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Abstract
Named-entity Recognition (NER) is an impor-
tant task in the NLP field , and is widely used
to solve many challenges. However, in many
scenarios, not all of the entities are explicitly
mentioned in the text. Sometimes they could
be inferred from the context or from other in-
dicative words. Consider the following sen-
tence: “CMA can easily hydrolyze into free
acetic acid.” Although water is not mentioned
explicitly, one can infer that H2O is an en-
tity involved in the process. In this work, we
present the problem of Latent Entities Extrac-
tion (LEE). We present several methods for
determining whether entities are discussed in
a text, even though, potentially, they are not
explicitly written. Specifically, we design a
neural model that handles extraction of multi-
ple entities jointly. We show that our model,
along with multi-task learning approach and
a novel task grouping algorithm, reaches high
performance in identifying latent entities. Our
experiments are conducted on a large biolog-
ical dataset from the biochemical field. The
dataset contains text descriptions of biological
processes, and for each process, all of the in-
volved entities in the process are labeled, in-
cluding implicitly mentioned ones. We believe
LEE is a task that will significantly improve
many NER and subsequent applications and
improve text understanding and inference.

1 Introduction

Named entity recognition (NER) is an impor-
tant building block in many natural-language-
processing algorithms and applications. For ex-
ample, representing texts as a knowledge graph,
where nodes are extracted entities, has been
proved to be effective for question answering (Be-
rant and Clark, 2014) as well as for summarization
tasks (Ganesan et al., 2010). Other applications,
such as semantic annotation (Marrero et al., 2013)
require recognition of entities in the text as well.

Babych and Hartley (2003) have also shown that
identifying named entities correctly, has an effect
both on the global syntactic and lexical structure,
additionally to the local and immediate context.

NER today focuses on extracting existing enti-
ties in the text. However, many texts, contain “hid-
den” entities, which are not mentioned explicitly
in the text, but might be inferred from the context.
For example, special verbs could help a human
reader infer the discussed entity implicitly. Con-
sider the following textual passage of a biochemi-
cal reaction:

“At the plasma membrane, phos-
phatidylcholine is hydrolyzed, removing
one of its acyl groups, to 1-acyl
lysophosphatidylcholine by membrane-
associated phospholipase b1. ”

The words water or H2O are not mentioned.
Nonetheless, one could easily infer that water is
involved in the process, since the word hydrolyzed
refers to water. Therefore, water is a latent entity
in this case. Other contexts, do not involve only
indicating verbs. Consider the following sentence:

“The conversion of Testosterone to
Estradiol is catalyzed by Aromatase as-
sociated with the endoplasmic reticulum
membrane.”

Here, Oxygen is a latent entity. Aromatase is an
enzyme that belongs to the Monooxygenases fam-
ily. This family is characterized by requiring Oxy-
gen when performing catalyzation.

Latent entities do not only play a prominent role
in biochemical and medical fields, but are also
common in other domains. For example, consider
the following snippet as published in business sec-
tion, New York Times magazine in January 2017:

“The free app, which Facebook owns, is
offering another vehicle to advertisers,
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who since late 2015 have been buying
space on its original photo feed.”

To an average human reader who is familiar
with contemporary norms and trends, it is quite
clear that Instagram app is discussed in the textual
passage above. However, it is not explicitly writ-
ten, thus it is practically a latent entity.

Identifying latent entities in texts, and gaining
the ability to infer them from a context, will signif-
icantly enrich our ability to comprehend and per-
form inference over complex texts.

In this work, we formulate the novel problem
of Latent-Entities Extraction (LEE). We study sev-
eral deep and non-deep models for this task, that
learn to extract latent entities from texts and over-
come the fact that these are not mentioned explic-
itly. Specifically, we study a model that combines
a neural recurrent network (Bi-GRUs) and multi-
task learning, showing that joint prediction of cor-
related entities could refine the performance. We
present a novel algorithm for task grouping in the
multi-task learning setting for LEE. The algorithm
chooses which latent entities to learn together. We
show this approach reaches the best performance
for LEE.

