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Abstract

Natural human communication is nuanced and
inherently multi-modal. Humans possess spe-
cialised sensoria for processing vocal, visual,
and linguistic, and para-linguistic information,
but form an intricately fused percept of the
multi-modal data stream to provide a holistic
representation. Analysis of emotional content
in face-to-face communication is a cognitive
task to which humans are particularly attuned,
given its sociological importance, and poses a
difficult challenge for machine emulation due
to the subtlety and expressive variability of
cross-modal cues.

Inspired by the empirical success of re-
cent so-called End-To-End Memory Net-
works (Sukhbaatar et al., 2015), we propose
an approach based on recursive multi-attention
with a shared external memory updated over
multiple gated iterations of analysis. We eval-
uate our model across several large multi-
modal datasets and show that global contextu-
alised memory with gated memory update can
effectively achieve emotion recognition.

1 Introduction

Multi-modal sequential data pose interesting chal-
lenges for learning machines that seek to derive
representations. This constitutes an increasingly
relevant sub-field of multi-view learning (Ngiam
et al., 2011; Baltrusaitis et al., 2017). Exam-
ples of such modalities include visual, audio and
textual data. Uni-modal observations are typi-
cally complementary to each other and hence they
can reveal a fuller and more context-rich pic-
ture with better generalisation ability when used
together. Through its complementary perspec-
tive, each view can unburden sub-modules spe-
cific to another modality of some of its modelling
onus, which might otherwise learn implicit hidden
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causes that are over-fitted to training data idiosyn-
crasies in order to explain the training labels.

On the other hand, multi-modal data introduces
many difficulties to model designing and train-
ing due to the distinct inherent dynamics of each
modality. For instance, combining modalities with
different temporal resolution is an open problem.
Other challenges include deciding where and how
modalities are combined, leveraging the weak dis-
criminative power of training label and the pres-
ence of variability and noise or dealing with com-
plex situations such as modelling the emotion of
sarcasm, where cues among modalities contradict.

In this paper, we address multi-modal sequence
fusion for automatic emotion recognition. We be-
lieve, that a strong model should enable:
(i) Specialisation of modality-specific sub-
modules exploiting the inherent properties of
its data stream, tapping into the mode-specific
dynamics and characteristic patterns.
(ii) Weak (soft) data alignment dividing heteroge-
neous sequences into segments with co-occuring
events across modalities without alignment to a
common time axis. This overcomes limitations of
hard alignments which often introduce spurious
modelling assumptions and data inefficiencies
(e.g. re-sampling) which must be performed again
from scratch if views are added or removed.
(iii) Information exchange for both view-specific
information and statistical strength for learning
shared representations.
(iv) Scalability of the approach to many modal-
ities using (a) parallelisable computation over
modalities, and (b) a parameter set size growing
(at most) linearly with the number of modalities.

In the present work, we detail a recursively
attentive modelling approach. Our model ful-
fills the desiderata above and performs multiple
sweeps of globally-contextualised analysis so that
one modality-specific representation cues the at-
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tention of the next and vice-versa. We evalu-
ate our approach on three large-scale multi-modal
datasets to verify its suitability.

2 Related work

2.1 Multi-modal analysis

Most approaches to multi-modal analysis (Ngiam
et al., 2011) focus on designing feature repre-
sentations, co-learning mechanisms to transfer in-
formation between modalities, and fusion tech-
niques to perform a prediction or classification.
These models typically perform either “early” (in-
put data are concatenated and pushed through a
common model) or “late” (outputs of the last layer
are combined together through linear or non-linear
weighting) fusion. In contrast, our model does not
fall into any of these categories directly as it is “it-
erative” in the sense that there are multiple fusions
per decision, with an evolving belief state – the
memory. In addition to that, our model is also “ac-
tive” since feature extraction from one modality
can influence the nature of the feature extraction
from another modality in the next time step via the
shared memory.

