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Abstract

This paper is concerned with whether
deep syntactic information can help sur-
face parsing, with a particular focus on
empty categories. We design new al-
gorithms to produce dependency trees in
which empty elements are allowed, and
evaluate the impact of information about
empty category on parsing overt elements.
Such information is helpful to reduce the
approximation error in a structured pars-
ing model, but increases the search space
for inference and accordingly the estima-
tion error. To deal with structure-based
overfitting, we propose to integrate disam-
biguation models with and without empty
elements, and perform structure regular-
ization via joint decoding. Experiments on
English and Chinese TreeBanks with dif-
ferent parsing models indicate that incor-
porating empty elements consistently im-
proves surface parsing.

1 Introduction

In the last two decades, there was an increas-
ing interest in producing rich syntactic annota-
tions that are not limited to surface analysis. See,
among others, (Callmeier, 2000; Kaplan et al.,
2004; Clark and Curran, 2007; Miyao and Tsu-
jii, 2008; Zhang et al., 2016). Such analysis,
e.g. deep dependency structures (King et al.,
2003), is usually coupled with grammars un-
der deep formalisms, e.g. Combinatory Cate-
gorial Grammar (CCG; Steedman, 2000), Head-
driven Phrase-Structure Grammar (HPSG; Pollard
and Sag, 1994) and Lexical-Functional Grammar
(LFG; Bresnan and Kaplan, 1982). Although deep
grammar formalisms allow information beyond
local construction to be constructed, it is still not

clear whether such additional information is help-
ful for surface syntactic analysis. This is partly
because analysis grounded on different grammar
formalisms, e.g. HPSG and CFG, are not directly
comparable.

In the Government and Binding (GB; Chom-
sky, 1981) theory, empty category is a key con-
cept bridging S-Structure and D-Structure, due to
its possible contribution to trace movements. Fol-
lowing the linguistic insights underlying GB, a tra-
ditional dependency analysis can be augmented
with empty elements, viz. covert elements (Xue
and Yang, 2013). See Figure 1 for an example.
The new representation provides a considerable
amount of deep syntactic information, while keep-
ing intact all dependencies of overt words. Inte-
grating both overt and covert elements in one uni-
fied representation provides an effective yet light-
weight way to achieve deeper language under-
standing beyond surface syntax1. Even more im-
portant, this modest way to modify tree analysis
makes possible fair evaluation of the influence of
deep syntactic elements on surface parsing.

We study graph-based parsing models for this
new representation with a particular focus on the
impact of information about the covert on parsing
the overt. The major advantage of the graph-based
approach to dependency parsing is that its con-
strained factorization enables the design of poly-
nomial time algorithms for decoding, especially
for projective structures. Following GB, an empty
element can be only a dependent. Furthermore,
the number and distribution of empty elements in
one sentence is highly constrained. These prop-
erties makes polynomial time decoding for joint
empty element detection and dependency parsing
still plausible. To exemplify our idea, we design
novel second- and third-order algorithms for the

1 In this paper, we arguably call dependencies among
overt words only surface analysis.
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But it ∅1 is n’t clear how long GM would be willing ∅2 to fight Ford for Jaguar ∅3

root

Figure 1: An example from PTB. The dependency structure is according to Stanford Dependency
(de Marneffe et al., 2006). “∅” denotes an empty element. “∅1” indicates an expletive construction; “∅2”
indicates that the subject for fight, i.e. GM, is located in another place; “∅3” indicates a wh-movement.

new problem.

The influence of incorporating empty elements
is twofold. On the one hand, the extra informa-
tion enriches the structural information of the out-
puts, which is important to reduce the approxi-
mation error in a structured prediction problem.
On the other hand, predicting empty elements in-
creases the search space for decoding, and thus in-
creases the difficulty of parameter estimation for
disambiguation. Our experiments on English Penn
TreeBank (PTB; Marcus et al., 1993) and Chinese
TreeBank (CTB; Xue et al., 2005) shows that the
second effect is prominant. The accuracy of pre-
dicting dependencies among overt words some-
times declines slightly.

To ensure that predicting the empty elements
helps parse the overt, we need to reduce the new
estimation error. To this end, we propose to inte-
grate scores from parsing models with and with-
out empty elements and perform joint decoding.
The intuition is to leverage parameters estimated
without empty elements as a backoff, which ex-
hibit better generalization ability. We evaluate two
joint decoders: One is based on chart merging and
the other is based on dual decomposition. Ex-
periments demonstrate that information about the
covert improves surface analysis in this way. Ac-
curacy evaluated using parsing models with differ-
ent factorizations and on data sets from different
languages is consistently improved. Especially,
for those sentences in which there is no empty el-
ement, accuracy is improved too. This highlights
the fact that empty category can help reduce the
approximation error for surface analysis.

The remaining part of the paper is organized as
follows. Section 2 is a brief introduction to the
problem. Section 3 describes existing algorithms
for parsing for overt words only, while Section 4
gives the details of our new algorithms for parsing
with empty elements. Section 5 describes the de-

tails of the joint models as well as the decoding al-
gorithms. Section 6 presents experimental results
and empirical analyses. Section 7 concludes the
paper.

2 Syntactic Analysis with Empty
Category

In GB, empty categories are an important piece of
machinery in representing the syntactic structure
of a sentence. An empty category is a covert nomi-
nal element that is unpronounced, such as dropped
pronouns and traces of dislocated elements. In
treebanks, empty categories have been used to in-
dicate long-distance dependencies, discontinuous
constituents, and certain dropped elements (Mar-
cus et al., 1993; Xue et al., 2005). Together with
labeled brackets and function tags, they make up
the full syntactic representation of a sentence.