The contribution of our works is threefold:
(1) We formulate a novel task of LEE, where
the goal is to extract entities which are implic-
itly mentioned in the text. (2) We present a
large labeled biological dataset to study LEE.
(3) We present several algorithms for this task.
Specifically, we find that learning multiple la-
tent entities in a multi-task learning setting,
while selecting the correct entities to learn to-
gether, reaches the best results for LEE. We
share our code and data with the community
to enable the community to develop additional
algorithms for LEE: https://github.com/
EylonSho/LatentEntitiesExtraction

2 Related Work

Entities Recognition Named-entity recognition
(NER) aims at identifying different types of enti-
ties, such as people names, companies, locations,
organizations, etc. within a given text. Such de-
duced information is necessary for many appli-
cation, e.g. summarization tasks (Ganesan et al.,
2010), data mining (Chen et al., 2004), and trans-
lation (Babych and Hartley, 2003).

This problem has been widely researched. Sev-
eral benchmark data sets such as CoNLL-2003

(Tjong Kim Sang and De Meulder, 2003) and
OntoNotes 5.0 (Hovy et al., 2006; Pradhan et al.,
2013) were published. Traditional approaches la-
bel each token in texts as part of named-entity,
and achieve high performance (Ratinov and Roth,
2009; Passos et al., 2014; Chiu and Nichols, 2016).

However, these approaches are relying on the
assumption that entities are necessarily mentioned
in the text. To the best of our knowledge, the
problem of latent entities extraction, where enti-
ties could potentially not be mentioned in the text
at all, is yet to be researched.

Multi-Task Learning Multitask learning (Caru-
ana, 1998) was extensively used across many NLP
fields, including neural speech translation (Anas-
tasopoulos and Chiang, 2018), neural machine
translation (Domhan and Hieber, 2017), and sum-
marization tasks (Isonuma et al., 2017). In this
work we study several approaches for LEE, in-
cluding multi-task learning. We observe that the
vanilla approach of multi-task learning is reaching
limited results in our setting (Section 6). Previ-
ous work (Liu and Pan, 2017; Zhong et al., 2016;
Jeong and Jun, 2018) have suggested that multi-
task learning should be applied on related tasks.
We present an extension to the multi-task learning
setting by performing clustering to related tasks to
improve performance.

3 The Reactome Dataset

It is quite common to have implicit entities in texts
in the biomedical field. Reactome (Croft et al.) is
a large publicly-available biological dataset of hu-
man biological pathways and reactions. The data
consists of 9,333 biochemical reaction diagrams
and their textual description. Each reaction is la-
beled by experts regarding its reactants and prod-
ucts. We consider each reactant or product of a
reaction as an entity. If an entity is not mentioned
in the textual description, it will be considered as
a latent entity. In more than 90% of the reac-
tions, there are 3–5 involved entities. We have
performed an exploration to find latent frequency,
i.e., how many times the entity was found as latent,
among all of its occurrences in the dataset. We
identify that 97.53% of the texts contain at least
one latent entity and that 80.65% of the entities
are latent at least 10% of the times. The analy-
sis results for several entities are shown in Table
1. We observe an interesting phenomena – several
entities, such as ATP, mostly appear as a latent en-

https://github.com/EylonSho/LatentEntitiesExtraction
https://github.com/EylonSho/LatentEntitiesExtraction
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Entity Times
Not

Men-
tioned

Total
Occur-
rences

Latent
Fre-

quency
(%)

ATP 1177 1448 81.28
ADP 1221 1326 92.08
H2O 949 1087 87.30

PI 249 492 50.61
H+ 296 487 60.78
O2 159 275 57.82

NADPH 145 254 57.09
NADP+ 175 253 69.17
COA-SH 123 191 64.40

PPI 105 190 55.26
ADOMET 120 181 66.30

GTP 40 181 22.10
GDP 60 179 33.52

ADOHCY 155 169 91.72
UB 0 157 0.00

CO2 75 145 51.72
NAD+ 56 134 41.79
AMP 53 128 41.41

NADH 46 112 41.07
NA+ 23 94 24.47
2OG 33 93 35.48

L-GLU 66 82 80.49
AC-COA 43 75 57.33

Table 1: Latent frequency of top common entities

tity in the descriptions, i.e., most of the times they
are not mentioned explicitly in the text.

