
Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 228–236,
Vancouver, Canada, August 3-4, 2017. c© 2017 Association for Computational Linguistics

CLCL (Geneva) DINN Parser:
a Neural Network Dependency Parser Ten Years Later

Christophe Moor
University of Geneva

Christophe.Moor@etu.unige.ch

Paola Merlo
University of Geneva

Paola.Merlo@unige.ch

James Henderson
XRCE / University of Geneva

James.Henderson@unige.ch

Haozhou Wang
University of Geneva

Haozhou.Wang@unige.ch

Abstract

This paper describes the University of
Geneva’s submission to the CoNLL 2017
shared task Multilingual Parsing from
Raw Text to Universal Dependencies
(listed as the CLCL (Geneva) entry). Our
submitted parsing system is the grandchild
of the first transition-based neural network
dependency parser, which was the Univer-
sity of Geneva’s entry in the CoNLL 2007
multilingual dependency parsing shared
task, with some improvements to speed
and portability. These results provide a
baseline for investigating how far we have
come in the past ten years of work on neu-
ral network dependency parsing.

1 Introduction

The system described in this paper is the grand-
child of the first transition-based neural network
dependency parser (Titov and Henderson, 2007b),
which was the University of Geneva’s entry in
the CoNLL 2007 multilingual dependency parsing
shared task (Titov and Henderson, 2007a). The
system has undergone some developments and
modifications, in particular the faster discrimina-
tive version introduced by Yazdani and Hender-
son (2015), but in many respects the design and
implementation of this parser is unchanged since
2007. One of our motivations for our submis-
sion to this CoNLL 2017 multilingual dependency
parsing shared task is to provide a baseline to eval-
uate to what extent recent advances in neural net-
work models and training do in fact improve per-
formance over “traditional” recurrent neural net-
works. We are listed in the table of results as the
CLCL (Geneva) entry.

As with previous work using the Incremen-
tal Neural Network architecture (e.g. Hender-
son, 2003), the main philosophy of our submis-

sion is that we build language universal induc-
tive biases into the model structure of the recur-
rent neural network, but we do not do any feature
engineering. Training the neural network induces
language-specific hidden representations automat-
ically. To provide such a baseline, we use UDPipe
for all pre-processing (Straka et al., 2016), and
Malt Parser for all projectivisation (Nivre et al.,
2006). The only exception is our strategy for sur-
prise languages, discussed below.

These goals match well the aim of the 2017 Uni-
versal dependencies shared task, described in the
introductory overview (Zeman et al., 2017). This
task makes true cross-linguistic comparison pos-
sible thanks to the universal dependency annota-
tion project, which underlies the data used in this
shared task. We train exactly the same parsing
model on every language, thereby allowing fur-
ther comparisons. In addition, the feature induc-
tion abilities of the recurrent neural network help
minimise any remaining cross-lingual differences
due to pre-processing or annotation.

2 Data

We use only the provided treebanks. For large
treebanks, we train the model on the UD treebank
(Nivre et al., 2017a), with some tuning of meta-
parameter using the development set.

For surprise languages, we train on the concate-
nation of the treebank for the language, no matter
how small, and the treebank of an identified source
language with a larger treebank. In post-testing
experiments, we also apply this same strategy to
other small treebanks, resulting in substantial im-
provements (average 43% better) over the submit-
ted results.

We don’t use externally trained word embed-
dings (we trained our own internally to the parser)
or any other data resource.

228

3 Preprocessing

Tokenisation, word and sentence segmentation is
provided by UD pipe (Straka et al., 2016). We do
not use the morphological transducers from Aper-
tium/Giellatekno that had been made available for
the shared task.

Because our parser can only produce projective
dependency trees, we apply the projectivisation
transformation of the Malt parser package (Nivre
et al., 2006) to all treebanks before training.

4 Parser

We apply a single DINN parser to each language.
We do not use any ensemble methods. This makes
our results more useful for comparison, and allows
our model to be used within an ensemble with
other parsers.

