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Abstract

Recent deep learning models have shown im-
proving results to natural language generation
(NLG) irrespective of providing sufficient an-
notated data. However, a modest training data
may harm such models’ performance. Thus,
how to build a generator that can utilize as
much of knowledge from a low-resource set-
ting data is a crucial issue in NLG. This paper
presents a variational neural-based generation
model to tackle the NLG problem of having
limited labeled dataset, in which we integrate a
variational inference into an encoder-decoder
generator and introduce a novel auxiliary auto-
encoding with an effective training procedure.
Experiments showed that the proposed meth-
ods not only outperform the previous models
when having sufficient training dataset but also
show strong ability to work acceptably well
when the training data is scarce.

1 Introduction

Natural language generation (NLG) plays an crit-
ical role in Spoken dialogue systems (SDSs) with
the NLG task is mainly to convert a meaning
representation produced by the dialogue manager,
i.e., dialogue act (DA), into natural language re-
sponses. SDSs are typically developed for various
specific domains, i.e., flight reservations (Levin
et al., 2000), buying a tv or a laptop (Wen et al.,
2015b), searching for a hotel or a restaurant (Wen
et al., 2015a), and so forth. Such systems often
require well-defined ontology datasets that are ex-
tremely time-consuming and expensive to collect.
There is, thus, a need to build NLG systems that
can work acceptably well when the training data
is in short supply.

There are two potential solutions for above-
mentioned problems, which are domain adapta-
tion training and model designing for low-resource
training. First, domain adaptation training which

aims at learning from sufficient source domain a
model that can perform acceptably well on a dif-
ferent target domain with a limited labeled target
data. Domain adaptation generally involves two
different types of datasets, one from a source do-
main and the other from a target domain. Despite
providing promising results for low-resource set-
ting problems, the methods still need an adequate
training data at the source domain site.

Second, model designing for low-resource set-
ting has not been well studied in the NLG litera-
ture. The generation models have achieved very
good performances irrespective of providing suf-
ficient labeled datasets (Wen et al., 2015b,a; Tran
et al., 2017; Tran and Nguyen, 2017). However,
small training data easily result in worse genera-
tion models in the supervised learning methods.
Thus, this paper presents an explicit way to con-
struct an effective low-resource setting generator.

In summary, we make the following contribu-
tions, in which we: (i) propose a variational ap-
proach for an NLG problem which benefits the
generator to not only outperform the previous
methods when there is a sufficient training data
but also perform acceptably well regarding low-
resource data; (ii) present a variational generator
that can also adapt faster to a new, unseen domain
using a limited amount of in-domain data; (iii) in-
vestigate the effectiveness of the proposed method
in different scenarios, including ablation studies,
scratch, domain adaptation, and semi-supervised
training with varied proportion of dataset.

2 Related Work

Recently, the RNN-based generators have shown
improving results in tackling the NLG problems
in task oriented-dialogue systems with varied pro-
posed methods, such as HLSTM (Wen et al.,
2015a), SCLSTM (Wen et al., 2015b), or espe-
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cially RNN Encoder-Decoder models integrating
with attention mechanism, such as Enc-Dec (Wen
et al., 2016b), and RALSTM (Tran and Nguyen,
2017). However, such models have proved to work
well only when providing a sufficient in-domain
data since a modest dataset may harm the models’
performance.

In this context, one can think of a potential so-
lution where the domain adaptation learning is uti-
lized. The source domain, in this scenario, typ-
ically contains a sufficient amount of annotated
data such that a model can be efficiently built,
while there is often little or no labeled data in the
target domain. A phrase-based statistical genera-
tor (Mairesse et al., 2010) using graphical models
and active learning, and a multi-domain procedure
(Wen et al., 2016a) via data counterfeiting and dis-
criminative training. However, a question still re-
mains as how to build a generator that can directly
work well on a scarce dataset.

Neural variational framework for generative
models of text have been studied extensively.
Chung et al. (2015) proposed a recurrent latent
variable model for sequential data by integrating
latent random variables into hidden state of an
RNN. A hierarchical multi scale recurrent neu-
ral networks was proposed to learn both hierar-
chical and temporal representation (Chung et al.,
2016), while Bowman et al. (2015) presented a
variational autoencoder for unsupervised genera-
tive language model. Sohn et al. (2015) proposed
a deep conditional generative model for structured
output prediction, whereas Zhang et al. (2016) in-
troduced a variational neural machine translation
that incorporated a continuous latent variable to
model underlying semantics of sentence pairs. To
solve the exposure-bias problem (Bengio et al.,
2015) Zhang et al. (2017); Shen et al. (2017) pro-
posed a seq2seq purely convolutional and decon-
volutional autoencoder, Yang et al. (2017) pro-
posed to use a dilated CNN decoder in a latent-
variable model, or Semeniuta et al. (2017) pro-
posed a hybrid VAE architecture with convolu-
tional and deconvolutional components.

