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Abstract

Following the recent success of word embed-

dings, it has been argued that there is no such

thing as an ideal representation for words, as

different models tend to capture divergent and

often mutually incompatible aspects like se-

mantics/syntax and similarity/relatedness. In

this paper, we show that each embedding

model captures more information than directly

apparent. A linear transformation that adjusts

the similarity order of the model without any

external resource can tailor it to achieve bet-

ter results in those aspects, providing a new

perspective on how embeddings encode diver-

gent linguistic information. In addition, we ex-

plore the relation between intrinsic and extrin-

sic evaluation, as the effect of our transforma-

tions in downstream tasks is higher for unsu-

pervised systems than for supervised ones.

1 Introduction

Word embeddings have recently become a central

topic in natural language processing. Several un-

supervised methods have been proposed to effi-

ciently train dense vector representations of words

(Mikolov et al., 2013; Pennington et al., 2014; Bo-

janowski et al., 2017) and successfully applied in a

variety of tasks like parsing (Bansal et al., 2014),

topic modeling (Batmanghelich et al., 2016) and

document classification (Taddy, 2015).

While there is still an active research line to bet-

ter understand these models from a theoretical per-

spective (Levy and Goldberg, 2014c; Arora et al.,

2016; Gittens et al., 2017), the fundamental idea

behind all of them is to assign a similar vector

representation to similar words. For that purpose,

most embedding models build upon co-occurrence

statistics from large monolingual corpora, follow-

ing the distributional hypothesis that similar words

tend to occur in similar contexts (Harris, 1954).

Nevertheless, the above argument does not for-

malize what “similar words” means, and it is not

entirely clear what kind of relationships an em-

bedding model should capture in practice. For

instance, some authors distinguish between gen-

uine similarity1 (as in car - automobile) and relat-

edness2 (as in car - road) (Budanitsky and Hirst,

2006; Hill et al., 2015). From another perspec-

tive, word similarity could focus on semantics (as

in sing - chant) or syntax (as in sing - singing)

(Mikolov et al., 2013). We refer to these two as-

pects as the two axes of similarity with two ends

each: the semantics/syntax axis and the similar-

ity/relatedness axis.

In this paper, we propose a new method to tai-

lor any given set of embeddings towards a spe-

cific end in these axes. Our method is inspired

by the work on first order and second order co-

occurrences (Schütze, 1998), generalized as a con-

tinuous parameter of a linear transformation ap-

plied to the embeddings that we call similarity

order. While there have been several proposals

to learn specialized word embeddings (Levy and

Goldberg, 2014a; Kiela et al., 2015; Bojanowski

et al., 2017), previous work explicitly altered the

training objective and often relied on external re-

sources like knowledge bases, whereas the pro-

posed method is applied as a post-processing of

any pre-trained embedding model and does not re-

quire any additional resource. As such, our work

shows that standard embedding models are able to

encode divergent linguistic information but have

limits on how this information is surfaced, and an-

alyzes the implications that this has in both intrin-

sic evaluation and downstream tasks. This paper

makes the following contributions:

1. We propose a linear transformation with

a free parameter that adjusts the perfor-

1Also referred to as functional similarity or just similarity.
2Also referred to as associative similarity, topical simi-

larity or domain similarity.
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mance of word embeddings in the similar-

ity/relatedness and semantics/syntax axes, as

measured in word analogy and similarity

datasets.

2. We show that the performance of embeddings

as used currently is limited by the impossi-

bility of simultaneously surfacing divergent

information (e.g. the aforementioned axes).

Our method uncovers the fact that embed-

dings capture more information than what is

immediately obvious.

3. We show that standard intrinsic evaluation of-

fers a static and incomplete picture, and com-

plementing it with the proposed method can

offer a better understanding of what informa-

tion an embedding model truly encodes.

