +0.05 –0.83 –0.30 –0.21 +0.03 +0.05 –1.05 –1.69 –1.34 +0.96 –0.37

Table 1: Evaluation results (F1) on the test set, on all treebanks and big treebanks only. For each set of
results on all metrics, we compare it against results from reference systems. A reference system is the top
performing system on that metric if we are not top, or the second-best performing system on that metric.
Reference systems are identified by superscripts (†: HIT-SCIR, ‡: Uppsala, ?: TurkuNLP, ∗: UDPipe
Future). Shaded columns in the table indicate the three official evaluation metrics. “Stanford+” is our
system after a bugfix evaluated unofficially; for more details please see the main text.

Treebanks System LAS MLAS BLEX

Small Stanford+ 83.90 72.75 77.30
Reference 69.53† 49.24‡ 54.89‡

Low-Res Stanford+ 63.20 51.64 53.58
Reference 27.89? 6.13? 13.98?

PUD Stanford+ 82.25 74.20 74.37
Reference 74.20† 58.75∗ 63.25•

Table 2: Evaluation results (F1) on low-resource
treebank test sets. Reference systems are identi-
fied by symbol superscripts (†: HIT-SCIR, ‡: ICS
PAS, ?: CUNI x-ling, ∗: Stanford, •: TurkuNLP).

segmentation. After inspecting the results on
smaller treebanks and double-checking our imple-
mentation, we noticed issues with how we pro-
cessed data in the tokenizer that negatively im-
pacted generalization on these treebanks.7 This is
devastating for these treebanks, as all downstream
components process words at the sentence level.

We fixed this issue, and trained new tokenizers
with all hyperparameters identical to our system at
submission. We further built an unofficial evalua-
tion pipeline, which we verified achieves the same
evaluation results as the official system, and eval-

7Specifically, our tokenizer was originally designed to be
aware of newlines (\n) in double newline-separated para-
graphs, but we accidentally prepared training and dev sets for
low resource treebanks by putting each sentence on its own
line in the text file. This resulted in the sentence segmenter
overfitting to relying on newlines. In later experiments, we
replaced all in-paragraph whitespaces with space characters.

uated our entire pipeline by only replacing the to-
kenizer. As is shown in Table 1, the resulting
system (Stanford+) is much more accurate over-
all, and we would have ranked 2nd, 1st, and 3rd on
the official evaluation metrics LAS, MLAS, and
BLEX, respectively.8 On big treebanks, all met-
rics changed within only 0.02% F1 and are thus
not included. On small treebanks, however, this
effect is more pronounced: as is shown in Table
2, our corrected system outperforms all submis-
sion systems on all official evaluation metrics on
all low-resource treebanks by a large margin.

5 Analysis

In this section, we perform ablation studies on the
new approaches we proposed for each component,
and the contribution of each component to the fi-
nal pipeline. For each component, we assume ac-
cess to an oracle for all other components in the
analysis, and show their efficacy on the dev sets.9

For the ablations on the pipeline, we report macro-
averaged F1 on the test set.

8We note that the only system that is more accurate than
ours on LAS is HIT’s ensemble system, and we achieve very
close performance to their system on MLAS (only 0.05% F1

lower, which is likely within the statistical variation reported
in the official evaluation).

9We perform treebank-level paired bootstrap tests for each
ablated system against the top performing system in abla-
tion with 105 bootstrap samples, and indicate statistical sig-
nificance in tables with symbol superscripts (*:p < 0.05,
:p < 0.01, *:p < 0.001).

167

System Tokens Sentences Words

Stanford+ 99.46 91.33 99.27
− gating 99.47 91.34 99.27
− conv 99.45 91.03 98.67
− seq2seq – – 98.97
− dropout 99.22∗ 88.78∗∗∗ 98.98∗

Table 3: Ablation results for the tokenizer. All
metrics in the table are macro-averaged dev F1.

101 102 103 104

0

5

10

Arabic-PADT

Czech-PDT

Hebrew-HTB

Italian-PoSTWITA
Turkish-IMST

#MWTs in Training

∆
W

or
ds

F 1

Figure 2: Effect of the seq2seq component for
MWT expansion in the tokenizer.