For instance, Kim et al. (2013) used low-
level hand crafted features such as pitch, energy
and mel-frequency filter banks (MFBs) capturing
prosodic and spectral acoustic information and Fa-
cial Animation Parameters (FAP) describing the
movement of face using distances between facial
landmarks. In contrast, our model allows for an
end-to-end training of feature representation.

Zhang et al. (2017) learnt motion cues in videos
using 3D-CNNs from both spatial and temporal
dimensions. They performed deep multi-modal
fusion using a deep belief network that learnt
non-linear relations across modalities and then
used a linear SVM to classify emotions. Simi-
larly, Vielzeuf et al. (2017) explored VGG-LSTM
and 3DCNN-LSTM architectures and introduced a
weighted score to prioritise the most relevant win-
dows during learning. In our approach, exchange
of information between different modalities is not
limited to the last layer of the model, but due to
memory component, each modality can influence
every other in the following time steps.

Co-training and co-regularisation approaches of
multi-view learning (Xu et al., 2013; Sindhwani
and Niyogi, 2005) seek to leverage unlabelled data
via a semi-supervised loss that encodes a con-
sensus and complementarity principles. The for-

mer encodes the assertion that predictions made
be each view-specific learner should largely agree,
and the latter encodes the assumption that each
view contains useful information that is hidden
from others, until exchange of information is al-
lowed to occur.

2.2 Memory Networks

End-To-End Memory Networks (Sukhbaatar et al.,
2015) represent a fully differentiable alternative
to the strong supervision-dependent Memory Net-
works (Weston, 2017). To bolster attention-based
recurrent approaches to language modelling and
question answering, they introduced a mechanism
performing multiple hops of updates to a “mem-
ory” representation to provide context for next
sweep of attention computation.

Dynamic Memory Networks (DMN) (Xiong
et al., 2016) integrate an attention mechanism with
a memory module and multi-modal bilinear pool-
ing to combine features across views and predict
attention over images for visual question answer-
ing task. Nam et al. (2017) iterated on this de-
sign to allow the memory update mechanism to
reason over previous dual-attention outputs, in-
stead of forgetting this information, in the subse-
quent sweep. The present work extends the multi-
attention framework to leverage neural-based in-
formation flow control by dynamically routing it
with neural gating mechanisms.

The very recent work (Zadeh et al., 2018a) also
approaches multi-view learning with recourse to a
system of recurrent encoders and attention medi-
ated by global memory fusion. However, fusion
takes place at the encoder cell level, requires hard
alignment, and is performed online in one sweep
so it cannot be informed by upstream context. The
analysis window of the global memory is limited
to the current and previous cell memories of each
LSTM encoder, whereas our approach abstracts
the shared memory update dynamics away from
the ties of the encoding dynamics. Therefore our
approach enables post-fusion and retrospective re-
analysis of the entire cell memory history of all
encoders at each analysis iteration.

3 Recursive Recurrent Neural Networks

Our approach is tailored to videos of single speak-
ers, each divided into segments that roughly span
one uttered sentence. We treat each segment as
an independent datum constituting an individual
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multi-modal event with its own annotation, such
that there is no temporal dependence across any
two segments. In the following exposition, each
of the various mechanisms we describe (encoding,
attention, fusion, and memory update) act on each
segment in isolation of all others. We will use the
terms “view” and “modality” interchangeably.

We refer to our recursively attentive analysis
model as a Recursive Recurrent Neural Network
(RRNN) since it resembles an RNN, but the hid-
den state and the next cell input are coupled in a
recursion. At each step of the cell update there
is no new incoming information; rather the same
original inputs are re-weighted by a new attention
query to form the new cell inputs (see discussion
in Section 3.5 for more details).

3.1 Independent recurrent encoding
The major modelling assumption herein, is that
a single, independent recurrent encoding of each
segment of each modality is sufficient to cap-
ture a range of semantic representations that can
be tapped by several shared external memory
queries. Each memory query is formed in a sepa-
rate stage of an iterated analysis over the recurrent
codes. Concretely, modality-specific attention-
weighted summaries (a(τ),v(τ), t(τ)) at analysis
iteration τ contribute to the update of a shared
dense memory/context vector m(τ), which in turn
serves as a differentiable attention query at iter-
ation τ + 1 (cf. Fig. 1). This provides a recur-
sive mechanism for sharing information within
and across sequences, so the recurrent represen-
tations of one view can be revisited in light of
cross-modal cues gleaned from previous sweeps of
other views. This is an efficient alternative to re-
encoding each view on every sweep, and is more
modular and generalisable than routing informa-
tion across views at the recurrent cell level.