4. We show that the effect of our method also

carries out to downstream tasks, but its effect

is larger in unsupervised systems directly us-

ing embedding similarities than in supervised

systems using embeddings as input features,

as the latter have enough expressive power to

learn the optimal transformation themselves.

All in all, our work sheds light in how word em-

beddings represent divergent linguistic informa-

tion, analyzes the role that this plays in intrinsic

evaluation and downstream tasks, and opens new

opportunities for improvement.

The remaining of this paper is organized as fol-

lows. We describe our proposed post-processing

in Section 2. Section 3 and 4 then present the re-

sults in intrinsic and extrinsic evaluation, respec-

tively. Section 5 discusses the implications of our

work on embedding evaluation and their integra-

tion in downstream tasks. Section 6 presents the

related work, and Section 7 concludes the paper.

2 Proposed post-processing

Let X be the matrix of word embeddings in a

given language, so that Xi∗ is the embedding of

the ith word in the vocabulary. Such embeddings

are meant to capture the meaning of their corre-

sponding words in such a way that the dot prod-

uct sim(i, j) = Xi∗ ·Xj∗ gives some measure of

the similarity between the ith and the jth word3.

Based on this, we can define the similarity matrix

M(X) = XXT so that sim(i, j) = M(X)ij .

3Note that the cosine similarity is the dot product of two
length normalized vectors.

Inspired by first order and second order co-

occurrences (Schütze, 1998), one can also define

a second order similarity measure on top of this

(first order) similarity. In second order similarity,

the similarity of two words is not assessed in terms

of how similar they directly are, but in terms of

how their similarity with third words agrees. For

instance, even if i and j are not directly similar,

they might both be similar to a third word k, which

would make them more similar in second order

similarity, and one could similarly define third,

fourth or nth order similarity. The idea that we

try to exploit next is that some of these similarity

orders can be better at capturing different aspects

of language as discussed in Section 1.

More formally, we define the second order sim-

ilarity matrix M2(X) = XXTXXT , so that

sim2(i, j) = M2(X)ij . Note that M2(X) =
M(M(X)), so second order similarity can be

seen as the similarity of the similarities across all

words, which is in line with the intuitive defini-

tion given above. More generally, we could de-

fine the nth order similarity matrix as Mn(X) =
(XXT )n, so that simn(i, j) = Mn(X)ij . We

next show that, instead of changing the similar-

ity measure, one can change the word embeddings

themselves through a linear transformation so they

directly capture this second or nth order similarity.

Let XTX = QΛQT be the eigendecomposi-

tion of XTX , so that Λ is a positive diagonal ma-

trix whose entries are the eigenvalues of XTX
and Q is an orthogonal matrix with their respec-

tive eigenvectors as columns4. We define the lin-

ear transformation matrix W = Q
√
Λ and apply it

to the original embeddings X , obtaining the trans-

formed embeddings X ′ = XW . As it can be triv-

ially seen, M(X ′) = M2(X), that is, such trans-

formed embeddings capture the second order sim-

ilarity as defined for the original embeddings.

More generally, we can define Wα = QΛα,

where α is a parameter of the transformation that

adjusts the desired similarity order. Following the

above definitions, such transformation would lead

to first order similarity as defined for the original

embeddings when α = 0, second order similarity

when α = 0.5 and, in general, nth order similarity

when α = (n−1)/2, that is, M(XW0) = M(X),
M(XW0.5) = M2(X) and M(XW(n−1)/2) =
Mn(X).

4Note that these constraints hold because X
T
X is a real

symmetric matrix by definition.
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Note that the proposed transformation is rela-

tive in nature (i.e. it does not make any assump-

tion on the similarity order captured by the embed-

dings it is applied to) and, as such, negative values

of α can also be used to reduce the similarity or-

der. For instance, let X be the second order trans-

formed embeddings of some original embeddings

Z, so X = ZW0.5, where W0.5 was computed

over Z. It can be easily verified that W−0.25, as

computed over X , would recover back the origi-

nal embeddings, that is, M(XW−0.25) = M(Z).
In other words, assuming that the embeddings X
capture some second order similarity, it is possible

to transform them so that they capture the corre-

sponding first order similarity, and one can easily

generalize this to higher order similarities by sim-

ply using smaller values of α.