3 Dual Latent Variable Model

3.1 Variational Natural Language Generator

We make an assumption about the existing of a
continuous latent variable z from a underlying
semantic space of DA-Utterance pairs (d,u), so
that we explicitly model the space together with

Figure 1: Illustration of proposed variational mod-
els as a directed graph. (a) VNLG: joint learn-
ing both variational parameters φ and generative
model parameters θ. (b) DualVAE: red and blue
arrows form a standard VAE (parameterized by φ′

and θ′) as an auxiliary auto-encoding to the VNLG
model denoted by red and black arrows.

variable d to guide the generation process, i.e.,
p(u|z,d). The original conditional probability
p(y|d) modeled by a vanilla encoder-decoder net-
work is thus reformulated as follows:

p(u|d) =
∫
z
p(u, z|d)dz =

∫
z
p(u|z,d)p(z|d)dz

(1)
This latent variable enables us to model the under-
lying semantic space as a global signal for genera-
tion. However, the incorporating of latent variable
into the probabilistic model arises two difficulties
in (i) modeling the intractable posterior inference
p(z|d,u) and (ii) whether or not the latent vari-
ables z can be modeled effectively in case of low-
resource setting data.

To address the difficulties, we propose an
encoder-decoder based variational model to nat-
ural language generation (VNLG) by integrating
a variational autoencoder (Kingma and Welling,
2013) into an encoder-decoder generator (Tran
and Nguyen, 2017). Figure 1-(a) shows a graph-
ical model of VNLG. We then employ deep neu-
ral networks to approximate the prior p(z|d), true
posterior p(z|d,u), and decoder p(u|z,d). To
tackle the first issue, the intractable posterior is
approximated from both the DA and utterance in-
formation qφ(z|d,u) under the above assumption.
In contrast, the prior is modeled to condition on
the DA only pθ(z|d) due to the fact that the DA
and utterance of a training pair usually share the
same semantic information, i.e., a given DA in-
form(name=‘ABC’; area=‘XYZ’) contains key in-
formation of the corresponding utterance “The ho-
tel ABC is in XYZ area”. The underlying semantic
space with having more information encoded from
both the prior and the posterior provides the gener-
ator a potential solution to tackle the second issue.
Lastly, in generative process, given an observation
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DA d the output u is generated by the decoder net-
work pθ(u|z,d) under the guidance of the global
signal z which is drawn from the prior distribu-
tion pθ(z|d). According to (Sohn et al., 2015), the
variational lower bound can be recomputed as:

L(θ,φ,d,u) = −KL(qφ(z|d,u)||pθ(z|d))
+Eqφ(z|d,u)[log pθ(u|z,d)] ≤ log p(u|d)

(2)

3.1.1 Variational Encoder Network
The encoder consists of two networks: (i) a Bidi-
rectional LSTM (BiLSTM) which encodes the se-
quence of slot-value pairs {svi}TDAi=1 by separate
parameterization of slots and values (Wen et al.,
2016b); and (ii) a shared CNN/RNN Utterance
Encoder which encodes the corresponding utter-
ance. The encoder network, thus, produces both
the DA representation hD and the utterance repre-
sentation hU vectors which flow into the inference
and decoder networks, and the posterior approxi-
mator, respectively (see Suppl. 1.1).

3.1.2 Variational Inference Network
This section models both the prior pθ(z|d) and the
posterior qφ(z|d,u) by utilizing neural networks.

Neural Posterior Approximator: We approx-
imate the intractable posterior distribution of z
to simplify the posterior inference, in which we
first projects both DA and utterance representa-
tions onto the latent space:

h′z = g(Wz[hD;hU] + bz) (3)
where Wz ∈ Rdz×(dhD+dhU ), bz ∈ Rdz are matrix
and bias parameters respectively, dz is the dimen-
sionality of the latent space, and we set g(.) to be
ReLU in our experiments. We then approximate
the posterior as:

qφ(z|d,u) = N (z;µ1(h′z), σ
2
1(h
′
z)I) (4)

with mean µ1 and standard variance σ1 are the out-
puts of the neural network as follows:

µ1 = Wµ1h′z + bµ1 , log σ
2
1 = Wσ1h′z + bσ1 (5)

where µ1, log σ21 are both dz dimension vectors.
Neural Prior: We model the prior as follows:

pθ(z|d) = N (z;µ′1(d), σ
′2
1(d)I) (6)

where µ′1 and σ′1 of the prior are neural mod-
els only based on the Dialogue Act representa-
tion, which are the same as those of the poste-
rior qφ(z|d,u) in Eq. 3 and 5, except for the ab-
sence of hU. To obtain a representation of the la-
tent variable z, we re-parameterize it as follows:
hz = µ1 + σ1 � ε where ε ∼ N (0, I).

Figure 2: The Dual latent variable model consists
of two VAE models: (i) a VNLG (red-dashed
box) is to generate utterances and (ii) a Variational
CNN-DCNN is an auxiliary auto-encoding model
(left side). The RNN/CNN Utterance Encoder is
shared between the two VAEs.

Note here that the parameters for the prior and
the posterior are independent of each other. More-
over, during decoding we set hz to be the mean of
the prior pθ(z|d), i.e., µ′1 due to the absence of the
utterance u. In order to integrate the latent variable
hz into the decoder, we use a non-linear transfor-
mation to project it onto the output space for gen-
eration: he = g(Wehz + be)(7), where he ∈ Rde .