For each multi-modal sequence segment xn =
{xna ,xnv ,xnt }, a view-specific encoding is realised
via a set of independent bi-directional LSTMs
(Hochreiter and Schmidhuber, 1997), run over
segments n ∈ [1, N ]:

hfwds [n, ks] = LSTM(xns [ks],h
fwd
s [n, ks − 1])

(1)

hbwds [n, ks] = LSTM(xns [ks],h
bwd
s [n, ks + 1])

(2)

hs[n, ks] = [hfwds [n, ks];h
bwd
s [n, ks]] (3)

Here, s ∈ {a, v, t} denotes respectively audio, vi-
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Figure 1: Schematic overview of the proposed neural
architecture. Shared memory mτ is updated with with
the contextualised embeddings from aτ , vτ and tτ .

sual and textual modalities, and ks ∈ {1, ...,Ks}
are view-specific state indices.

The number of recurrent steps is view-specific
(i.e. Ka 6= Kv 6= Kt) and is governed by the
feature representation and sampling rate for the
given view, e.g. number of word (embeddings) in a
the text contained within a time-stamped segment.
This is in contrast to Zadeh et al. (2018a), where
the information in different views was grounded
to a common time axis or the number of steps in
an early stage, either via up-sampling or down-
sampling. Thus the extracted representations in
our approach preserve the inherent time-scales of
each modality and avoid the need for hard align-
ment, satisfying desiderata (i) and (ii) outlined in
Section 1. Note that the input sequences x(n)

s may
refer to either raw or pre-processed data (see Sec-
tion 4 for details). In the remainder, we drop the
segment id n to reduce notational clutter.

3.2 Globally-contextualised attention

We used a view-specific attention-based weighting
mechanism to compute a contextualised embed-
ding cs for a view s. Encoder output hs is stacked
along time to form matrices Hs ∈ R(D×Ks).
A shared dense memory m(τ=0) is initialised by
summing the time-average of the Hs across three
modalities. M(τ) is then constructed by repeating
the shared memory, m(τ) , Ks times such that it
has the same size as the corresponding context Hs,
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i.e. Hs,M ∈ R(D×Ks). An alignment function
then scores how well Hs and M(τ) are matched

α̃(τ)
s = align(Hs,M

(τ)). (4)

The alignment mechanism entails a feedforward
neural network with Hs and M(τ) as inputs. A
softmax is applied on the network output to derive
the attention strength α. This architecture resem-
bles that in Bahdanau et al. (2014); concretely

R(τ)=tanh
(
W

(τ)
s1 Hs

)
� tanh

(
W

(τ)
s2 M(τ)

)
, (5)

α̃(τ)
s =w

(τ)
s3

TR(τ), (6)

α(τ)
s [ks] =

α̃
(τ)
s [ks]∑
l α̃

(τ)
s [l]

. (7)

In Eq. (5), W(τ)
s (where s∈{s1, s2}) are square or

fat matrices in the first layer of the alignment net-
work, containing parameters governing the self-
influence within view s and influence from the
shared memory M. For the majority of our ex-
periments, we used the multiplicative method of
Nam et al. (2017) to combine the two activa-
tion terms, but similar results were also obtained
with the concatenative approach of Bahdanau et al.
(2014). In eq. (6), w(τ)

s3
T is a vector projecting an

un-normalised attention weight R onto an align-
ment vector α̃, which has the same dimensions as
Ks. Finally, eq. (7) applies the softmax operation
along the time step ks.