All in all, this means that the parameter α can

be used to either increase or decrease the similar-

ity order that we want our embeddings to capture.

Moreover, even if the similarity order is intuitively

defined as a discrete value, the parameter α is con-

tinuous, meaning that the transformation can be

smoothly adjusted to the desired level.

3 Intrinsic evaluation

In order to better understand the effect of the pro-

posed post-processing in the two similarity axes

introduced in Section 1, we adopt the widely used

word analogy and word similarity tasks, which of-

fer specific benchmarks for semantics/syntax and

similarity/relatedness, respectively.

More concretely, word analogy measures the

accuracy in answering questions like “what is the

word that is similar to France in the same sense as

Berlin is similar to Germany?” (semantic analogy)

or “what is the word that is similar to small in the

same sense as biggest is similar to big?” (syntac-

tic analogy) using simple word vector arithmetic

(Mikolov et al., 2013). The analogy resolution

method is commonly formalized in terms of vec-

tor additions and subtractions. Levy and Goldberg

(2014b) showed that this was equivalent to search-

ing for a word that maximizes a linear combina-

tion of three pairwise word similarities, so the pro-

posed post-processing has a direct effect on it. For

these experiments, we use the dataset published

as part of word2vec5, which consists of 8,869 se-

mantic and 10,675 syntactic questions of this type

5https://github.com/tmikolov/word2vec/

blob/master/questions-words.txt

(Mikolov et al., 2013).

On the other hand, word similarity measures

the correlation6 between the similarity scores pro-

duced by a model and a gold standard created by

human annotators for a given set of word pairs.

As discussed before, there is not a single defini-

tion of what human similarity scores should cap-

ture, which has lead to a distinction between gen-

uine similarity datasets and relatedness datasets.

In order to better understand the effect of our post-

processing in each case, we conduct our experi-

ments in SimLex-999 (Hill et al., 2015), a genuine

similarity dataset that consists of 999 word pairs,

and MEN (Bruni et al., 2012), a relatedness dataset

that consists of 3,000 word pairs7.

So as to make our evaluation more robust, we

run the above experiments for three popular em-

bedding methods, using large pre-trained models

released by their respective authors as follows:

Word2vec (Mikolov et al., 2013) is the original

implementation of the CBOW and skip-gram ar-

chitectures that popularized neural word embed-

dings. We use the pre-trained model published

in the project homepage8, which was trained on

about 100 billion words of the Google News

dataset and consists of 300-dimensional vectors

for 3 million words and phrases.

Glove (Pennington et al., 2014) is a global log-

bilinear regression model to train word embed-

dings designed to explicitly enforce the model

properties needed to solve word analogies. We

use the largest pre-trained model published by the

authors9, which was trained on 840 billion words

of the Common Crawl corpus and contains 300-

dimensional vectors for 2.2 million words.

Fasttext (Bojanowski et al., 2017) is an extension

of the skip-gram model implemented by word2vec

that enriches the embeddings with subword in-

formation using bags of character n-grams. We

use the largest pre-trained model published in the

project website10, which was trained on 600 bil-

lion tokens of the Common Crawl corpus and con-

6Following common practice, we report Spearman.
7These datasets were selected because the instructions

used to elicit human scores are clearly geared towards gen-
uine similarity and relatedness, respectively, and because they
have been already used in similar studies (Kiela et al., 2015)

8https://code.google.com/archive/p/

word2vec/
9http://nlp.stanford.edu/data/glove.