4 One-vs-all Algorithms for LEE

Given a single entity which frequently tends to be
latent, we need to classify whether it is involved
within a given text. We train a classifier per entity
using multiple techniques. We then apply the clas-
sifier on each text passage that may discuss several
latent entities, and output their prediction in a one-
vs-all approach.

We present several models which predict
whether a given entity is implicitly (or explicitly)
involved in a textual paragraph. We construct a
classifier per entity which detects the entity in
texts, and overcomes the cases where it is latent.
We devise a few simple yet relatively powerful al-
gorithms presented in Sections 4.1 – 4.5.

4.1 Bag-of-words (TF-IDF)
To tackle the LEE problem, we try to leverage the
context to infer latent entities. We transform a text
to a TF-IDF vector representation (applied on bi-
grams). Using these vectors we train several su-
pervised classification models. We did not observe
a significant difference between the models, and
present results for Support Vector Machine (SVM)
model (Cortes and Vapnik, 1995) that have shown

the highest performance on a validation set. The
models are trained to predict whether a given en-
tity is involved or not. As can be observed in Table
1, most of the entities are latent enough, thus this
data set is appropriate to the LEE task.

4.2 Weighted Document Embedding
One of the state-of-the-art approaches for mod-
eling text was presenting by Arora et al. (2017).
We leverage pre-trained word embedding vectors
(Chiu et al., 2016) to generate an embedding for a
text which might contain implicit entities. Based
on these embeddings, a supervised classifier per
entity is trained as before, i.e., we create a clas-
sifier per entity to predict whether it is implicitly
mentioned in the text.

4.3 Element-Wise Document Embedding
We study several additional methods of represent-
ing a document using several word embedding
compositions (De Boom et al., 2016). We lever-
age pre-trained word embedding vectors, that were
trained on Pubmed data (Chiu et al., 2016), and
suggest the following composition techniques: (1)
We compute the element-wise maximum vector
of each word from the text, denoted as vmax; (2)
We compute the element-wise minimum vector of
word embedding, denoted as vmin. (3) We com-
pute the element-wise mean vector, denoted as
vavg.

We concatenate these three vectors into the final
document representation: v = [vmax; vmin; vavg].
This is the feature vector which is fed as an input
to the SVM classifier, built for each entity sepa-
rately.

4.4 Combined Document Embedding
In this approach, we attempt to combine several
ways of representing a document into a single rep-
resentation. We concatenate the feature vectors for
each document as generated in sections 4.2, 4.3. A
classification model is then trained similarly to the
previous sections and applied on the new represen-
tation.

4.5 Deep Document Embedding
Instead of disregarding word order as in the pre-
vious approaches (Sections 4.2 – 4.4), we lever-
age pre-trained word embedding vectors that were
trained on Pubmed data (Chiu et al., 2016),
and learn an unsupervised deep model to pro-
duce a document embedding. We experiment
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with several deep models, including Bi-LSTM
and Bi-GRU unit: each textual description is
translated to sequence of pre-trained embeddings.
That sequence is fed into a Bi-Directional Long
Short Term Memory (Bi-LSTM) (Hochreiter and
Schmidhuber, 1997; Schuster and Paliwal, 1997)
or Bi-GRU (Cho et al., 2014), and based on the
final cell state, we perform a binary prediction
whether the given entity is implicitly mentioned
or not.