Parameters Ws1,Ws2,ws3 for deriving atten-
tion strength αs are in general distinct parameters
for each memory update step, τ . However, they
could also be tied across steps. In the standard
attention schemes, attention weight αs is a vec-
tor spanning across Ks. Note, that w(τ)

s3 in eq. (6)
could be replaced by a matrix-form W

(τ)
s3 to pro-

duce a multi-head attention weight (Vaswani et al.,
2017). Alternatively, the transposition of network
inputs can be performed such that attention scales
each dimension, D, instead of each time step k.
This can be seen as a variant of key-value attention
(Daniluk et al., 2017), where the values differ from
their keys by a linear transformation with weights
governed by the alignment scores.

Each globally-contextualised view representa-
tion cs is defined as the convex combination of the
view-specific encoder outputs weighted by atten-
tion strength

c(τ+1)
s =

∑
k

α(τ)
s [ks]hs[ks]. (8)

3.3 Shared memory update

The previous section described how the current
shared memory state is used to modulate the
attention-based re-analysis of the (encoded) in-
puts. Here we detail how the outcome of the re-
analysis is used to update the shared memory state.

In contrast to the memory update employed in
Nam et al. (2017), our approach includes a set of
coupled gating mechanisms outlined below, and
depicted schematically in Fig. 2:

g(τ)
w = σ

(
Wwmm

(τ−1)+Wwww
(τ) + bw

)
(9)

g(τ)
c = σ

(
Wcmm

(τ−1)+Wcww
(τ) + bc

)
(10)

g(τ)
s = σ

(
Wsmm

(τ−1)+Wssc
(τ)
s + bs

)
∀s ∈ {a, v, t} (11)

u(τ) = tanh
(
Wumm

(τ−1)+

Wuwg
(τ)
w �w(τ) + bu

)
(12)

m(τ) =
(
1− g(τ)

c

)
�m(τ−1) + g(τ)

c � u(τ),
(13)

where w(τ) = [a(τ);v(τ); t(τ)], m(0) = 0 and σ()
denotes an element-wise sigmoid non-linearity.
The function of the view context gate defined in
eq. (9) and invoked in eq. (12), is to block cor-
rupted or uninformative view segments from influ-
encing the proposed shared memory update con-
tent, u(τ). The attention mechanism, outlined in
eq. (5)-(7), cannot fulfill this task alone since the
full attention divided over a view segment must
sum to 1 even if no part of that segment is per-
tinent/salient. The utility of this gating will be
empirically demonstrated in noise-injection exper-
iments in Section 5.
The new memory content u(τ) is written to the
memory state according to eq. (12), subject to the
action of the memory update gate defined in eq.
(10). This update gate determines how much of
the past global information should be passed on
to contextualise subsequent stages of re-analysis.
If parameters Ws1, Ws2, ws3 are untied across
each re-analysis step, this update gate addition-
ally accommodates short-cut or “highway” routing
(Srivastava et al., 2015) of regression error gra-
dients from the end of the multi-hop procedure
back through the parameters of the earlier atten-
tion sweeps.
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Figure 2: A detailed schematic of the proposed RRNN cell (left) and its legend (right). The routing above the
dashed black line resembles that of a (non-recursive) GRU cell, where the concatenated attention output constitutes
the cell’s input. In this case, the cell’s input at time τ is available only once the cell’s state at time τ − 1 has been
computed. When the static representations {ha,hv,ht} are instead viewed as the cell’s input, then the cell forms
a recursive RNN, which subsumes the attention mechanism as a cell sub-component.

ha hv ht

m  —1τ m  τ m  +1τ

Figure 3: Two consecutive cells of a Recursive Recur-
rent Neural Network. Note that the cells share a com-
mon input, in contrast with a typical RNN which has a
separate input to each cell.

3.4 Final Projection

After τ iterations of fusion and re-analysis, the re-
sulting memory state m(τ) is passed through a fi-
nal fully-connected layer to yield the output cor-
responding to a particular task (regression predic-
tions or logits in case of classification). In our ex-
periments we found that increasing τ yields mean-
ingful performance gains (up to τ = 3).