Tokenizer. We perform ablation studies on the
less standard components in the tokenizer, namely
the gating mechanism in Eq. (6) (gating), the con-
volutional residual connections (conv), and the
seq2seq model in the MWT expander (seq2seq),
on all 61 big treebanks. As can be seen in Ta-
ble 3, all but the gating mechanism make no-
ticeable differences in macro F1. When taking
a closer look, we find that both gating and conv
show a mixed contribution to each treebank, and
we could have improved overall performance fur-
ther through treebank-level component selection.
One surprising discovery is that conv greatly helps
identify MWTs in Hebrew (+34.89 Words F1)
and sentence breaks in Ancient Greek-PROIEL
(+18.77 Sents F1). In the case of seq2seq, al-
though the overall macro difference is small, it
helps with the word segmentation performance
on all treebanks where it makes any meaningful
difference, most notably +10.08 on Hebrew and
+4.19 on Arabic in Words F1 (see also Figure 2).
Finally, we note that dropout plays an important
role in safeguarding the tokenizer from overfitting.

POS/UFeats Tagger. The main novelty in our
tagger is the explicit conditioning of XPOS and
UFeats predictions on the UPOS prediction. We
compare this against a tagger that simply shares
the hidden features between the UPOS, XPOS,
and UFeats classifiers. Since we used full-rank
tensors in the biaffine classifier, treebanks with

System UPOS XPOS UFeats AllTags PMI

Stanford 96.50 95.87 95.01 92.52 .0514
− biaff 96.47 95.71∗ 94.13∗∗∗ 91.32∗∗∗ .0497∗

Table 4: Ablation results for the tagger. All
metrics are macro-averaged dev F1, except PMI,
which is explained in detail in the main text.

System Big Small LowRes All

Stanford 96.56 91.72∗ 69.21 94.22
− edit & seq2seq 89.97∗∗∗ 82.68∗∗∗ 63.50∗∗ 87.45∗∗∗

− edit 96.48∗ 91.80 68.30 94.10
− dictionaries 95.37∗∗∗ 90.43∗∗∗ 66.02∗ 92.89∗∗∗

Table 5: Ablation results for the lemmatizer, split
by different groups of treebanks. All metrics in the
table are macro-averaged dev F1.

large, composite XPOS tagsets would incur pro-
hibitive memory requirements. We therefore ex-
clude treebanks that either have more than 250
XPOS tags or don’t use them, leaving 36 treebanks
for this analysis. We also measure consistency be-
tween tags by their pointwise mutual information

PMI = log

(
pc(AllTags)

pc(UPOS)pc(XPOS)pc(UFeats)

)
,

where pc(X) is the accuracy of X . This quantifies
(in nats) how much more likely it is to get all tags
right than we would expect given their individual
accuracies, if they were independent. As can be
seen in Table 4, the added parameters do not af-
fect UPOS performance significantly, but do help
improve XPOS and UFeats prediction. Moreover,
the biaffine classifier is markedly more consistent
than the affine one with shared representations.

Lemmatizer. We perform ablation studies on
three individual components in our lemmatizer:
the edit classifier (edit), the sequence-to-sequence
module (seq2seq) and the dictionaries (dictionar-
ies). As shown in Table 5, we find that our
lemmatizer with all components achieves the best
overall performance. Specifically, adding the
neural components (i.e., edit & seq2seq) drasti-
cally improves overall lemmatization performance
over a simple dictionary-based approach (+6.77
F1), and the gains are consistent over different
treebank groups. While adding the edit clas-
sifier slightly decreases the F1 score on small
treebanks, it improves the performance on low-
resource languages substantially (+0.91 F1), and
therefore leads to an overall gain of 0.11 F1. Tree-