5 Multi-Task-Learning Algorithms for
LEE

Given a predefined list of entities, we wish to clas-
sify whether one entity or more from that list, are
involved in a given text passage. We train a sin-
gle multi-task-learning classifier that outputs the
set of latent entities relevant to the text. Intuitively,
the model might capture correlation of entities that
tend to be involved (or not) together, and therefore
their latent behavior might be similar. For each en-
tity which is listed in a predefined list, the model
will output a probability as an estimation for its
likelihood to be involved in a given text.

5.1 Multi-Task-Learning Model Architecture

Figure 1 illustrates the general design of our ar-
chitecture: an embedding layer, a Bi-GRU com-
ponents that are fed by the embedding, and ulti-
mately a prediction layer containing as many out-
puts as the total number of latent entities to be ex-
tracted.

Embedding The embedding layer first embeds a
sequence of words into a sequence of embedding
vectors of 200 dimension.

Bidirectional GRU The output vectors from the
last layer are fed into a RNN unit to capture con-
text out of the text. This unit is capable of ana-
lyzing context that is spanned over sub-sequences
in texts. This is done when the RNN component
is sequentially fed by the embedding vectors {vt},
and iteratively compute a hidden state vector {ht}
based on the previous hidden state and the cur-
rent input embedding vector, using some function
f . Moreover, the output of this unit {ot} in each
timestamp t, is computed based on the current hid-
den state using a function g.

Specifically we use a GRU unit as a RNN as
presented by Cho et al. (2014). Hidden state’s
dimension is set to 200, with sigmoid as an ac-

tivation function. Additionally, we use the bidi-
rectional version (Schuster and Paliwal, 1997) of
GRU.

We also apply natural dropout (Srivastava et al.,
2014) of 0.5 on the input embedding vectors. An-
other refinement is dropout that is applied on the
recurrent neural network hidden layers, as Gal and
Ghahramani (2016) have suggested. This recur-
rent dropout is set to 0.25.

Classifier The outputs of the Bi-GRU unit, of
the first and last cell, are considered during clas-
sification phase. The classifier unit is a fully con-
nected layer with a sigmoid activation layer with
k outputs, where k is the number of all tasks, i.e.,
entities being predicted.

Loss Function We define a loss function to ad-
dress the multi-task learning approach. Currently,
we present a loss function for multi-task predic-
tion that joins all of the entities together into a sin-
gle prediction unit. Denote m as the number of
training samples, and k as the number of latent en-
tities that are intended to be extracted. We define
the following loss function:

L(y, ŷ) =

− 1

m

m∑
i=1

k∑
j=1

(
y
(i)
j log ŷ

(i)
j +

(
1− y

(i)
j

)
log
(
1− ŷ

(i)
j

))

where y and ŷ are the labeled and predicted val-
ues, respectively. Practically, we aggregate the
log-losses over all of the training samples and la-
tent entities, and then averaging to get the final
loss.

Note that we address all of the entities as they
were related in here, since the loss is calculated
based on them all with no exceptions.

Training Model optimization was carried out
using standard backpropagation and an Adam op-
timizer (Kingma and Ba, 2014). We have trained
our model with 300 epochs and a batch size of 128.
Backpropagation is allowed through all layers, ex-
cept the embedding layer, which is set using pre-
trained embeddings.

Word Embedding Initialization We use pre-
trained word embedding to represent each text
passage. Note that fine-tuning as well as learn-
ing embedding from scratch are not practical due
to data scarcity, hence we directly use word2vec
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Figure 1: The multi-task model architecture for latent entities extraction. Word embeddings are fed to
several Bi-GRU units which are connected via a multi-task learning approach to numerous outputs, each
representing a different latent entity prediction

trained vectors1. These were trained over large
corpora, the PubMed archive of the biochemical,
biological and medical field by Chiu et al. (2016).
We fit this choice to the nature of our data set, Re-
actome, which is consisted of biochemical reac-
tions and biological processes.