3.5 Recursive RNN: another perspective

The proposed gated memory update corresponds
to maintaining an external recurrent cell memory
that is recurrent in the consecutive analysis hops,
τ , rather than the actual time-steps of the given
modality, ks. This allows the relevant memories
of older hops to persist for use in the subsequent
analysis hops.

The memory update equations (9)-(13) strongly
resemble the GRU cell update (Cho et al., 2014);
we treat concatenated view context vectors as
the GRUs inputs, one at each analysis hop, τ .
When viewed as a recurrent encoding of inputs
{hs}, we refer to this architecture as a recursive
recurrent neural net (RRNN), due to the recursive
relationship between the cell’s recurrent state and
the attention-based re-weighting of the inputs.
From this perspective, the attention mechanism
forms a sub-component of the RRNN cell.

The key distinction from a typical GRU cell is
that the reset or relevance gate gw in a GRU typ-
ically gates the recurrent state (m(τ) in our case),
whereas we use it to gate the input, allowing for
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uninformative view contexts to be excluded from
the memory update. Gating the recurrent state
is essential for avoiding vanishing gradients over
long sequences, which is not such a concern for
our recursion lengths of ≈ 3. One could of course
reinstate the gating of the recurrent state, should
recursions grow to more appreciable lengths.
A further distinction is that here the GRU “inputs”
(view contexts {a(τ),v(τ), t(τ)} in our case) are
computed online as the memory state recurs, un-
like the standard case where they are data or pre-
extracted features available before the RNN begins
to operate. Figure 3 depicts 2 consecutive RRNN
cells, illustrating the recycling of the same cell in-
puts. Figure 2 shows the details of a single cell,
which subsumes the globally-contextualised atten-
tion mechanism detailed in Section 3.2.

4 Experimental setup

Datasets. We evaluated our approach on
CREMA-D (Cao et al., 2014), RAVDESS (Living-
stone and Russo, 2012) and CMU-MOSEI (Zadeh
et al., 2018b) datasets for multimodal emotion
analysis. The first two datasets provide audio
and visual modalities while CMU-MOSEI adds
also text transcriptions. The CREMA-D dataset
contains ∼7400 clips of 91 actors covering 6
emotions. The RAVDESS is a speech and song
database comprising of ∼7300 files of 24 actors
covering 8 emotional classes (including two
canonical classes for “neutral” and “calm”). The
CMU-MOSEI dataset consists of ∼3300 long
clips segmented into ∼23000 short clips. In
addition to audio and visual data, it contains
also text transcriptions allowing evaluation of
tri-modal models.

These datasets are annotated by a continuous-
valued vector corresponding to multi-class emo-
tion labels. The ground-truth labels were gen-
erated by multiple human transcribers with score
normalisation and agreement analysis. For further
details, refer to respective references.

Test conditions and baselines. Since each
dataset consists of different emotion classification
schema, we trained and evaluated all models sep-
arately for each of them. The training was per-
formed in an end-to-end manner with L2 loss de-
fined over multi-class emotion labels.

To establish a baseline, we evaluated a naive
classifier predicting the test-set empirical mean in-
tensities (with MSE loss function) for each output

regression dimension. Similar baselines were ob-
tained for other loss functions by training a model
with just one parameter per output dimension on
that loss, where the model has an access to the
training labels but not the training inputs.

Evaluation. For CREMA-D and RAVDESS, we
report the accuracy scores as these datasets contain
labels for multiclass classification task.

For CMU-MOSEI, we report the result of the
6-way emotion recognition. Recursive models as
described in Sec. 3 predicted the 6-dimensional
emotion vectors. Their values represent the emo-
tion intensity of the six emotion classes and
are continuous-valued. Following Zadeh et al.
(2018b), these predictions were evaluated against
the reference emotions using the criteria of mean
square error (MSE) and mean absolute error
(MAE), summing across 6 classes. In addition, an
acceptance threshold 0.1 was set for each dimen-
sion/emotion, and weighted accuracy (Tong et al.,
2017) was computed.