We use the parser described in Yazdani and
Henderson (2015), the Discriminative Incremen-
tal Neural Network parser (DINN). Like the pre-
vious version of this parser (Titov and Henderson,
2007b), it uses a recurrent neural network (RNN)
to predict the actions for a fast shift-reduce de-
pendency parser. Decoding is done with a beam
search where pruning occurs after each shift ac-
tion. The RNN model has an output-dependent
structure that matches locality in the parse struc-
ture, making it an “incremental” neural network
(INN, previously called SSN). This INN com-
putes hidden vectors that encode the preceding
partial parse, and estimates the probabilities of the
parser actions given this history. Unlike the previ-
ous generative INN parser, DINN is a discrimina-
tive parser, using lookahead instead of word pre-
diction. In order to combine beam search with
a discriminative model, word predictions are re-
placed by a binary correctness probability which
is trained discriminatively.

4.1 Transition-Based Neural Network
Parsing

In DINN, the neural network is used to estimate
the conditional probabilities of a transition-based
statistical parsing model.

4.1.1 The Probabilistic Parsing Model
In shift-reduce dependency parsing, a parser con-
figuration consists of a stack P of words, the
queue Q of words and the partial labelled depen-
dency trees constructed by the previous history of
parser actions. The parser starts with an empty

stack P and all the input words in the queue Q.
It stops when it reaches a configuration with an
empty queue Q, with any words left on the stack
then being attached to ROOT. We use an arc-eager
algorithm, which has 4 actions that all manipulate
the word s on top of the stack P and the word q
on the front of the queue Q: Left-Arcr adds a de-
pendency arc from q to s labelled r, then popping
s from the stack. Right-Arcr adds an arc from s to
q labelled r. Reduce pops s from the stack. Shift
shifts q from the queue to the stack. For exact de-
tails, see Titov and Henderson (2007b).

To model parse trees, we model the sequences
of parser actions which generate them. We take a
history based approach to model these sequences
of parser actions. So, at each step of the parse
sequence, the parser chooses between the set of
possible next actions using an estimate of its con-
ditional probability, where T is the parse tree,
D1· · ·Dm is its equivalent sequence of shift-
reduce parser actions and S is the input sentence:

P (T |S) = P (D1· · ·Dm|S)

=
∏

t

P (Dt|D1· · ·Dt−1, S)

Unlike in previous dependency parser evalua-
tions, the evaluation script for this shared task re-
quires that exactly one word be attached to the
ROOT node of the sentence. We implemented this
constraint by modifying the calculation of the set
of possible next actions. If an action will lead to
a parser configuration where all possible ways of
finishing the parse result in more than one word
being attached to ROOT, then that action is not a
possible action.

4.1.2 Estimating Action Probabilities
To estimate each P (Dt|D1· · ·Dt−1, S), we
need to condition on the unbounded sequences
D1· · ·Dt−1 and S. To condition on the words in
the queue, we use a bounded lookahead:

P (T |S) ≈
∏

t

P (Dt|D1· · ·Dt−1, wt
a1
· · ·wt

ak
)

where wt
a1
· · ·wt

ak
is the first k words on the front

of the queue at time t. At every Shift, one word
is moved from the lookahead onto the stack and
a new word from the input is added to the looka-
head.

To estimate the probability of a decision at time
t conditioned on the history of actionsD1· · ·Dt−1,

229

Figure 1: DINN computations for one decision

we use a recurrent neural network to induce hid-
den representations of the parse history sequence.
The relevant information about the parse history
at time t is encoded in the hidden representation
vector ht, of size d.∏

t

P (Dt|D1· · ·Dt−1, wt
a1
· · ·wt

ak
) =

∏
t

P (Dt|ht)

This model is depicted in Figure 1. The hidden
representation at time t is computed from selected
previous hidden representations, plus pre-defined
features. The model defines a set of link types c ∈
C which select previous states tc<t and connect
them to the current hidden layer ht via the hidden-
hidden weights W c

HH . The model also defines a
set of features f ∈ F calculated from the previous
decision and the current queue and stack, which
are connected to the current hidden layer via the
input-hidden weights WIH :

ht = σ(
∑
c∈C

htcW c
HH +

∑
f∈F

WIH(f, :))

where σ is the sigmoid function andW (i, :) is row
i of matrix W .