5.2 Task-Grouping Model Architecture
The common approach in multi-task learning is
handle all tasks altogether (Evgeniou and Pontil,
2004; Rai and Daume III, 2010). Therefore, a
possible approach could possibly suggest that all
of the entities should be predicted together as a
single multi-task classification process. However,
this method is based on the assumption that all en-
tities are necessarily related to one another (as pre-
sented in section 5.1).

Several studies have shown that separation of
tasks into disjoint groups could boost classifica-
tion performance. Intuitively, multi-task learn-
ing among tasks that are mutually related reduces
noise in prediction (Liu and Pan, 2017; Zhong
et al., 2016; Jeong and Jun, 2018). We present an
algorithm that divides all of the tasks, i.e., all enti-
ties predictions, into task groups according to their
inherent relatedness. Capturing these connections
is performed using a co-occurrence matrix that we
compute based on training-set information and be-
havior. Conceptually, latent entities that are la-
beled many times together in processes would be
considered as related, thus grouped together in a

1Trained embedding is available online at: https://
github.com/cambridgeltl/BioNLP-2016

joint multi-task classification unit.
Our tasks are divided into groups based on a co-

occurrence matrix M which is computed as fol-
lows:

Mij =
# mutual occurrences of ei, ej

# occurrences of ei

where ei is the i-th latent entity that should be
predicted. Additionally, note the elements of M
are normalized. Figure 2 presents an example of
such a co-occurrence matrix for 5 sampled enti-
ties.

After generating the co-occurrence matrix, we
leverage it to select task groups. We denote α as a
minimum threshold in order to group a pairwise of
tasks together (0 ≤ α ≤ 1). Then, two prediction
tasks (a pair of entities) ei and ej will be grouped
together if Mij > α or Mji > α. Later, we would
like to avoid from multi-task group that contains
one task only. Therefore, if any singletons remain,
we attach each one of them to its most related en-
tity’s group, according to the same co-occurrence
distribution. This reunion phase comes with the
exception of α/2 as a minimum threshold rather
than α as was done previously.

Clusters of tasks are computed according to
α = 0.65. This value is chosen empirically such
that groups are divided fairly, in terms of size, both
subjectively and objectively.

This process induces a division of the tasks to
T disjoint groups of tasks, where each group is
consisted of kr prediction tasks (a task per latent
entity), where r ∈ {1, 2, . . . , T}. Note that each
group is potentially of different size, i.e., kr is not

https://github.com/cambridgeltl/BioNLP-2016
https://github.com/cambridgeltl/BioNLP-2016
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Figure 2: An example of co-occurrence matrix
which describes the relatedness of entities to one
another. Numbers in parentheses next to entities’
names are an indication for their frequency in the
training-set. As follows from the distribution, ATP
and ADP are high correlated. AMP also tends to
co-exist with ATP (not reciprocally though). Sim-
ilarly, ADOHCY and ADOMET are quite related
to one another.

fixed. Ultimately, these groups are going to repre-
sent as the multi-task units of classification in our
model.

Figure 3 illustrates the design of our architec-
ture along with the task-grouping layer. It con-
tains an embedding layer, a Bi-GRU components
that are fed by the embedding, and ultimately T
multi-task classification units, one per task group.

Classifier Similarly to the classifier in Section
5.1, the first and last cell of the GRU are con-
nected to several disjoint groups of prediction
tasks. These outputs represent the features for sev-
eral multi-task classifier units, one such unit per a
group of tasks. For the r-th (r ∈ {1, 2, ..., T}) task
group, we define a classifier unit as a fully con-
nected layer with a sigmoid activation layer with
kr outputs, where kr is the size of the r-th task
group.