3.1.3 Variational Decoder Network
Given a DA d and the latent variable z, the decoder
calculates the probability over the generation u as
a joint probability of ordered conditionals:

p(u|z,d) =
TU∏
t=1

p(ut|u<t, z,d) (8)

where p(ut|u<t, z,d)=g′(RALSTM(ut,ht−1,dt).
The RALSTM cell (Tran and Nguyen, 2017) is
slightly modified in order to integrate the repre-
sentation of latent variable, i.e., he, into the com-
putational cell (see Suppl. 1.3), in which the la-
tent variable can affect the hidden representation
through the gates. This allows the model can in-
directly take advantage of the underlying semantic
information from the latent variable z. In addi-
tion, when the model learns unseen dialogue acts,
the semantic representation he can benefit the gen-
eration process (see Table 1).

We finally obtain the VNLG model with RNN
Utterance Encoder (R-VNLG) or with CNN Utter-
ance Encoder (C-VNLG).
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3.2 Variational CNN-DCNN Model
This standard VAE model (left side in Figure 2)
acts as an auxiliary auto-encoding for utterance
(used at training time) to the VNLG generator.
The model consists of two components. While the
shared CNN Utterance Encoder with the VNLG
model is to compute the latent representation vec-
tor hU (see Suppl. 1.1.3), a Deconvolutional CNN
Decoder to decode the latent representation he
back to the source text (see Suppl. 2.1). Specifi-
cally, after having the vector representation hU, we
apply another linear regression to obtain the distri-
bution parameter µ2 = Wµ2hU+bµ2 and log σ22 =
Wσ2hU + bσ2 . We then re-parameterize them to
obtain a latent representation hzu = µ2 + σ2 � ε,
where ε ∼ N (0, I). In order to integrate the la-
tent variable hzu into the DCNN Decoder, we use
the shared non-linear transformation as in Eq. 7
(denoted by the black-dashed line in Figure 2) as:
he = g(Wehzu + be).

The entire resulting model, named DualVAE,
by incorporating the VNLG with the Variational
CNN-DCNN model, is depicted in Figure 2.

4 Training Dual Latent Variable Model

4.1 Training VNLG Model
Inspired by work of Zhang et al. (2016), we also
employ the Monte-Carlo method to approximate
the expectation of the posterior in Eq. 2, i.e.
Eqφ(z|d,u)[.] '

1
M

∑M
m=1 log pθ(u|d,h

(m)
z ) where

M is the number of samples. In this work, the
joint training objective LVNLG for a training in-
stance pair (d,u) is formulated as:

L(θ, φ,d,u) ' −KL(qφ(z|d,u)||pθ(z|d))

+
1

M

M∑
m=1

TU∑
t=1

log pθ(ut|u<t,d,h(m)
z )

(9)

where h(m)
z = µ+ σ � ε(m), and ε(m) ∼ N (0, I),

and θ and φ denote decoder and encoder param-
eters, respectively. The first term is the KL di-
vergence between two Gaussian distribution, and
the second term is the approximation expectation.
We simply set M = 1 which degenerates the sec-
ond term to the objective of conventional genera-
tor. Since the objective function in Eq. 9 is dif-
ferentiable, we can jointly optimize the parame-
ter θ and variational parameter φ using standard
gradient ascent techniques. However, the KL di-
vergence loss tends to be significantly small dur-
ing training (Bowman et al., 2015). As a results,

the decoder does not take advantage of informa-
tion from the latent variable z. Thus, we apply
the KL cost annealing strategy that encourages the
model to encode meaningful representations into
the latent vector z, in which we gradually anneal
the KL term from 0 to 1. This helps our model to
achieve solutions with non-zero KL term.

4.2 Training Variational CNN-DCNN Model
The objective function LCNN-DCNN of the Varia-
tional CNN-DCNN model is the standard VAE
lower bound and maximized as follows:

L(θ′, φ′,u) = −KL(qφ′(z|u)||pθ′(z))
+ Eqφ′ (z|u)[log pθ′(u|z)] ≤ log p(u)

(10)

where θ′ and φ′ denote decoder and encoder
parameters, respectively. During training, we
also consider a denoising autoencoder where we
slightly modify the input by swapping some arbi-
trary word pairs.

4.3 Joint Training Dual VAE Model
To allow the model explore and balance maximiz-
ing the variational lower bound between the Vari-
ational CNN-DCNN model and VNLG model, an
objective is joint training as follows:

LDualVAE = LVNLG + αLCNN-DCNN (11)

where α controls the relative weight between two
variational losses. During training, we anneal the
value of α from 1 to 0, so that the dual latent
variable learned can gradually focus less on re-
construction objective of the CNN-DCNN model,
only retain those features that are useful for the
generation objective.

4.4 Joint Cross Training Dual VAE Model
To allow the dual VAE model explore and en-
code useful information of the Dialogue Act into
the latent variable, we further take a cross train-
ing between two VAEs by simply replacing the
RALSTM Decoder of the VNLG model with the
DCNN Utterance Decoder and its objective train-
ing LDA-DCNN as:

L(θ′, φ,d,u) ' −KL(qφ(z|d,u)||pθ′(z|d))
+ Eqφ(z|d,u)[log pθ′(u|z,d)],

(12)
and a joint cross training objective is employed:

LCrossVAE = LVNLG

+ α(LCNN-DCNN + LDA-DCNN)
(13)
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5 Experiments

We assessed the proposed models on four different
original NLG domains: finding a restaurant and
hotel (Wen et al., 2015a), or buying a laptop and
television (Wen et al., 2016b).