The probability of each decision is estimated
with a softmax layer (a normalised exponential)
with outputs for all decisions that are possible at
this step, conditioned on the hidden representa-
tion.

P (Dt=d|ht) =
eh

tWHO(:,d)∑
d′ eh

tWHO(:,d′)

whereWHO is the weight matrix from hidden rep-
resentations to the outputs.

4.1.3 Hidden and Input Features
C and F are the only hand-coded parts of the
model. Because C defines the recurrent connec-
tions in the neural network, it is responsible for

passing information about the unbounded parse
history to the current decision. Because RNNs
are biased towards learning correlations which are
close together in the connected sequence of hidden
layers, we exploit this bias by making the structure
of the neural network match the structure of the
output parse. This is achieved by including previ-
ous states in C if they had a word on the top of the
stack or front of the queue which are also relevant
to the current decision. In the version we use in
this experiment, we use a minimal set of these link
types, specified in section 5.

The input features F are typical of any statis-
tical model. But in the case of neural networks,
it is common to decompose the parametrisation
of these features into a matrix for the feature role
(e.g. front-of-the-queue) and a vector for the fea-
ture value (e.g. a word). This decomposition of
features overcomes feature sparsity, because the
same value vector can be shared across multiple
roles. Word embedding vectors are the most com-
mon example of this decomposition.

Unlike in the previous versions of the parser,
Yazdani and Henderson (2015) added feature de-
compositions in the definition of the input-to-
hidden weights WIH .

WIH(f, :) = Wemb.(val(f), :)W role(f)
HH

Every row in Wemb. is an embedding for a fea-
ture value, which may be a word, lemma, POS
tag, or dependency relation. val(f) is the index
of the value for feature role role(f), for exam-
ple the particular word that is at the front of the
queue. The matrix W role(f)

HH is the feature role ma-
trix, which maps the feature value embedding to
the role-value feature vector for the given feature
role role(f). For simplicity, we assume here that
the size of the embeddings and the size of the hid-
den representations of the DINN are the same. In
this way, the parameters of the embedding matrix
Wemb. is shared among various feature input link
types role(f), which can improve the model in the
case of sparse features f .

We train our own word embeddings within the
parsing model, using only the parsed training data.
We tried initialising with Facebook embeddings
on a sample of languages, but random initialisa-
tion worked better.

Unlike Yazdani and Henderson (2015), we did
not cache any features, either in testing or in train-
ing. Caching can have a big impact on speed, but

230

it has not been shown to improve accuracies.

4.1.4 Discrimination of Correct Partial
Parses

Unlike in the previous generative models, the
above formulas for computing the probability of
a parse make independence assumptions, in that
words to the right of wt

ak
are assumed to be inde-

pendent of Dt. And even for words in the looka-
head, it can be difficult to learn correlations with
the unstructured lookahead string. If a discrimi-
native model uses normalised estimates for deci-
sions, then once a wrong decision is made there is
no way for the estimates to express that this de-
cision has lead to a structure that is incompatible
with the current or future lookahead string (see
Lafferty et al. (2001) for more discussion). For
this reason, there is no obvious way to make effec-
tive use of beam search for a normalised discrimi-
native model.

To overcome this problem, DINN estimates a
correctness probability after every Shift action.
This output is trained to discriminate correct from
incorrect parse prefixes, using the same hidden
representation as used to predict parser actions,
as depicted in Figure 1. A beam search is then
used to consider multiple possible partial parses
so that the correctness probability can be used to
select between them. The total score of a parse is
the multiplication of the probabilities of all its ac-
tions with the correctness probabilities at the shift
of each word. For more details on this technique,
see Yazdani and Henderson (2015).

5 Experimental Settings

The implementation of DINN uses a parameter
file to define the hidden-hidden connections, the
input-hidden features, training meta-parameters,
and various other parameters of the parser. We use
the same settings for all languages. For the official
submission, we used the following settings.

- We used a frequency cutoff for
words/lemmas of 3.

- We did not normalise the input string to low-
ercase.

- We always used all the available training and
development set.

- Search beam size is 10.
- Hidden layer size is 80.
- The size of the internally calculated embed-

dings is 50.