Loss Function As opposed to the loss function
previously presented, here we would like to pre-
serve relatedness among prediction tasks when
they are actually related only. Therefore, we use
task grouping feature to recognize T disjoint sets
of entities as prediction task groups. For each
task group, we force the preservation of entities’
known correlation using a unique loss function
that is designated for the classifier of that spe-

cific group. Denote m as the number of train-
ing samples, and kr as the number of entities
that are grouped in the r-th task-group (r ∈
{1, 2, . . . , T}). The need for latent entities from
the same task group to retain their relatedness, will
be forced using the following loss function:

L(y, ŷ) =

− 1

m

m∑
i=1

kr∑
j=1

(
y
(i)
j log ŷ

(i)
j +

(
1− y

(i)
j

)
log
(
1− ŷ

(i)
j

))

where y and ŷ are the labeled and predicted val-
ues, respectively. Whereas the concept is similar
to the presented loss function in the vanilla multi-
task approach, now each task group classifier has
a customized loss function that learns the behavior
of its relevant entities it is responsible of.

Note that the penalty for each predicted value is
equal while in the same task group, whereas, be-
tween different task-groups the loss value may be
different. In that way, we refine the classification
per each task-group, and thus per each latent en-
tity.

6 Experimental Results

In this section, we evaluate the algorithms for
LEE. We first show the performance of the algo-
rithms for a single entity extraction, focusing on
the ATP entity. We then present results for the
general task of LEE, extracting multiple entities
from a text. We then conclude this section by
a few qualitative examples illustrating the feature
importance considered for the LEE task over sev-
eral texts.

6.1 Single Latent Entity Extraction

We start by exploring the performance of the dif-
ferent classifiers for the task of identifying a single
latent entity. As a representative test-case we con-
sider the extraction of the ATP entity. The entity
is considered of high importance to many biologi-
cal processes. Additionally, it has the highest fre-
quency in the dataset, i.e., there are many data ex-
amples (biochemical reactions) where ATP is in-
volved in. In more than 81% of its existences in
reactions, it is not explicitly mentioned in the text,
which practically makes it to a pure latent entity.

The results of all the algorithms for the predic-
tion of the latent entity ATP are shown in Table 2.
We emphasize that here, training, validating and
testing were all performed on pure latent samples,



206

Figure 3: Multi-Task model architecture for latent entities extraction, based on task grouping approach.
Word embeddings are fed to several Bi-GRU units which are connected via a multi-task learning ap-
proach to numerous groups of tasks, each representing a different group of related latent entities sharing
a similar loss.

i.e., texts that did contain the examined entity were
filtered out. The last row stands for the multi-task
approach with grouping, where ADP was selected
to be in the same prediction task group along with
ATP (ADP is known to be high correlated with
ATP as also can be deduced from Figure 2). The
improved empirical results in that experiment sug-
gest that using multi-task learning for related tasks
could be beneficial for the performance.

6.2 Multiple Latent Entities Extraction

In this section, we consider the full problem of
LEE of extracting multiple entities jointly. The re-
sults are presented in Table 4.

We measure the performance in two metrics:
micro-average and macro-average. Whereas mi-
cro method is considered to be a measurement for
the quality of all the predictions altogether, macro
stands for the performance of predictions per each
task. Note that the average is calculated over the
number of latent entities to extract.

Among the one-vs-all possible methods (Sec-
tion 4), the most successful method, in terms of
macro metric, is the bag-of-words & SVM model
(section 4.1). At first sight, it could be surprising
that such a simple approach outperforms more so-
phisticated methods, and mainly the deep-learning
techniques. We speculate that this is an outcome
of the data-set imbalance. That imbalance holds
in the sense that different entities could occur in
different frequencies in data examples. For ex-
ample, there are quite many training examples of

ATP and ADP (both are involved in more than
14% of the reactions), while other entities may be
significantly less frequent (e.g. Oxygen, NADPH,
NADP+ and more occurs in less than 3% of the re-
actions). Therefore, many classes of entities have
very little training examples. This does not al-
low deep-learning models to train well, and there-
fore the macro score of SVM methods tends to
be higher. The reason the SVM with BOW per-
forms better than the more semantic embeddings
(Section 4.2–4.4) with SVM might also be due to
the low amount of training examples that cause the
contribution of semantics to be limited for the LEE
task in this dataset.