840B.300d.zip
10https://fasttext.cc/docs/en/

english-vectors.html

https://github.com/tmikolov/word2vec/blob/master/questions-words.txt
https://github.com/tmikolov/word2vec/blob/master/questions-words.txt
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
http://nlp.stanford.edu/data/glove.840B.300d.zip
http://nlp.stanford.edu/data/glove.840B.300d.zip
https://fasttext.cc/docs/en/english-vectors.html
https://fasttext.cc/docs/en/english-vectors.html
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Word analogy Word similarity

Semantic Syntactic Similarity Relatedness

(SimLex-999) (MEN)

word2vec
Original 76.49 74.87 44.21 76.96

Best 81.00 α = -0.65 74.96 α = 0.10 47.81 α = -0.70 78.09 α = -0.30

glove
Original 83.17 76.19 40.70 80.06

Best 86.73 α = -0.85 76.51 α = -0.10 51.54 α = -0.85 84.00 α = -0.45

fasttext
Original 89.76 82.44 50.48 83.55

Best 90.85 α = -0.45 84.45 α = 0.25 51.55 α = -0.25 84.06 α = -0.15

Table 1: Results in intrinsic evaluation for the original embeddings and the best post-processed model with the

corresponding value of α. The evaluation measure is accuracy for word analogy and Spearman correlation for

word similarity.

tains 300-dimensional vectors for 2 million words.

Given that the above models were trained in

very large corpora and have an unusually large vo-

cabulary, we decide to restrict its size to the most

frequent 200,000 words in each case, leaving the

few resulting out-of-vocabularies outside evalua-

tion. In all the cases, we test the proposed post-

processing for all the values of the parameter α
in the [−1, 1] range in increments of 0.05. As the

goal of this paper is not to set the state-of-the-art

but to perform an empirical exploration, we report

results across all parameter values on test data.

3.1 Results on word analogy

Table 1 shows the results of the original embed-

dings (α = 0) and those of the best α, while Figure

1 shows the relative error reduction with respect to

the original embeddings for all α values11. As it

can be seen, the proposed post-processing brings

big improvements in word analogy, with a relative

error reduction of about 20% in semantic analo-

gies for word2vec and glove and a relative error

reduction of about 10% in both semantic and syn-

tactic analogies for fasttext.

The graphs in Figure 1 clearly reflect that,

within certain limits, smaller values of α (i.e.

lower similarity orders) tend to favor semantic

analogies, whereas larger values (i.e. higher simi-

larity orders) tend to favor syntactic analogies. In

this regard, both objectives seem mutually incom-

patible, in that every improvement in one type of

analogy comes at a cost of a degradation in the

other type. This suggests that standard embedding

11We choose to show relative error reduction in order to
have all curves in the same scale for easier illustration.

models already encode enough information to per-

form better than they do in word analogy resolu-

tion, yet this potential performance is limited by

the impossibility to optimize for both semantic and

syntactic analogies at the same time.

Apart from that, the results also show that,

while the general trend is the same for all embed-

ding models, their axes seem to be centered at dif-

ferent points. This is clearly reflected in the opti-

mal values of α for semantic and syntactic analo-

gies (-0.65 and 0.10 for word2vec, -0.85 and -

0.10 for glove, and -0.45 and 0.25 for fasttext):

the distance between them is very similar in all

cases (either 0.70 or 0.75), yet they are centered at

different points. This suggests that different em-

bedding models capture a different similarity order

and, therefore, obtain a different balance between

semantic and syntactic information in the original

setting (α = 0), yet our method is able to adjust it

to the desired level in a post-processing step.

3.2 Results on word similarity

As the results in Table 1 and Figure 2 show, the

proposed post-processing can bring big improve-

ments in word similarity as well, although there

are important differences among the different em-

bedding models tested. This way, we achieve an

improvement of about 11 and 4 points for SimLex-

999 and MEN in the case of glove, and only 1 and

0.5 points in the case of fasttext, while word2vec

is somewhat in between with 3.5 and 1 points.