5.1 Evaluation Metrics and Baselines

The generator performances were evaluated us-
ing the two metrics: the BLEU and the slot error
rate ERR by adopting code from an NLG toolkit∗.
We compared the proposed models against strong
baselines which have been recently published as
NLG benchmarks of those datasets, including
(i) gating models such as HLSTM (Wen et al.,
2015a), and SCLSTM (Wen et al., 2015b); and
(ii) attention models such as Enc-Dec (Wen et al.,
2016b), RALSTM (Tran and Nguyen, 2017).

5.2 Experimental Setups

In this work, the CNN Utterance Encoder con-
sists of L = 3 layers, which for a sentence of
length T = 73, embedding size d = 100, stride
length s = {2, 2, 2}, number of filters k =
{300, 600, 100} with filter sizes h = {5, 5, 16},
results in feature maps V of sizes {35× 300, 16×
600, 1 × 100}, in which the last feature map cor-
responds to latent representation vector hU.

The hidden layer size and beam width were set
to be 100 and 10, respectively, and the models
were trained with a 70% of keep dropout rate. We
performed 5 runs with different random initializa-
tion of the network, and the training process is ter-
minated by using early stopping. For the varia-
tional inference, we set the latent variable size to
be 300. We used Adam optimizer with the learn-
ing rate is initially set to be 0.001, and after 5
epochs the learning rate is decayed every epoch
using an exponential rate of 0.95.

6 Results and Analysis

We performed the models in different scenarios as
follows: (i) scratch training where models trained
from scratch using 10% (scr10), 30% (scr30),
and 100% (scr100) amount of in-domain data;
and (ii) domain adaptation training where mod-
els pre-trained from scratch using all source do-
main data, then fine-tuned on the target domain us-
ing only 10% amount of the target data. Overall,
the proposed models can work well in scenarios
∗https://github.com/shawnwun/RNNLG

Figure 3: Performance on Laptop domain with var-
ied limited amount, from 1% to 7%, of the adap-
tation training data when adapting models pre-
trained on [Restaurant+Hotel] union dataset.

of low-resource setting data. The proposed mod-
els obtained state-of-the-art performances regard-
ing both the evaluation metrics across all domains
in all training scenarios.

6.1 Integrating Variational Inference

We compare the encoder-decoder RALSTM
model to its modification by integrating with
variational inference (R-VNLG and C-VNLG) as
demonstrated in Figure 3 and Table 1.

It clearly shows that the variational generators
not only provide a compelling evidence on adapt-
ing to a new, unseen domain when the target do-
main data is scarce, i.e., from 1% to 7% (Figure 3)
but also preserve the power of the original RAL-
STM on generation task since their performances
are very competitive to those of RALSTM (Ta-
ble 1, scr100). Table 1, scr10 further shows the
necessity of the integrating in which the VNLGs
achieved a significant improvement over the RAL-
STM in scr10 scenario where the models trained
from scratch with only a limited amount of train-
ing data (10%). These indicate that the proposed
variational method can learn the underlying se-
mantic of the existing DA-utterance pairs, which
are especially useful information for low-resource
setting.

Furthermore, the R-VNLG model has slightly
better results than the C-VNLG when provid-
ing sufficient training data in scr100. In con-
trast, with a modest training data, in scr10, the
latter model demonstrates a significant improve-
ment compared to the former in terms of both the
BLEU and ERR scores by a large margin across
all four dataset. Take Hotel domain, for exam-
ple, the C-VNLG model (79.98 BLEU, 8.67%
ERR) has better results in comparison to the R-
VNLG (73.78 BLEU, 15.43% ERR) and RAL-
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Model
Hotel Restaurant Tv Laptop

BLEU ERR BLEU ERR BLEU ERR BLEU ERR

sc
r1

00

HLSTM 0.8488 2.79% 0.7436 0.85% 0.5240 2.65% 0.5130 1.15%
SCLSTM 0.8469 3.12% 0.7543 0.57% 0.5235 2.41% 0.5109 0.89%
ENCDEC 0.8537 4.78% 0.7358 2.98% 0.5142 3.38% 0.5101 4.24%
RALSTM 0.8965 0.58% 0.7779 0.20% 0.5373 0.49% 0.5231 0.50%

R-VNLG (Ours) 0.8851 0.57% 0.7709 0.36% 0.5356 0.73% 0.5210 0.59%
C-VNLG (Ours) 0.8811 0.49% 0.7651 0.06% 0.5350 0.88% 0.5192 0.56%
DualVAE (Ours) 0.8813 0.33% 0.7695 0.29% 0.5359 0.81% 0.5211 0.91%
CrossVAE (Ours) 0.8926 0.72% 0.7786 0.54% 0.5383 0.48% 0.5240 0.50%

sc
r1

0

HLSTM 0.7483 8.69% 0.6586 6.93% 0.4819 9.39% 0.4813 7.37%
SCLSTM 0.7626 17.42% 0.6446 16.93% 0.4290 31.87% 0.4729 15.89%
ENCDEC 0.7370 23.19% 0.6174 23.63% 0.4570 21.28% 0.4604 29.86%
RALSTM 0.6855 22.53% 0.6003 17.65% 0.4009 22.37% 0.4475 24.47%