The vanilla multi-task approach as described in
Section 5.1, performs well according to micro-
averaging metric, but fails in terms of macro mea-
surement.

Ultimately, our proposed multi-task GRU based
model with task-grouping (Section 5.2), outper-
forms all other baselines in both metrics: micro
and macro. Thus, not only generally extracting
entities with high performance, but also preserv-
ing fairness among different prediction tasks. We
conclude that selecting the tasks to learn together
in the a multi-task approach is critical for the LEE
task.

Further, we present Area Under the Curve
(AUC) scores of performance per entity, for top
frequent entities in the dataset in Table 3. The re-
sults are shown for the two best performing classi-
fiers (bag-of-words embedding with SVM classi-
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Model Precision Recall F1
Bag-of-Words (TF-IDF) & SVM (Section 4.1) 0.803 0.873 0.837

Weighted-average Embedding & SVM (Section 4.2) 0.770 0.746 0.758
Element-wise Document Embedding & SVM (Section 4.3) 0.817 0.817 0.817

Combined Document Embedding & SVM (Section 4.4) 0.823 0.810 0.816
Pre-Trained PubMed Word Embedding & Bi-LSTM (Section 4.5) 0.888 0.867 0.877
Pre-Trained PubMed Word Embedding & Bi-GRU (Section 4.5) 0.899 0.836 0.866

Multitask - Embedding based Bi-GRU (Section 5.1) 0.869 0.883 0.876
Multitask - Embedding based Bi-LSTM (Section 5.1) 0.869 0.883 0.876

Multitask with Grouping - Embedding based Bi-LSTM (Section 5.2) 0.909 0.859 0.884
Multitask with Grouping - Embedding based Bi-GRU (Section 5.2) 0.914 0.828 0.869

Table 2: Extraction of ATP as a latent entity. Statistically significant results are shown in bold.

Entity Bag-of-Words AUC Grouped-MTL AUC
ATP 0.906 0.938
ADP 0.910 0.965
H2O 0.864 0.928

PI 0.872 0.937
H+ 0.924 0.889
O2 0.904 0.928

NADPH 0.917 0.998
NADP+ 0.918 0.972
COA-SH 0.960 0.998

Table 3: AUC scores for bag-of-words vectors
& SVM baseline performance compared to the
multi-task learner with task-grouping. The results
are shown for top frequent entities in the data set.
Statistically significant results are shown in bold.

fication and multi task with grouping).

6.3 Multi-Task Approach Contribution in
Multiple Latent Entity Extraction

It should be noted that multi-task learning ap-
proach is much more effective in the multiple
latent entity extraction (Table 4) compared to
the single latent entity extraction case (Table 2).
Specifically, multi-task learning approach along
with task-grouping performs much better than the
other baselines. Naturally, the wins are significant
in terms of macro-metric, as our loss-function (as
defined in Section 5.2) is aimed for macro opti-
mization. However, we notice that the method also
improves performance in terms of micro-metric.
To motivate this, consider an example of a sen-
tence with water as a latent entity. Let us assume
water is not appearing many times in the corpora,
but appears many times in the data with Oxygen.
As water is not appearing in many sentences it
would be hard to learn indicative features in a sen-
tence to predict it. However, in many cases it is
possible to infer Oxygen. The prior of having an

Oxygen as latent entity in the sentence can be con-
sidered as an indicative feature that also helps to
predict water as a latent entity. As those entities
do not appear many times in the corpus, learning
the indicative features for a multi-task learner is
hard. However, when only grouping relevant en-
tities, we then overcome this issue and scores are
improved.