- Word embeddings are initialised randomly.

- We do not apply any feature caching.

- Validation occurs at every iteration.

- The configurations of the Input-to-Hidden
layer connections are as follows:

+ Look at 4 last elements in the stack and 4
next elements from the input (Except the
treebanks fr, ko, it partut, grc proiel, cu,
where we look at 5 last elements from
the stack.)

+ For each element, use all possible fea-
tures from UDPipe (except UPoS if
XPoS exists).

- The configurations of the Hidden-to-Hidden
layer connections are as follows:

Closest Current H-to-H
Queue Queue +
Top Top +
Queue Top +

In this specification of the hidden-to-hidden
connections, Queue refers to the front of the input
queue and Top refers to the top of the stack in the
parser configuration. This specification uses the
same simplified set of connections between hidden
states used in Yazdani and Henderson (2015). We
assume that the induced hidden features primarily
relate to the word on the top of the syntactic stack
and the word at the front of the queue, since these
are the words used in any action. To decide which
previous state’s hidden features are most relevant
to the current decision, we look at these words in
the current parser configuration. For each such
word, we look for previous states where the top
of the stack or the front of the queue was the same
word. If more than one previous state matches,
then the hidden vector of the most recent one is
used. If no state matches, then no connection is
made.

5.1 Training
One aspect of the current implementation which
is basically unchanged from ten years ago is the
training protocol. Learning rates and weight de-
cay regularisation rates are reduced during train-
ing whenever there is a decrease in accuracy on the
development set, and early stopping is used to pre-
vent overtraining. Training and development splits
are those provided by the shared task. The devel-
opment set is also used to select which iteration’s

231

Language abbr. dev. LAS test LAS Rank /33
Ancient Greek grc 54.98 54.56 15
Ancient Greek-PROIEL grc proiel 63.30 62.83 18
Arabic ar 63.37 64.17 23
Basque eu 62.73 62.47 26
Bulgarian bg 82.46 83.50 18
Catalan ca 82.88 82.83 24
Chinese zh 52.51 54.89 25
Croatian hr 72.80 73.78 27
Czech cs 83.36 82.52 18
Czech-CAC cs cac 82.07 81.35 23
Czech-CLTT cs cltt 63.98 69.16 22
Danish da 69.94 69.43 27
Dutch nl 73.75 67.70 22
Dutch-LassySmall nl lassysmall 68.84 73.97 22
English en 75.69 75.09 22
English-LinES en lines 73.03 72.68 21
English-ParTUT en partut 71.97 71.78 25
Estonian et 53.32 52.67 26
Finnish fi 64.38 63.93 27
Finnish-FTB fi ftb 75.69 76.26 8
French fr 83.74 79.85 21
French-ParTUT fr partut 17.85 30
French-Sequoia fr sequoia 76.35 76.36 25
Galician gl 76.04 75.93 23
Galician-TreeGal gl treegal 2.76 30
German de 72.76 69.59 16
Gothic got 57.47 57.72 21
Greek el 76.93 77.80 23
Hebrew he 58.93 55.36 24
Hindi hi 87.20 86.80 17
Hungarian hu 53.81 50.95 27
Indonesian id 68.33 69.45 26
Irish ga 4.30 30
Italian it 84.01 85.05 19
Japanese ja 73.22 71.85 23
Kazakh kk 1.00 29
Korean ko 57.39 61.08 18
Latin la 5.72 31
Latin-ITTB la ittb 69.00 75.81 18
Latin-PROIEL la proiel 55.28 54.07 22
Latvian lv 60.06 59.28 22
Norwegian-Bokmaal no bokmaal 82.37 82.44 20
Norwegian-Nynorsk no nynorsk 80.73 79.34 21
Old Church Slavonic cu 62.80 62.45 20
Persian fa 75.74 75.86 23
Polish pl 80.32 79.83 14
Portuguese pt 81.83 79.74 22
Portuguese-BR pt br 84.75 84.00 21
Romanian ro 77.27 77.34 23
Russian ru 73.03 72.03 22
Russian-SynTagRus ru syntagrus 83.78 83.89 23
Slovak sk 73.70 73.30 18
Slovenian sl 80.31 81.32 14
Slovenian-SST sl sst 4.37 30
Spanish es 81.92 79.96 22
Spanish-AnCora es ancora 81.63 81.26 23
Swedish sv 71.86 76.06 20
Swedish-LinES sv lines 73.07 73.82 18
Turkish tr 48.42 47.91 18
Ukrainian uk 7.87 30
Urdu ur 75.37 76.01 20
Uyghur ug 9.29 27
Vietnamese vi 39.14 35.77 25
MEAN 71.17 62.83