Complementary views across modality. All
experiments in this paper use independent recur-
rent encoding (Sec. 3.1). The encoding scheme
differs for every modality. COVAREP (De-
gottex et al., 2014) was used for the audio
modality. OpenFace (Amos et al., 2016) and
FACET (iMotion, 2017) were used for visual one
and Glove (Pennington et al., 2014) was used for
encoding the text features.

Independent recurrent encoding used bi-
directional view-specific encoders with 2×128 di-
mensional outputs on CREMA-D and RAVDESS
and 2 × 512 on CMU-MOSEI. The comple-
mentary effects of multiple views from different
modalities would be illustrated by controlling the
available input views to different systems.

Attention. Global contextualised attention
(GCA) was implemented for the emotion recogni-
tion systems. Global and view-specific memory
were projected to the alignment space (Eq. (5)).
The attention weights were computed (Eq. (6)-
Eq. (7)) and the contextual view representation
was derived (Eq. (8)). For more details, refer to
Sec. 3.2. The encoder-decoder used a 128 dimen-
sional (or 512 for CMU-MOSEI) fully-connected
layer. A final linear layer mapped the decoder
output to multi-class targets.

GCA was compared to standard “early” and
“late” fusion strategies. In early fusion, encoders
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Model Modality Accuracy
Human performance Audio 40.9

COVAREP Features + LSTM Decoder Audio 41.5
OpenFace Features + LSTM Decoder Vision 52.5

Human performance Vision 58.2
Human performance Vision+Audio 63.6

(OpenFace features + LSTM) + (COVAREP Features + LSTM) + Dual Attention Vision+Audio 65.0

Table 1: Results on the CREMA-D dataset across 8 emotions

Modality Feature Encoder Attention Accuracy
Audio COVAREP LSTM Nil 41.25
Vision OpenFace LSTM Nil 52.08

Audio + Vision COVAREP, OpenFace LSTM GCA 58.33

Table 2: Results on the RAVDESS dataset across 8 emotions for normal speech mode

1 2 3 4

text
audio
vision

Time (seconds)

I think

finances

for

some
reasons

has

been

a

very delicate

issue

between
couples.

Most

Figure 4: Visualisation of view-specific attention
across time. Attention in the text modality focuses on
the words “very” and “delicate” as cues for emotion
recogntion. Also, the difference in oscillation rates be-
tween the audio and visual modalities is noted.

outputs across all views are resampled to their
highest temporal resolution (i.e. audio, at 100Hz),
and resulting (aligned) outputs are concatenated
across views. We used similar encoder-decoder
structure to one described in Sec 3.2 (Fig. 1), ex-
cept that the three parallel blocks for modalities
were reduced to one. In late fusion, the final-step
encoder outputs from all modalities were inde-
pendently processed by 1-layer feed-forward net-
works (Sec 3.4) and view-specific multi-class tar-
gets were combined using linear weighting.

Memory updates and ablation study. GCA
was enhanced with the extra gating functions
(cf. Eq. (9)-(13), Sec. 3.3) . The extended system
was compared with the GCA system on CMU-
MOSEI data. To this end, we perform an abla-
tion study using the test data corrupted by additive
Gaussian white noise added to the visual modality.

5 Results

Table 1 and 2 show the results of emotion recog-
nition on the CREMA-D and RAVDESS dataset
respectively. Audio, visual and the joint use of
bi-modal information were compared using iden-
tification accuracy. Models trained on the vi-
sual modality consistently outperformed models
that use solely audio data. Highest accuracy
was achieved when the audio and visual modal-
ity were jointly modelled, giving 65% and 58.33%
on the two datasets. Interestingly, the joint bi-
modal system outperformed human performance
on CREMA-D (Cao et al., 2014) by 1.4%.

On CMU-MOSEI, the errors between the refer-
ence and hypothesis six-dimensional emotion vec-
tors were computed and the results were shown in
Table 3.

The use of visual modality resulted in the lowest
mean square error (MSE). Meanwhile, when eval-
uated by mean absolute error (MAE) and weighted
accuracy (WA), text modality gave the best perfor-
mance. Basic techniques in combining informa-
tion among modalities was not very effective, as
indicated by the neglible gain in early and late fu-
sion model.