Table 2 provides results on the extraction of the
ATP entity only, which is the most common la-
tent entity in the Reactome dataset. Since there
are many training examples for this entity in the
corpus (most frequent latent entity), it is possible
to learn indicative features even in non-multitask
models, which therefore perform well. Thus, there
is a small difference between multitask and non-
multitask approaches in Table 2. On the other
hand, in Table 4 we examine the performance over
the top-40 frequent entities, including very fre-
quent entities (such ATP and ADP), and less fre-
quent (such Oxygen, NADPH, NADP+ and wa-
ter) as well. This leads to the results over all enti-
ties both frequent and infrequent to be much better
in multitask learning settings with task-grouping
specifically.

6.4 Qualitative Examples
To help understand the LEE problem, we present
several examples of prominent words that con-
tribute to the prediction of a latent entity. We lever-
age LIME algorithm (Ribeiro et al., 2016) to ex-
plain the multi task learning algorithm and present
feature importance for ATP and NADPH in Figure
4.

The model inferred that words such as phospho-
rylation or phosphorylates are good indicators for
the existence of ATP. Phosphorylation is the pro-
cess through which a phosphate group, which is
usually provided by ATP, is transferred from one
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micro macro

Model Prec. Rec. F1 Prec. Rec. F1
Bag-of-Words (TF-IDF) & SVM (Section 4.1) 0.784 0.746 0.795 0.785 0.750 0.754

Weighted-average Embedding & SVM (Section 4.2) 0.682 0.649 0.665 0.636 0.565 0.580
Element-wise Document Embedding & SVM (Section 4.3) 0.740 0.728 0.734 0.696 0.647 0.648

Combined Document Embedding & SVM (Section 4.4) 0.743 0.729 0.736 0.707 0.651 0.656
Pre-Trained PubMed Word Embedding & Bi-LSTM (Section 4.5) 0.817 0.773 0.794 0.707 0.645 0.664
Pre-Trained PubMed Word Embedding & Bi-GRU (Section 4.5) 0.798 0.817 0.808 0.707 0.690 0.687

Multitask - Embedding based Bi-GRU (Section 5.1) 0.798 0.820 0.809 0.671 0.664 0.662

Multitask & Task-Grouping - Embedding based Bi-GRU (Section 5.2) 0.822 0.849 0.835 0.809 0.839 0.811

Table 4: Results of multiple latent entities extraction of top 40 frequent entities. Left side is micro metric
based, while the right side is according to macro metric. Statistically significant results are shown in
bold.

molecule to a protein.
To infer NADPH, the algorithm gives a high im-

portance to the words P450 and reductase. Cy-
tochrome P450 are proteins that use a variety of
molecules as substrates in enzymatic reactions.
They usually serve as oxidase enzymes in elec-
tron transfer chains. One of the common system
they are involved in are microsomal P450 systems,
where electrons are transferred from NADPH via
cytochrome P450 reductase.

(a) ATP Extraction Top Features

(b) NADPH Extraction Top Features

Figure 4: An example of prominent words when
inferring latent entities.

7 Conclusions

In this paper, we presented a new task of latent
entities extraction from text, which gives a new
insight over the original named-entity recognition
task. Specifically, we focus on how to extract an
entity when it is not explicitly mentioned in the
text, but rather implicitly mentioned in the context.

We developed several methods to detect ex-
istence of such entities in texts, and present a
large labeled dataset for exploring the LEE task,
and perform an extensive evaluation of our meth-
ods. We explore one-vs-all methods with several
methods to embed the text and a multi-task learn-
ing approach that attempts to predict several en-
tities at once. We observe that learning highly-
relevant entities together when during LEE predic-
tion substantially boosts detection performance.
We present several explanations of the classifica-
tion, as they are taken into account behind the
scenes of the best-performing classifier for LEE.

For future work, we consider learning the LEE
in an end-to-end fashion, learning to weight which
tasks to group together to improve LEE.

We believe the LEE task would spur additional
research in the field to improve NER when entities
are implicitly mentioned and help better compre-
hend complex texts.
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