R-VNLG (Ours) 0.7378 15.43% 0.6417 15.69% 0.4392 17.45% 0.4851 10.06%
C-VNLG (Ours) 0.7998 8.67% 0.6838 6.86% 0.5040 5.31% 0.4932 3.56%
DualVAE (Ours) 0.8022 6.61% 0.6926 7.69% 0.5110 3.90% 0.5016 2.44%
CrossVAE (Ours) 0.8103 6.20% 0.6969 4.06% 0.5152 2.86% 0.5085 2.39%

sc
r3

0

HLSTM 0.8104 6.39% 0.7044 2.13% 0.5024 5.82% 0.4859 6.70%
SCLSTM 0.8271 6.23% 0.6825 4.80% 0.4934 7.97% 0.5001 3.52%
ENCDEC 0.7865 9.38% 0.7102 13.47% 0.5014 9.19% 0.4907 10.72%
RALSTM 0.8334 4.23% 0.7145 2.67% 0.5124 3.53% 0.5106 2.22%

C-VNLG (Ours) 0.8553 2.64% 0.7256 0.96% 0.5265 0.66% 0.5117 2.15%
DualVAE (Ours) 0.8534 1.54% 0.7301 2.32% 0.5288 1.05% 0.5107 0.93%
CrossVAE (Ours) 0.8585 1.37% 0.7479 0.49% 0.5307 0.82% 0.5154 0.81%

Table 1: Results evaluated on four domains by training models from scratch with 10%, 30%, and 100%
in-domain data, respectively. The results were averaged over 5 randomly initialized networks. The bold
and italic faces denote the best and second best models in each training scenario, respectively.

STM (68.55 BLEU, 22.53% ERR). Thus, the rest
experiments focus on the C-VNLG since it shows
obvious sign for constructing a dual latent variable
models dealing with low-resource in-domain data.
We leave the R-VNLG for future investigation.

6.2 Ablation Studies

The ablation studies (Table 1) demonstrate the
contribution of each model components, in which
we incrementally train the baseline RALSTM, the
C-VNLG (= RALSTM + Variational inference),
the DualVAE (= C-VNLG + Variational CNN-
DCNN), and the CrossVAE (= DualVAE + Cross
training) models. Generally, while all models
can work well when there are sufficient training
datasets, the performances of the proposed models
also increase as increasing the model components.
The trend is consistent across all training cases no
matter how much the training data was provided.
Take, for example, the scr100 scenario in which
the CrossVAE model mostly outperformed all the
previous strong baselines with regard to the BLEU
and the slot error rate ERR scores.

On the other hand, the previous methods
showed extremely impaired performances regard-
ing low BLEU score and high slot error rate ERR

when training the models from scratch with only
10% of in-domain data (scr10). In contrast, by
integrating the variational inference, the C-VNLG
model, for example in Hotel domain, can signif-
icantly improve the BLEU score from 68.55 to
79.98, and also reduce the slot error rate ERR by a
large margin, from 22.53 to 8.67, compared to the
RALSTM baseline. Moreover, the proposed mod-
els have much better performance over the previ-
ous ones in the scr10 scenario since the Cross-
VAE, and the DualVAE models mostly obtained
the best and second best results, respectively. The
CrossVAE model trained on scr10 scenario, in
some cases, achieved results which close to those
of the HLSTM, SCLSTM, and ENCDEC mod-
els trained on all training data (scr100) scenario.
Take, for example, the most challenge dataset Lap-
top, in which the DualVAE and CrossVAE ob-
tained competitive results regarding the BLEU
score, at 50.16 and 50.85 respectively, which
close to those of the HLSTM (51.30 BLEU),
SCLSTM (51.09 BLEU), and ENCDEC (51.01
BLEU), while the results regardless the slot er-
ror rate ERR scores are also close to those of the
previous or even better in some cases, for exam-
ple DualVAE (2.44 ERR), CrossVAE (2.39 ERR),
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Figure 4: Performance comparison of the models trained on Laptop domain.

and ENCDEC (4.24 ERR). There are also some
cases in TV domain where the proposed models
(in scr10) have results close to or better over the
previous ones (trained on scr100). These indicate
that the proposed models can encode useful infor-
mation into the latent variable efficiently to better
generalize to the unseen dialogue acts, addressing
the second difficulty with low-resource data.