Table 1: DINN and Universal Dependencies treebanks - official results.

232

model to use in testing. Recent advances in opti-
misation methods for neural networks — such as
AdaGrad and mini-batch – are obvious modifica-
tions to compare against the reported results.

To deal with small treebanks without develop-
ment sets, we use a fixed training protocol devel-
oped by looking at the training of models with
other small training sets. We run for a total of 8 it-
erations and changed the learning rate and weight
decay values every other iteration.

5.2 Dealing with surprise languages and
other small datasets

To build a model for the surprise languages, we
use simple cross-lingual techniques. For the offi-
cial test phase, we identified the most similar lan-
guages to the surprise language with a string-based
technique, concatenated the treebanks, trained and
tested on the surprise languages.

The string-based technique constructs a list of
words for each language. We used the sample
data for the surprise language and the training data
for the languages for which we have enough re-
sources. Call these languages with big data sets B.
We denote T as the set of lists of words of B, and
t is a word in T . For a given surprise language, we
calculate the similarity score S for each t. We treat
two words as similar if and only if the first three
characters of these two words are identical and the
edit distance between these two words is less than
or equal to 1. We choose the language that has the
best S for training our model for the surprise lan-
guage. This procedure yields the following sim-
ilar languages for training. We call them source
languages.

Buryat: Russian (rus syntagrus), Turkish (tr)
Upper Sorbian: Czeck (cs), Norwegian (no bokmaal)
Kurmanji: Spanish (es), Turkish (tr)
North Sami: Czech (cs), Finnish (fi ftb)

To train a parser for the surprise language, we
concatenate the datasets for the source languages
with three copies of the dataset for the target lan-
guage. Because our frequency threshold is three,
this means that all words in the target language
dataset are included in the vocabulary. Then we
trained a parser on this concatenated dataset, us-
ing the surprise language corpus also as a devel-
opment set.

In addition to the surprise languages, there
are other languages whose available data is just
enough for a small training set without any de-
velopment set. For the submitted test run, we did

Language Abbrev. LAS rank
Buryat bxr 22.59 16
Kurmanji kmr 22.20 22
North Sami sme 23.99 21
Upper Sorbian hsb 48.50 18
Mean on surprise languages 29.32

Table 2: DINN and Universal Dependencies tree-
banks - official results on surprise languages.

Language Abbrev. LAS rank
Arabic-PUD ar pud 42.61 25
Czech-PUD cs pud 79.17 18
English-PUD en pud 78.22 18
Finnish-PUD fi pud 64.91 24
French-PUD fr pud 74.93 9
German-PUD de pud 67.76 15
Hindi-PUD hi pud 51.31 10
Italian-PUD it pud 83.28 21
Japanese-PUD ja pud 76.21 16
Portuguese-PUD pt pud 73.01 17
Russian-PUD ru pud 67.22 16
Spanish-PUD es pud 75.90 22
Swedish-PUD sv pud 68.92 21
Turkish-PUD tr pud 29.01 25
Mean on PUD treebanks 66.60

Table 3: DINN and Universal Dependencies tree-
banks - official results on PUD Treebanks.

not do anything special for these datasets (other
than the training schedule discussed above), train-
ing parsing models on the individual datasets. But
in subsequent experiments we tried treating them
in the same way as surprise languages, with much
improved results, discussed below.

6 Test Phase Results

Evaluation was run on the provided TIRA plat-
form (Potthast et al., 2014) using the data provided
by the organisers (Nivre et al., 2017b), but blind to
us, as described in the introduction. The results of
our submission are shown in the next three tables.
Accuracy by LAS is shown in Table 1. Accuracy
on surprise languages is shown in Table 2. Accu-
racy on parallel UD data is shown in Table 3.