Following the discussion in Section 3.1, this be-

havior seems clearly connected with the differ-

ences in the default similarity order captured by

different embedding models. In fact, the optimal
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Figure 1: Results in word analogy as the relative error reduction with respect to the original embeddings (α=0) for

different values of α.

word2vec glove fasttext
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Figure 2: Results in word similarity as the absolute improvement in Spearman correlation with respect to the

original embeddings (α=0) for different α. SimLex for genuine similarity, MEN for relatedness.

values of α reflect the same trend observed for

word analogy, with glove having the smallest val-

ues with -0.85 and -0.45, followed by word2vec

with -0.70 and -0.30, and fasttext with -0.25 and

-0.15. Moreover, the effect of this phenomenon is

more dramatic in this case: fasttext achieves sig-

nificantly better results than glove for the origi-

nal embeddings (a difference of nearly 10 and 3.5

points for SimLex-999 and MEN, respectively),

but this proves to be an illusion after adjusting the

similarity order with our post-processing, as both

models get practically the same results with differ-

ences below 0.1 points.

At the same time, although less pronounced

than with semantic/syntactic analogies12, the re-

sults show clear differences in the optimal config-

urations for genuine similarity (SimLex-999) and

12Agreeing with the fact that relatedness subsumes simi-
larity (Budanitsky and Hirst, 2006)

relatedness (MEN), with smaller values of α (i.e.

lower similarity levels) favoring the former.

4 Extrinsic evaluation

In order to better understand the effect of the pro-

posed post-processing in downstream systems, we

adopt the STS Benchmark dataset on semantic tex-

tual similarity (Cer et al., 2017)13. This task is

akin to word similarity, but instead of assessing

the similarity of individual word pairs, it is the

similarity of entire sentence pairs as scored by the

model that is compared against the gold standard

produced by human annotators14. This evaluation

is attractive for our purposes because, while the

state-of-the-art systems are supervised and based

on elaborated deep learning or feature engineer-

13http://ixa2.si.ehu.es/stswiki/index.

php/STSbenchmark
14Following common practice, we report Pearson.

http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark
http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark
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Centroid DAM

word2vec
Original 65.77 72.65

Best 66.43 α = -0.30 73.08 α = 0.10

glove
Original 64.54 74.89

Best 68.96 α = -0.50 76.36 α = -0.70

fasttext
Original 69.84 77.33

Best 70.74 α = -0.20 77.33 α = 0.00

Table 2: Results in semantic textual similarity as measured by Pearson correlation for the original embeddings and

the best post-processed model with the corresponding value of α. The DAM scores are averaged across 10 runs.
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Figure 3: Results in semantic textual similarity for different values of α. The DAM scores are averaged across 10

runs.

ing approaches, simpler embedding-based unsu-

pervised models are also highly competitive, mak-

ing it easier to analyze the effect of the proposed

post-processing when integrating the embeddings

in a larger model. This way, we test two such

systems in our experiments: a simple embedding-

based model that computes the cosine similar-

ity between the centroids of each sentence after

discarding stopwords, and the Decomposable At-

tention Model (DAM) proposed by Parikh et al.

(2016) and minimally adapted for the task15. The

centroid model is thus a simple but very com-

petitive baseline system where the proposed post-

processing has a direct effect, whereas DAM is a

prototypical deep learning model that uses fixed

pre-trained embeddings as input features, produc-

ing results that are almost at par with the state-of-

the-art in the task.

As the results in Table 2 and Figure 3 show,

the centroid method is much more sensitive to the

proposed post-processing than DAM. More con-

cretely, negative values of α are beneficial for the

15https://github.com/lgazpio/DAM_STS

centroid method up to certain point, bringing an

improvement of nearly 4.5 points for glove, and

the results clearly start degrading after that ceiling.

In contrast, DAM is almost unaffected by negative

values of α. Positive values do have a clear neg-

ative effect in both cases, but the centroid method

is much more severely affected than DAM. For in-

stance, for glove, the performance of the centroid

method drops 18.19 points when α = 0.50, in con-

trast with only 3.69 points for DAM.