The scr30 section further confirms the effective-
ness of the proposed methods, in which the Cross-
VAE and DualVAE still mostly rank the best and
second-best models compared with the baselines.
The proposed models also show superior ability in
leveraging the existing small training data to ob-
tain very good performances, which are in many
cases even better than those of the previous meth-
ods trained on 100% of in-domain data. Take
Tv domain, for example, in which the CrossVAE
in scr30 achieves a good result regarding BLEU
and slot error rate ERR score, at 53.07 BLEU
and 0.82 ERR, that are not only competitive to
the RALSTM (53.73 BLEU, 0.49 ERR), but also
outperform the previous models in scr100 train-
ing scenario, such as HLSTM (52.40 BLEU, 2.65
ERR), SCLSTM (52.35 BLEU, 2.41 ERR), and
ENCDEC (51.42 BLEU, 3.38 ERR). This further
indicates the need of the integrating with vari-
ational inference, the additional auxiliary auto-
encoding, as well as the joint and cross training.

6.3 Model comparison on unseen domain
In this experiment, we trained four models
(ENCDEC, SCLSTM, RALSTM, and CrossVAE)
from scratch in the most difficult unseen Laptop
domain with an increasingly varied proportion of
training data, start from 1% to 100%. The re-
sults are shown in Figure 4. It clearly sees that
the BLEU score increases and the slot error ERR
decreases as the models are trained on more data.
The CrossVAE model is clearly better than the pre-
vious models (ENCDEC, SCLSTM, RALSTM) in
all cases. While the performance of the Cross-
VAE, RALSTM model starts to saturate around
30% and 50%, respectively, the ENCDEC model

seems to continue getting better as providing more
training data. The figure also confirms that the
CrossVAE trained on 30% of data can achieve a
better performance compared to those of the pre-
vious models trained on 100% of in-domain data.

6.4 Domain Adaptation
We further examine the domain scalability of
the proposed methods by training the CrossVAE
and SCLSTM models on adaptation scenarios,
in which we first trained the models on out-of-
domain data, and then fine-tuned the model pa-
rameters by using a small amount (10%) of in-
domain data. The results are shown in Table 2.

Both SCLSTM and CrossVAE models can take
advantage of “close” dataset pairs, i.e., Restau-
rant↔ Hotel, and Tv↔ Laptop, to achieve better
performances compared to those of the “different”
dataset pairs, i.e. Latop↔ Restaurant. Moreover,
Table 2 clearly shows that the SCLSTM (denoted
by [) is limited to scale to another domain in terms
of having very low BLEU and high ERR scores.
This adaptation scenario along with the scr10 and
scr30 in Table 1 demonstrate that the SCLSTM
can not work when having a low-resource setting
of in-domain training data.

On the other hand, the CrossVAE model again
show ability in leveraging the out-of-domain data
to better adapt to a new domain. Especially in
the case where Laptop, which is a most difficult
unseen domain, is the target domain the Cross-
VAE model can obtain good results irrespective of
low slot error rate ERR, around 1.90%, and high
BLEU score, around 50.00 points. Surprisingly,
the CrossVAE model trained on scr10 scenario in
some cases achieves better performance compared
to those in adaptation scenario first trained with
30% out-of-domain data (denoted by ]) which is
also better than the adaptation model trained on
100% out-of-domain data (denoted by ξ).

Preliminary experiments on semi-supervised
training were also conducted, in which we trained
the CrossVAE model with the same 10% in-
domain labeled data as in the other scenarios and
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Source
Target Hotel Restaurant Tv Laptop

BLEU ERR BLEU ERR BLEU ERR BLEU ERR
Hotel[ - - 0.6243 11.20% 0.4325 29.12% 0.4603 22.52%

Restaurant[ 0.7329 29.97% - - 0.4520 24.34% 0.4619 21.40%
Tv[ 0.7030 25.63% 0.6117 12.78% - - 0.4794 11.80%

Laptop[ 0.6764 39.21% 0.5940 28.93% 0.4750 14.17% - -
Hotel] - - 0.7138 2.91% 0.5012 5.83% 0.4949 1.97%

Restaurant] 0.7984 4.04% - - 0.5120 3.26% 0.4947 1.87%
Tv] 0.7614 5.82% 0.6900 5.93% - - 0.4937 1.91%

Laptop] 0.7804 5.87% 0.6565 6.97% 0.5037 3.66% - -
Hotelξ - - 0.6926 3.56% 0.4866 11.99% 0.5017 3.56%

Restaurantξ 0.7802 3.20% - - 0.4953 3.10% 0.4902 4.05%
Tvξ 0.7603 8.69% 0.6830 5.73% - - 0.5055 2.86%

Laptopξ 0.7807 8.20% 0.6749 5.84% 0.4988 5.53% - -
CrossVAE (scr10) 0.8103 6.20% 0.6969 4.06% 0.5152 2.86% 0.5085 2.39%

CrossVAE (semi-U50-L10) 0.8144 6.12% 0.6946 3.94% 0.5158 2.95% 0.5086 1.31%

Table 2: Results evaluated on Target domains by adaptation training SCLSTM model from 100% (de-
noted as [) of Source data, and the CrossVAE model from 30% (denoted as ]), 100% (denoted as ξ) of
Source data. The scenario used only 10% amount of the Target domain data. The last two rows show
results by training the CrossVAE model on the scr10 and semi-supervised learning, respectively.