Globally contextualised attention (GCA) gave
an MSE of 0.4696. Gating on global and view-
specific memory updates led to further improve-
ments to 0.4691. The improvement in terms of
MAE is even more significant (from 0.9412 to
0.8705).

Figure 4 visualises the attention weights in dif-
ferent modalities on a CMU-MOSEI test sentence.
The x-axis denotes time t and y-axis is the mag-
nitude of attention αs(t) in different views s ∈
{a, v, t}. The transcribed text was added along-
side the attention profile of the textual modality
to align the attention weights with the recording.
It can be seen that the GCA emotion recognition
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Modality Feature Encoder Attention/Fusion Corruption MSE MAE WA
Text (T) Word-vec LSTM Nil Nil 0.6326 0.9830 0.5485

Audio (A) COVAREP LSTM Nil Nil 0.6049 1.0562 0.5249
Vision (V) FACET LSTM Nil Nil 0.5026 0.9909 0.5476

T+A+V COVAREP, FACET, Word-vec LSTM Early fusion Nil 0.5319 0.7694 0.5188
T+A+V COVAREP, FACET, Word-vec LSTM Late fusion Nil 0.5047 0.9825 0.5889
T+A+V COVAREP, FACET, Word-vec LSTM GCA Nil 0.4696 0.9412 0.6163
T+A+V COVAREP, FACET, Word-vec LSTM GCA Vision 0.5034 0.9920 0.6068
T+A+V COVAREP, FACET, Word-vec LSTM GCA + Gating Nil 0.4691 0.8705 0.5765
T+A+V COVAREP, FACET, Wrod-vec LSTM GCA + Gating Vision 0.4742 0.8857 0.5688

Table 3: Results on CMU-MOSEI dataset

system was trained to attend dynamically to fea-
tures of varying importance across the time, unlike
systems performing early or late fusion. Attention
weights of text modality show a clear jump for the
words “very” and “delicate”. The word “very”,
combined with an adjective, is often a strong cue
to sentiment analysis, resulting in a spike in atten-
tion. The subject in this clip was speaking mostly
in a neutral tone, with a nod and slight frowning
towards the beginning of the sentence. This may
correspond to the first peak in the attention trajec-
tory of visual data. The weight of audio modal-
ity exhibited a higher oscillation rate compared to
the counterpart on visual data. COVAREP features
had 4× higher temporal frequency than FACET.

Finally, we verified contribution of the gating
system to the GCA using the corrupted visual data.
When the GCA system is used without the gat-
ing mechanism, corrupted data results in increased
MSE (from 0.4696 to 0.5034) and MAE (from
0.9412 to 0.9920). This is in contrast to the full
system with gating (GCA + Gating in Table 3).
The system cancels the effects of additive visual
noise, which is evidenced by the small gap in MSE
(0.4691 vs 0.4742) and MAE (0.8705 vs 0.8857)
between clean and noisy data.

6 Conclusion

We have presented an approach for combining se-
quential, heterogeneous data. An external mem-
ory state is updated recursively, using globally-
contextualised attention over a set of recurrent
view-specific state histories. Our model was tested
on the challenging tasks of emotion recognition
from audio, visual, and textual data on three large-
scale datasets. The complementary effect of joint
modelling of emotions using multi-modal data
was consistently shown across experiments with
multiple datasets. Importantly this approach es-
chews hard alignment of the data streams, allow-
ing view-specific encoders to respect the inher-

ent dynamics of its input sequence. Encoder state
histories are fused into cross-modal features via
an attention mechanism that is modulated by a
shared, external memory. The control of infor-
mation flow in this fusion is further enhanced by
using a GRU-like gating mechanism, which can
persist shared memory through multiple iterations
while blocking corrupted or uninformative view-
specific features. In future study, it would be inter-
esting to investigate more structured fusion opera-
tions such as sparse tensor multilinear maps (Ben-
younes et al., 2017).
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