This behavior can be theoretically explained by

the fact that the proposed post-processing con-

sists in a linear transformation. More concretely,

DAM also applies a linear transformation to the

input embeddings and, given that the product of

two linear transformations is just another linear

transformation, its global optimum is unaffected

by the linear transformation previously applied by

our method. Note, moreover, that the same ratio-

nale applies to the majority of machine learning

systems that use pre-trained embeddings as input

features, including both linear and deep learning

models. While there are many practical aspects

https://github.com/lgazpio/DAM_STS
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that can interfere with this theoretical reasoning

(e.g. regularization, the optional length normal-

ization of embeddings, the resulting difficulty of

the optimization problem...), and explain the vari-

ations observed in our experiments, this shows that

typical downstream systems are able to adjust the

similarity order themselves.

5 Discussion

Our experiments reveal that standard word embed-

dings encode more information than what is im-

mediately obvious, yet their potential performance

is limited by the impossibility of optimally sur-

facing divergent linguistic information at the same

time. This can be clearly seen in the word anal-

ogy experiments in Section 3.1, where we are able

to achieve significant improvements over the orig-

inal embeddings, yet every improvement in se-

mantic analogies comes at the cost of a degrada-

tion in syntactic analogies and vice versa. At the

same time, our work shows that the effect of this

phenomenon is different for unsupervised systems

that directly use embedding similarities and su-

pervised systems that use pre-trained embeddings

as features, as the latter have enough expressive

power to learn the optimal balance themselves.

We argue that our work thus offers a new per-

spective on how embeddings encode divergent lin-

guistic information and its relation with intrinsic

and extrinsic evaluation as follows:

• Standard intrinsic evaluation offers a static

and incomplete picture of the information en-

coded by different embedding models. This

can be clearly seen in the word similar-

ity experiments in Section 3.2, where fast-

text achieves significantly better results than

glove for the original embeddings, yet the

results for their best post-processed embed-

dings are at par. As a consequence, if one

simply looks at the results of the original em-

beddings, they might wrongly conclude that

fasttext is vastly superior to glove at encod-

ing semantic similarity information, but this

proves to be a mere illusion after applying our

post-processing. As such, intrinsic evaluation

combined with our post-processing provides

a more complete and dynamic picture of the

information that is truly encoded by different

embedding models.

• Supervised systems that use pre-trained em-

beddings as features have enough expressive

power to learn the optimal similarity order

for the task in question. While there are

practical aspects that interfere with this the-

oretical consideration, our experiments con-

firm that the proposed post-processing has a

considerably smaller effect in a prototypical

deep learning system. This reinforces the

previous point that standard intrinsic evalu-

ation offers an incomplete picture, as it is

severely influenced by an aspect that has a

much smaller effect in typical downstream

systems. For that reason, using our proposed

post-processing to complement intrinsic eval-

uation offers a better assessment of how each

embedding model might perform in a down-

stream task.

• Related to the previous point, while our work

shows that the default similarity order cap-

tured by embeddings has a relatively small

effect in larger learning systems as they are

typically used, this is not necessarily the best

possible integration strategy. If one believes

that a certain similarity order is likely to bet-

ter suit a particular downstream task, it would

be possible to design integration strategies

that encourage it to be so during training,

and we believe that this is a very interest-

ing research direction to explore in the future.

For instance, one could design regularization

methods that penalize large deviations from

this predefined similarity order.