6.1 Analysis of results
Our results are 25th over the 33 participants glob-
ally, 22nd on the large treebanks only, 19th on the
PUD treebanks only, 30th on the small treebanks
with only 6% accuracy (see below), 20th on sur-

233

Training runtimes Testing runtimes
Language abbr. T/s NUI UTH DPT W/s
Ancient Greek grc 0.0714 14 3.18 177 125.056
Ancient Greek-PROIEL grc proiel 0.0663 25 6.84 99 137.899
Arabic ar 0.2698 144 65.56 259 116.753
Basque eu 0.1001 66 9.90 175 137.686
Bulgarian bg 0.1360 57 19.17 84 191.536
Catalan ca 0.1998 23 16.75 404 139.807
Chinese zh 0.3020 13 4.36 71 178.352
Croatian hr 0.0990 56 11.84 93 156.269
Czech cs 0.1256 26 62.14 1130 140.959
Czech-CAC cs cac 0.1615 43 45.29 87 125.425
Czech-CLTT cs cltt 0.2688 10 0.35 110 94.373
Danish da 0.0835 58 5.90 69 149.739
Dutch nl 0.3163 16 17.33 80 143.225
Dutch-LassySmall nl lassysmall 0.2697 14 6.33 75 140.667
English en 0.0829 17 4.91 163 154.282
English-LinES en lines 0.0931 12 0.85 127 134.661
English-ParTUT en partut 0.1037 105 3.30 79 154.975
Estonian et 0.1613 129 13.08 73 165.795
Finnish fi 0.0842 137 39.16 118 155.000
Finnish-FTB fi ftb 0.1797 20 14.96 86 182.837
French fr 0.1297 19 9.95 289 123.758
French-ParTUT fr partut 0.1226 8 0.17
French-Sequoia fr sequoia 0.0829 429 22.05 63 158.937
Galician gl 0.1402 15 1.33 177 168.232
Galician-TreeGal gl treegal 0.1183 8 0.16
German de 0.0853 124 41.47 80 154.350
Gothic got 0.0484 32 1.46 60 168.567
Greek el 0.1107 14 0.72 63 160.937
Hebrew he 0.1074 132 20.64 68 167.765
Hindi hi 0.0929 9 3.09 213 165.338
Hungarian hu 0.1308 168 5.55 69 165.478
Indonesian id 0.1072 127 16.93
Irish ga 0.1166 8 0.15
Italian it 0.1049 16 5.99 79 150.734
Italian-ParTUT it partut 0.1165 22 0.78 83 166.349
Japanese ja 0.1336 242 64.33
Kazakh kk 0.0968 8 0.01
Korean ko 0.1734 35 7.42 58 191.345
Latin la 0.2819 8 0.84
Latin-ITTB la ittb 0.1741 146 111.61 80 129.138
Latin-PROIEL la proiel 0.1206 30 14.27 86 143.756
Latvian lv 0.2741 18 3.17 60 168.800
Norwegian-Bokmaal no bokmaal 0.1099 174 83.38 222 163.824
Norwegian-Nynorsk no nynorsk 0.1375 83 44.94 190 164.474
Old Church Slavonic cu 0.0403 17 0.78 54 187.037
Persian fa 0.4894 18 11.74 112 141.357
Polish pl 0.1520 46 11.84 53 193.623
Portuguese pt 0.6852 10 15.86 83 130.735
Portuguese-BR pt br 0.5102 13 17.81 191 168.215
Romanian ro 0.6079 15 20.37 126 135.508
Russian ru 0.2192 14 3.28 81 146.630
Russian-SynTagRus ru syntagrus 0.1073 19 27.66 804 147.297
Slovak sk 0.0888 16 3.35 72 172.778
Slovenian sl 0.1882 13 4.40 86 163.523
Slovenian-SST sl sst 0.0917 8 0.44
Spanish es 0.2132 15 12.60 271 137.089
Spanish-AnCora es ancora 0.2073 99 81.54 367 142.605
Swedish sv 0.1406 77 12.94 63 155.508
Swedish-LinES sv lines 0.2144 15 2.45 120 137.183
Turkish tr 0.1115 148 16.90 79 126.722
Ukrainian uk 0.1356 8 0.26
Urdu ur 0.3030 7 2.38 101 144.366
Uyghur ug 0.1000 8 0.02
Vietnamese vi 0.1536 317 18.93 67 171.851
MAX 429 111.61 1130.000 193.623
MEAN 0.1727 16.83 152.389 152.576