168

Ancie
nt Gree

k-PROIE
L

Arab
ic-

PA
DT

Ancie
nt Gree

k-Pers
eu

s

Korea
n-K

ais
t

Lati
n-PROIE

L

Finnish
-T

DT

Finnish
-FTB

Croati
an

-SET

Esto
nian

-E
DT

Slov
en

ian
-SSJ

Basq
ue-B

DT

Slov
ak

-SNK

Latv
ian

-LVTB

Czec
h-PDT

Roman
ian

-R
RT

Polis
h-L

FG

Russi
an

-SynTag
Rus

Czec
h-FicT

ree

Norw
egian

-N
ynorsk

Norw
egian

-B
okmaal

Bulgari
an

-B
TB

Fren
ch

-Spoken

Ita
lia

n-IS
DT

Gali
cia

n-C
TG

Germ
an

-G
SD

Cata
lan

-A
nCora

Swed
ish

-L
inES

Hindi-H
DTB

Fren
ch

-G
SD

Span
ish

-A
nCora

Urdu-U
DTB

Ita
lia

n-PoSTW
ITA

Englis
h-L

inES

Pers
ian

-Sera
ji

Englis
h-G

UM

Englis
h-E

W
T

Jap
an

ese
-G

SD

Indonesi
an

-G
SD

Chinese
-G

SD
0

0.5

1

R
at

io
of

ed
it

ty
pe

s

seq2seq

identity

lowercase

Figure 3: Edit operation types as output by the edit classifier on the official dev set. Due to space limit
only treebanks containing over 120k dev words are shown and sorted by the ratio of seq2seq operation.

System LAS CLAS

Stanford 87.60 84.68
− linearization 87.55∗ 84.62∗

− distance 87.43∗∗∗ 84.48∗∗∗

Table 6: Ablation results for the parser. All met-
rics in the table are macro-averaged dev F1.

banks where the largest gains are observed include
Upper Sorbian-UFAL (+4.55 F1), Kurmanji-MG
(+2.27 F1) and English-LinES (+2.16 F1). Fi-
nally, combining the neural lemmatizer with dic-
tionaries helps capture common lemmatization
patterns seen during training, leading to substan-
tial improvements on all treebank groups.

To further understand the behavior of the edit
classifier, for each treebank we present the ratio of
all predicted edit types on dev set words in Fig-
ure 3. We find that the behavior of the edit clas-
sifier aligns well with linguistic knowledge. For
example, while Ancient Greek, Arabic and Ko-
rean require a lot of complex edits in lemmatiza-
tion, the vast majority of operations in Chinese and
Japanese are simple identity mappings.

Dependency Parser. The main innovation for
the parsing module is terms that model locations
of a dependent word relative to possible head
words in the sentence. Here we examine the im-
pact of these terms, namely linearization (Eq. (28))
and distance (Eq. (34)). For this analysis, we ex-
clude six treebanks with very small dev sets. As
can be seen in Table 6, both terms contribute sig-
nificantly to the final parser performance, with the
distance term contributing slightly more.

Pipeline Ablation. We analyze the contribution
of each pipeline component by incrementally re-
placing them with gold annotations and observing
performance change. As shown in Figure 4, most
downstream systems benefit moderately from gold
sentence and word segmentation, while the parser

Stanford+
+gold tok

+gold tag
+gold lemma

+gold parse
60

70

80

90

100

System

Te
st

F 1

UPOS

XPOS

UFeats

AllTags

Lemmas

UAS

CLAS

LAS

MLAS

BLEX

Figure 4: Pipeline ablation results. Dashed, dot-
ted, and solid lines represent tagger, lemmatizer,
and parser metrics, respectively. Official evalua-
tion metrics are highlighted with thickened lines.

largely only benefits from improved POS/UFeats
tagger performance (aside from BLEX, which is
directly related to lemmatization performance and
benefits notably). Finally, we note that the parser
still is far from perfect even given gold annotations
from all upstream tasks, but our components in the
pipeline are very effective at closing the gap be-
tween predicted and gold annotations.

6 Conclusion & Future Directions

In this paper, we presented Stanford’s submission
to the CoNLL 2018 UD Shared Task. Our submis-
sion consists of neural components for each stage
of a pipeline from raw text to dependency parses.
The final system was very competitive on big tree-
banks; after fixing our preprocessing bug, it would
have outperformed all official systems on all met-
rics for low-resource treebank categories.

One of the greatest opportunities for further
gains is through the use of context-sensitive word
embeddings, such as ELMo (Peters et al., 2018)
and ULMfit (Howard and Ruder, 2018). Although
this requires a large resource investment, HIT-
SCIR (Che et al., 2018) has shown solid improve-
ments from incorporating these embeddings.

169

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. ICLR .

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Asso-
ciation for Computational Linguistics 5:135–146.
http://aclweb.org/anthology/Q17-1010.

Wanxiang Che, Yijia Liu, Yuxuan Zheng Bo Wang,
and Ting Liu. 2018. Towards better UD parsing:
Deep contextualized word embeddings, ensemble,
and treebank concatenation. In Proceedings of the
CoNLL 2018 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies.