6 Related work

There have been several proposals to learn word

embeddings that are specialized in certain lin-

guistic aspects. For instance, Kiela et al. (2015)

use a joint-learning approach and two variants

of retrofitting (Faruqui et al., 2015a) to special-

ize word embeddings for either similarity or re-

latedness. At the same time, Levy and Gold-

berg (2014a) propose a modification of skip-gram

that uses a dependency-based context instead of

a sliding windows, which produces embeddings

that are more tailored towards genuine similarity

than relatedness. Bansal et al. (2014) follow a

similar approach to train specialized embeddings

that are used as features for dependency pars-

ing. Finally, Mitchell and Steedman (2015) ex-

ploit morphology and word order information to

learn embeddings that decompose into orthogonal
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semantic and syntactic subspaces. Note, however,

that all these previous methods alter the training

objective of specific embedding models and of-

ten require additional resources like knowledge

bases and syntactic annotations, while the pro-

posed method is a simple post-processing that can

be applied to any embedding model and does not

require any additional resource.

Other authors have also proposed post-

processing methods for word embeddings with

different motivations. For instance, Faruqui et al.

(2015b) transform word embeddings into more

interpretable sparse representations, obtaining

improvements in several benchmark tasks. Rothe

et al. (2016) propose an orthogonal transformation

to concentrate the information relevant for a task

in a lower dimensional subspace, and Rothe and

Schütze (2016) extend this work to decompose

embeddings into four subspaces specifically

capturing polarity, concreteness, frequency and

part-of-speech information. Finally, Labutov

and Lipson (2013) perform unconstrained opti-

mization with proper regularization to specialize

embeddings in a supervised task.

The proposed method is also connected to a

similar parameter found in traditional count-based

distributional models as introduced by Caron

(2001) and further analyzed by Bullinaria and

Levy (2012) and Turney (2012). More con-

cretely, these models work by factorizing some

co-occurrence matrix using singular value decom-

position, so given the co-occurrence matrix M =
USV T , the word vectors will correspond to the

first n dimensions of W = USα, where the pa-

rameter α plays a similar role as in our method.

Note, however, that our proposal is more general

and can be applied to any set of word vectors in

a post-processing step, including neural embed-

ding models that have superseded these traditional

count-based models as we in fact do in this paper.

Finally, there are others authors that have also

pointed limitations in the intrinsic evaluation of

word embeddings. For instance, Faruqui et al.

(2016) and Batchkarov et al. (2016) argue that

word similarity has many problems like the sub-

jectivity and difficulty of the task, the lack of sta-

tistical significance and the inability to account

for polysemy, warning that results should be in-

terpreted with care. Chiu et al. (2016) analyze

the correlation between results on word similarity

benchmarks and sequence labeling tasks, and con-

clude that most intrinsic evaluations are poor pre-

dictors of downstream performance. In relation to

that, our work explains how embeddings encode

divergent linguistic information and the different

effect this has in intrinsic evaluation and down-

stream tasks, showing that the proposed post-

processing can be easily used together with any

intrinsic evaluation benchmark to get a more com-

plete picture of the representations learned.

7 Conclusions and future work

In this paper, we propose a simple post-processing

to tailor word embeddings in the semantics/syntax

and similarity/relatedness axes without the need

of additional resources. By measuring the ef-

fect of our post-processing in word analogy and

word similarity, we show that standard embed-

ding models are able to encode more informa-

tion than what is immediately obvious, yet their

potential performance is limited by the impos-

sibility of optimally surfacing divergent linguis-

tic information. We analyze the different role

that this phenomenon plays in intrinsic and ex-

trinsic evaluation, concluding that intrinsic eval-

uation offers a static picture that can be comple-

mented with the proposed post-processing, and

prompting for better integration strategies for

downstream tasks. We release our implementa-

tion at https://github.com/artetxem/

uncovec, which allows to easily reproduce our

experiments for any given set of embeddings.

In the future, we would like to explore better in-

tegration strategies for machine learning systems

that use pre-trained embeddings as features, so

that downstream systems can better benefit from

previously adjusting the embeddings in the seman-

tics/syntax and similarity/relatedness axes. At the

same time, we would like to extend our analysis to

more specialized embedding models (Kiela et al.,

2015; Levy and Goldberg, 2014a) to get a more

complete picture of what information they capture.
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