50% in-domain unlabeled data by keeping only
the utterances u in a given input pair of dialogue
act-utterance (d, u), denoted by semi-U50-L10.
The results showed CrossVAE’s ability in lever-
aging the unlabeled data to achieve slightly better
results compared to those in scratch scenario. All
these stipulate that the proposed models can per-
form acceptably well in training cases of scratch,
domain adaptation, and semi-supervised where
the in-domain training data is in short supply.

6.5 Comparison on Generated Outputs

We present top responses generated for different
scenarios from TV (Table 3) and Laptop (Table 4),
which further show the effectiveness of the pro-
posed methods.

On the one hand, previous models trained on
scr10, scr30 scenarios produce a diverse range
of the outputs’ error types, including missing,
misplaced, redundant, wrong slots, or spelling
mistake information, resulting in a very high
score of the slot error rate ERR. The ENCDEC,
HLSTM and SCLSTM models in Table 3-DA 1,
for example, tend to generate outputs with redun-
dant slots (i.e., SLOT HDMIPORT , SLOT NAME,
SLOT FAMILY), missing slots (i.e., [l7 family],
[4 hdmi port -s]), or even in some cases produce ir-
relevant slots (i.e., SLOT AUDIO, eco rating), re-
sulting in inadequate utterances.

On the other hand, the proposed models can ef-
fectively leverage the knowledge from only few
of the existing training instances to better gener-
alize to the unseen dialogue acts, leading to sat-
isfactory responses. For example in Table 3, the

proposed methods can generate adequate number
of the required slots, resulting in fulfilled utter-
ances (DualVAE-10, CrossVAE-10, DualVAE-30,
CrossVAE-30), or acceptable outputs with much
fewer error information, i.e., mis-ordered slots in
the generated utterances (C-VNLG-30).

For a much easier dialogue act in Table 3-DA 2,
previous models still produce some error outputs,
whereas the proposed methods seem to form some
specific slots into phrase in concise outputs. For
example, instead of generating “the proteus 73 is
a television” phrase, the proposed models tend to
concisely produce “the proteus 73 television”. The
trend is mostly consistent to those in Table 4.

7 Conclusion and Future Work
We present an approach to low-resource NLG by
integrating the variational inference and introduc-
ing a novel auxiliary auto-encoding. Experiments
showed that the models can perform acceptably
well using a scarce dataset. The ablation stud-
ies demonstrate that the variational generator con-
tributes to learning the underlying semantic of
DA-utterance pairs, while the variational CNN-
DCNN plays an important role of encoding useful
information into the latent variable. In the future,
we further investigate the proposed models with
adversarial training, semi-supervised, or unsuper-
vised training.
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Model Generated Responses from TV Domain
DA 1 compare(name=‘typhon 45’; hdmiport=‘2’; family=‘l2’; name=‘hades 48’; hdmiport=‘4’; family=‘l7’)
Reference 1 Compared to typhon 45 which has 2 hdmi port -s and is in the L2 product family, hades 48 has 4 hdmi port -s and is in the L7

product family. Which one do you prefer ?
ENCDEC-10 the typhon 45 is in the l2 product family and has 2 hdmi port -s and is in the l7 product family with 4 hdmi port -s, the hades 48 is

in the SLOT FAMILY product family with a SLOT AUDIO.
HLSTM-10 the typhon 45 is a great eco rating, the hades 48 is in the l2 family with 2 hdmi port -s. [l7 family] [4 hdmi port -s]
SCLSTM-10 the typhon 45 is the hades 48 with 2 hdmi port in the l2 family, the SLOT NAME has 4 hdmi port -s and SLOT HDMIPORT hdmi

port. [l7 family]
C-VNLG-10 the typhon 45 has 2 hdmi port -s and the hades 48 is in the l2 family and has 4 hdmi port -s. [l7 family]
DualVAE-10 the typhon 45 has 2 hdmi port -s and is in the l2 family while the hades 48 has 4 hdmi port -s and is in the l7 family. [OK]
CrossVAE-10 the typhon 45 is in the l2 family with 2 hdmi port -s while the hades 48 has 4 hdmi port -s and is in the l7 family. [OK]
ENCDEC-30 the typhon 45 has 2 hdmi port -s, the hades 48 has 4 hdmi port -s, the SLOT NAME has SLOT HDMIPORT hdmi port. [l2 family]

[l7 family]
HLSTM-30 the typhon 45 is in the l2 product family with 2 hdmi port -s, whereas the hades 48 has 4 hdmi port. [l7 family]
SCLSTM-30 the typhon 45 has 2 hdmi port -s, the hades 48 is in the l2 product family. [l7 family] [4 hdmi port -s]
C-VNLG-30 the typhon 45 has 2 hdmi port -s, the hades 48 is in the l2 product family and has 4 hdmi port -s in l7 family.
DualVAE-30 which do you prefer, the typhon 45 in the l2 product family with 2 hdmi port -s . the hades 48 is in the l7 family with 4 hdmi port