Table 4: Training and testing runtimes. T/s: Training time per sentence; NUI: Number of useful itera-
tions; UTH: Useful training time (hours); DPT: Development parsing time (seconds); W/s: Words/sec.

234

Model Training Testing
Training set Dev. set LAS LAS deproj LAS LAS deproj DINN Official LAS

FrenchParTUT fr+ fr partut fr 85.08 85.09 78.14 78.14 17.85
GalicianTreeGal gl+gl treegal gl 75.88 75.88 60.94 60.94 2.76
Irish ga+it partut it partut 75.99 75.99 59.44 59.44 4.30
Kazakh kk+ja ja 93.10 93.10 18.03 18.03 1.00
Latin la+grc grc 55.64 56.86 43.22 43.59 5.72
SlovenianSST sl+sl sst sl 81.09 81.52 47.91 47.99 4.37
Ukrainian lv+uk lv 62.84 62.94 59.64 59.64 7.87
Uyghur ug+bg bg 83.40 83.49 29.66 29.66 9.29
Mean on small treebanks 76.63 76.86 49.62 49.68 6.64

Table 5: Small treebanks as surprise language, Run 5.1 UD PMor (20/05).

prise languages. They are rather firmly in the bot-
tom third, around 22nd-25th place. They rarely
beat the baseline. They are well above the base-
line or close to it (above or below) for twelve tree-
banks (Fi ftp, 8th, well above; fr pud, 9th/33, well
above; grc, 15th, just under; hi, 17th, just above;
hi pud, 10th, well above; it, 19th; ja pud, 16th just
below; ko, 18th, well above; la ittb, 18th, same;
pl, 14th, above; sk, 18th, above; sl, 14th a little
above.)

There are a number of treebanks where the sub-
mitted parser does very poorly (fr partut, 17%; ga,
4%; gl treegal, 2.75%; kk, 1%; la, 6%; sl sst, 4%;
ug, 9%; uk, 8%). These are all small treebanks
with no development set, which we treated in the
same way as all other treebanks. As discussed
in the post-test results section, treating these tree-
banks with the same approach that we used for sur-
prise languages yielded instead results on-average
43% LAS better.

6.2 Resources used

Table 4 shows the training and parsing times, cal-
culated on the training and development sets, re-
spectively. Our shared task submission was pre-
pared primarily by one computer science MSc stu-
dent.

7 Post-Test Results

In the post-test results, we aim to increase the per-
formance on the small treebanks, and correct er-
rors in the submitted system.

7.1 Postprocessing, if any

In the submitted parser, we overlooked the need
to deprojectivise the output of the parser. In the
post-test results, we run the Malt parser deprojec-
tivisation routine on the output of the DINN parser
before doing evaluation. Deprojectivisation makes
no or little difference for most languages, but there

is an improvement on some. Improvements range
from zero to 1.3% LAS score, with an average im-
provement of 0.16%. We report some deprojec-
tivisation results on small treebanks in Table 5.

7.2 Dealing with small treebank languages

In the test phase, we train on small treebanks.
Given that our results were particularly unsatisfac-
tory on small treebanks, in the post-test phase, we
tried a different technique: we treated small tree-
banks like surprise languages.

For small treebanks, we identified the best
source language by exhaustively searching all the
possible languages. As with surprise languages,
we then concatenated three copies of the small
treebank to the larger treebank and trained a parser
on this combined dataset. Table 5 shows the tree-
bank configurations and results on the develop-
ment set and test set. This new method raises the
total average score of our parser by 4.20% LAS.