Huadong Chen, Shujian Huang, David Chiang, and Ji-
ajun Chen. 2017. Improved neural machine trans-
lation with a syntax-aware encoder and decoder. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics.

Yoeng-Jin Chu and Tseng-Hong Liu. 1965. On the
shortest arborescence of a directed graph. Scientia
Sinica 14:1396–1400.

Timothy Dozat, Peng Qi, and Christopher D. Man-
ning. 2017. Stanford’s graph-based neural
dependency parser at the CoNLL 2017 Shared
Task. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies. pages 20–30.
http://www.aclweb.org/anthology/K/K17/K17-
3002.pdf.

Jack Edmonds. 1967. Optimum branchings. Jour-
nal of Research of the National Bureau of Standards
71:233–240.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as
a Bayesian approximation: Representing model un-
certainty in deep learning. In International Confer-
ence on Machine Learning. pages 1050–1059.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In CVPR.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. ICLR .

Diego Marcheggiani and Ivan Titov. 2017. Encoding
sentences with graph convolutional networks for se-
mantic role labeling. In Proceedings of the Confer-
ence on Empirical Methods for Natural Language
Processing.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems. pages 3111–3119.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar.
2018. On the convergence of Adam and beyond.
ICLR .

Iulian Vlad Serban, Tim Klinger, Gerald Tesauro, Kar-
tik Talamadupula, Bowen Zhou, Yoshua Bengio,
and Aaron C Courville. 2017. Multiresolution re-
current neural networks: An application to dialogue
response generation. In AAAI. pages 3288–3294.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen
Schmidhuber. 2015. Highway networks. In Pro-
ceedings of the Deep Learning Workshop at the In-
ternational Conference on Machine Learning.

Daniel Zeman, Jan Hajič, Martin Popel, Martin Pot-
thast, Milan Straka, Filip Ginter, Joakim Nivre, and
Slav Petrov. 2018. CoNLL 2018 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal De-
pendencies. In Proceedings of the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics, Brussels, Belgium, pages 1–20.

Daniel Zeman, Martin Popel, Milan Straka, Jan Ha-
jic, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gokirmak,
Anna Nedoluzhko, Silvie Cinkova, Jan Hajic jr.,
Jaroslava Hlavacova, Václava Kettnerová, Zdenka
Uresova, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher D. Manning, Sebastian Schuster,
Siva Reddy, Dima Taji, Nizar Habash, Herman Le-
ung, Marie-Catherine de Marneffe, Manuela San-
guinetti, Maria Simi, Hiroshi Kanayama, Valeria de-
Paiva, Kira Droganova, Héctor Martı́nez Alonso,
Çağr Çöltekin, Umut Sulubacak, Hans Uszkor-
eit, Vivien Macketanz, Aljoscha Burchardt, Kim
Harris, Katrin Marheinecke, Georg Rehm, Tolga
Kayadelen, Mohammed Attia, Ali Elkahky, Zhuoran
Yu, Emily Pitler, Saran Lertpradit, Michael Mandl,
Jesse Kirchner, Hector Fernandez Alcalde, Jana Str-
nadová, Esha Banerjee, Ruli Manurung, Antonio
Stella, Atsuko Shimada, Sookyoung Kwak, Gustavo
Mendonca, Tatiana Lando, Rattima Nitisaroj, and
Josie Li. 2017. CoNLL 2017 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal De-
pendencies. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Association for Computa-
tional Linguistics, pages 1–19.

Yuhao Zhang, Peng Qi, and Christopher D. Manning.
2018. Graph convolution over pruned dependency

http://aclweb.org/anthology/Q17-1010
http://aclweb.org/anthology/Q17-1010
http://aclweb.org/anthology/Q17-1010
http://www.aclweb.org/anthology/K/K17/K17-3002.pdf
http://www.aclweb.org/anthology/K/K17/K17-3002.pdf
http://www.aclweb.org/anthology/K/K17/K17-3002.pdf
http://www.aclweb.org/anthology/K/K17/K17-3002.pdf
http://www.aclweb.org/anthology/K/K17/K17-3002.pdf

170

trees improves relation extraction. In Proceedings
of the Conference on Empirical Methods for Natural
Language Processing.