-s. [OK]
CrossVAE-30 the typhon 45 has 2 hdmi port -s and in the l2 family while the hades 48 has 4 hdmi port -s and is in the l7 family. which item do

you prefer. [OK]
DA 2 recommend(name=‘proteus 73’; type=‘television’; price=‘1500 dollars’; audio=‘nicam stereo’; hdmiport=‘2’)
Reference 2 proteus 73 is a nice television. its price is 1500 dollars, its audio is nicam stereo, and it has 2 hdmi port -s.
ENCDEC-10 the proteus 73 is a great television with a nicam stereo and 2 hdmi port -s [1500 dollars]
HLSTM-10 the proteus 73 is a television with 2 hdmi port -s and comes with a nicam stereo and costs 1500 dollars [OK]
SCLSTM-10 the proteus 73 is a nice television with nicam stereo and 2 hdmi port -s [1500 dollars]
C-VNLG-10 the proteus 73 television has a nicam stereo and 2 hdmi port -s and costs 1500 dollars [OK]
DualVAE-10 the proteus 73 television has a nicam stereo and 2 hdmi port -s and costs 1500 dollars [OK]
CrossVAE-10 the proteus 73 television has 2 hdmi port -s and a nicam stereo and costs 1500 dollars [OK]
ENCDEC-30 the proteus 73 television has 2 hdmi port -s and nicam stereo audio for 1500 dollars [OK]
HLSTM-30 the proteus 73 television has a nicam stereo and 2 hdmi port -s and is priced at 1500 dollars [OK]
SCLSTM-30 the proteus 73 is a nice television with nicam stereo and 2 hdmi port -s . it is priced at 1500 dollars [OK]
C-VNLG-30 the proteus 73 television has 2 hdmi port -s , nicam stereo audio , and costs 1500 dollars [OK]
DualVAE-30 the proteus 73 television has 2 hdmi port -s and nicam stereo audio and costs 1500 dollars [OK]
CrossVAE-30 the proteus 73 television has 2 hdmi port -s and nicam stereo audio and costs 1500 dollars [OK]

Table 3: Comparison of top Tv responses generated for different models in different scenarios. Errors are
marked in colors ([missing], misplaced, redundant, wrong, spelling mistake information). [OK] denotes
successful generation. Model-X where X is amount of training data, i.e. 10%, 30%, or 100%.

Model Generated Responses from Laptop Domain
DA compare(name=‘satellite pallas 21’; battery=‘4 hour’; drive=‘500 gb’; name=‘satellite dinlas 18’; battery=‘3.5 hour’; drive=‘1

tb’)
Reference compared to satellite pallas 21 which can last 4 hour and has a 500 gb drive , satellite dinlas 18 can last 3.5 hour and has a 1 tb

drive . which one do you prefer
Enc-Dec-10 the satellite pallas 21 has a 500 gb drive , the satellite dinlas 18 has a 4 hour battery life and a 3.5 hour battery life and a

SLOT BATTERY battery life and a 1 tb drive
HLSTM-10 the satellite pallas 21 has a 4 hour battery life and a 500 gb drive . which one do you prefer [satellite pallas 18] [3.5 hour battery]

[1 tb drive]
SCLSTM-10 the satellite pallas 21 has a 4 hour battery , and has a 3.5 hour battery life and a 500 gb drive and a 1 tb drive [satellite dinlas 18]
C-VNLG-10 the satellite pallas 21 has a 500 gb drive and a 4 hour battery life . the satellite dinlas 18 has a 3.5 hour battery life and a

SLOT BATTERY battery life [1 tb drive]
DualVAE-10 the satellite pallas 21 has a 4 hour battery life and a 500 gb drive and the satellite dinlas 18 with a 3.5 hour battery life and is good

for business computing . which one do you prefer [1 tb drive]
CrossVAE-10 the satellite pallas 21 with 500 gb and a 1 tb drive . the satellite dinlas 18 with a 4 hour battery and a SLOT DRIVE drive . which

one do you prefer [3.5 hour battery]
Enc-Dec-30 the satellite pallas 21 has a 500 gb drive with a 1 tb drive and is the satellite dinlas 18 with a SLOT DRIVE drive for 4 hour -s .

which one do you prefer [3.5 hour battery]
HLSTM-30 the satellite pallas 21 is a 500 gb drive with a 4 hour battery life . the satellite dinlas 18 has a 3.5 hour battery life . which one do

you prefer [1 tb drive]
SCLSTM-30 the satellite pallas 21 has a 500 gb drive . the satellite dinlas 18 has a 4 hour battery life . the SLOT NAME has a 3.5 hour battery

life . which one do you prefer [1 tb drive]
C-VNLG-30 which one do you prefer the satellite pallas 21 with a 4 hour battery life , the satellite dinlas 18 has a 500 gb drive and a 3.5 hour

battery life and a 1 tb drive . which one do you prefer
DualVAE-30 satellite pallas 21 has a 500 gb drive and a 4 hour battery life while the satellite dinlas 18 with a 3.5 hour battery life and a 1 tb

drive . [OK]
CrossVAE-30 the satellite pallas 21 has a 500 gb drive with a 4 hour battery life . the satellite dinlas 18 has a 1 tb drive and a 3.5 hour battery

life . which one do you prefer [OK]

Table 4: Comparison of top Laptop responses generated for different models in different scenarios. Er-
rors are marked in colors ([missing], misplaced, redundant, wrong, spelling information). [OK] denotes
successful generation. Model-X where X is amount of training data, i.e. 10%, 30%, or 100%.
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