8 Conclusions and Future Work

With this submission, we have shown how a neural
network dependency parser whose main architec-
ture is largely unchanged from ten years ago per-
forms with respect to the state of the art. These re-
sults can serve as a baseline for future work eval-
uating to what extent recently proposed methods
have a measurable impact on neural network de-
pendency parser accuracy.

Acknowledgements

We would like to thank Corentin Ribeyre for his
help in getting the endeavour started and the Lan-
guage and Communication Network at the univer-
sity of Geneva for support. We also thank Ma-
jid Yazdani for his help understanding the original
code base.

235

References
James Henderson. 2003. Inducing history representa-

tions for broad coverage statistical parsing. In Pro-
ceedings of the 2003 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics on Human Language Technology - Vol-
ume 1. Association for Computational Linguistics,
Stroudsburg, PA, USA, NAACL ’03, pages 24–31.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and label-
ing sequence data. In Proceedings of the Eigh-
teenth International Conference on Machine Learn-
ing. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, ICML ’01, pages 282–289.
http://dl.acm.org/citation.cfm?id=645530.655813.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006.
Maltparser: A data-driven parser-generator for de-
pendency parsing. In Proceedings of the Fifth In-
ternational Conference on Language Resources and
Evaluation (LREC-2006). pages 2216–2219.

Joakim Nivre et al. 2017a. Universal Dependencies
2.0. LINDAT/CLARIN digital library at the Insti-
tute of Formal and Applied Linguistics, Charles Uni-
versity, Prague, http://hdl.handle.net/
11234/1-1983. http://hdl.handle.net/11234/1-
1983.

Joakim Nivre et al. 2017b. Universal Dependencies
2.0 CoNLL 2017 shared task development and test
data. LINDAT/CLARIN digital library at the Insti-
tute of Formal and Applied Linguistics, Charles Uni-
versity, Prague, http://hdl.handle.net/
11234/1-2184. http://hdl.handle.net/11234/1-
2184.

Martin Potthast, Tim Gollub, Francisco Rangel, Paolo
Rosso, Efstathios Stamatatos, and Benno Stein.
2014. Improving the reproducibility of PAN’s
shared tasks: Plagiarism detection, author iden-
tification, and author profiling. In Evangelos
Kanoulas, Mihai Lupu, Paul Clough, Mark Sander-
son, Mark Hall, Allan Hanbury, and Elaine Toms,
editors, Information Access Evaluation meets Mul-
tilinguality, Multimodality, and Visualization. 5th
International Conference of the CLEF Initiative
(CLEF 14). Springer, Berlin Heidelberg New York,
pages 268–299. https://doi.org/10.1007/978-3-319-
11382-1 22.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceed-
ings of the 10th International Conference on Lan-
guage Resources and Evaluation (LREC 2016). Por-
torož, Slovenia, publisher = European Language Re-
sources Association, isbn = 978-2-9517408-9-1.

Ivan Titov and James Henderson. 2007a. Fast and ro-
bust multilingual dependency parsing with a gen-
erative latent variable model. In Proceedings

of the CoNLL Shared Task Session of EMNLP-
CoNLL 2007. Association for Computational Lin-
guistics, Prague, Czech Republic, pages 947–
951. http://www.aclweb.org/anthology/D/D07/D07-
1099.

Ivan Titov and James Henderson. 2007b. A latent vari-
able model for generative dependency parsing. In
Proceedings of the 10th International Conference
on Parsing Technologies. Association for Compu-
tational Linguistics, Stroudsburg, PA, USA, IWPT
’07, pages 144–155.

Majid Yazdani and James Henderson. 2015. Incremen-
tal recurrent neural network dependency parser with
search-based discriminative training. In Proceed-
ings of the Nineteenth Conference on Computational
Natural Language Learning. Association for Com-
putational Linguistics, Beijing, China, pages 142–
152. http://www.aclweb.org/anthology/K15-1015.

Daniel Zeman, Filip Ginter, Jan Hajič, Joakim Nivre,
Martin Popel, Milan Straka, and et al. 2017. CoNLL
2017 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies. In Proceedings of
the CoNLL 2017 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies. Associa-
tion for Computational Linguistics, pages 1–20.

236