Empty category is one key concept bridging S-
Structure and D-Structure, given that they contain
essential information to trace movements, i.e. the
transformation procedure to convert a D-Structure
to an S-Structure. When representing empty cate-
gories in dependency trees, we can use a null sym-
bol to depict the idea that there is a mental cate-
gory at the level being represented. See Figure 1
for an example.

Detecting empty elements is important to the
interpretation of the syntactic structure of a sen-
tence. For example, Chung and Gildea (2010)
reported preliminary work that has shown a pos-
itive impact of automatic empty element detec-
tion on statistical machine translation. There are
three strategies to find empty categories. Dienes
and Dubey (2003) introduced a model that utilizes
clues from word forms and POS tags to predict the
existence of empty categories. In their method,
syntactic parsing was treated as a next-step task
and therefore had no influence on finding empty
elements. Johnson (2002) and Xue and Yang
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(2013) proposed to identify empty categories after
syntactic parsing. Different from the above pre-
processing strategy, their post-processing models
can not use information about empty category to
improve parsing. Cai et al. (2011) introduced an
integrated model, where empty category detection
and phrase-structure parsing are combined in a
single model. They, however, did not report any
improvement for parsing.2

Seeker et al. (2012) evaluted all above strate-
gies to include empty nodes in dependency pars-
ing for German and Hungarian. To predict both
empty nodes and dependency relations, they en-
riched the information encoded in dependency la-
bels. They showed that both pre-processing and
integrated strategies failed to leverage empty cat-
egories to improve parsing. Especially, their pre-
processing method significantly descreased pars-
ing accuracy.

Although empty categories are very important
in theory, it is still unclear that they can help pars-
ing in practice.

3 The Existing Parsing Algorithms

Data-driven dependency parsing has received an
increasing amount of attention in the past decade.
Such approaches, e.g. transition-based (Yamada
and Matsumoto, 2003; Nivre, 2008; Andor et al.,
2016) and graph-based (McDonald, 2006; Tor-
res Martins et al., 2009; Lei et al., 2014) models
have attracted the most attention of dependency
parsing in recent years. A graph-based system ex-
plicitly parameterizes models over substructures
of a dependency tree, and formulates parsing as
a Maximum Spanning Tree problem (McDonald
et al., 2005). A number of dynamic program-
ming (DP) algorithms have been designed. Here
we summarize the design of two widely used al-
gorithms for second- and third-order factorization,
since it is the basis of our new algorithms.

3.1 Algorithm 1: Sibling Factorization

Eisner (1996) introduced a widely-used DP algo-
rithm for first-order parsing. Their algorithm in-
cludes two interrelated types of DP structures: (1)
complete spans, which consist of a head-word and
its descendents on one side, and (2) incomplete
spans, which consist of a dependency and the re-
gion between the head and modifier. To include

2 Comparing their numeric results with other papers’, we
find that their model does not result in improved parsing.
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Figure 2: The DP structures and derivations of the
standard sibling algorithm. Complete spans are
depicted as triangles, incomplete spans as trape-
zoids, and sibling spans as rectangles. A new de-
pendency is created by applying the last rule. Es-
pecially, the score associated with the last rule is
determined by a sibling part. For brevity, we elide
the right-headed versions.
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Figure 3: The modified construction rule for the
tri-sibling algorithm.

second-order sibling parts, McDonald and Pereira
(2006) extended Eisner’s algorithm with a third
structure, viz. (3) sibling spans, which represent
the region between successive modifiers of same
head. The second-order algorithm visits all the
spans from bottom to top, finding the best com-
bination of smaller structures to form a new one.
Each type of span is created by recursively com-
bining two smaller, adjacent spans. The DP struc-
tures and their constructions are specified graphi-
cally in Figure 2.

3.2 Algorithm 2: Tri-sibling Factorization

It is easy to extend the second-order sibling factor-
ization to parts containing multiple siblings. For
example, Koo and Collins (2010) introduced tri-
sibling factorization in which a triple of three suc-
cessive edges on the same side. Here, we consider
parsing for tri-sibling factorization only. To this
end, we augment the incomplete span structure
with an internal index. The modified construction
rule is specified graphically in Figure 3. Note that
the presentation is slightly different from Koo and
Collins’s.
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h ∅1 n
... ...

∅2

a h1 ∅1 ∅2 ∅3 ∅4 h2

... ... ...

Figure 4: Prototypes of structures related to
empty categories.

4 The New Algorithms

We propose three novel algorithms for the new
parsing problem. We only consider projective
structures. For sake of concision, we call an edge
with an empty child empty edge, and call other
edges normal ones. Not only normal edges but
also empty edges do not cross with each other. We
illustrate several properties of empty elements that
are fundamental requirements of our algorithms,
and then give details of our new algorithms.

4.1 Properties of empty elements
Two theoretical and empirical properties of empty
elements results in the design of exact parsing al-
gorithms for simultaneously predicting dependen-
cies as well detecting empty elements.

1. According to GB, an empty element cannot
be regarded as a head word.

2. There are very limited number of successive
empty elements in between two successive
overt words. Therefore, we can treat all suc-
cessive empty elements governed by same
head as one word. We can use the label as-
sociated to the corresponding empty edge to
distinguish how many empty nodes are there.

According to the first property, we have two
prototype structures of empty nodes and their as-
sociated edges. If there are two empty elements
that are governed by the same head, the overt
words in between them must be their siblings or
dominated by their siblings. We graphically show
this case as the upper figure in Figure 4. If there
is a sequence of successive empty elements in be-
tween two overt words, the prototype structure is
shown as the bottom figure in Figure 4.

Now we consider the emprical coverage of the
second property on PTB and CTB. The coverage
is evaluated using sentences in the training sets (as

Length English Chinese
1 54800 13115
2 2534 385
3 8 18

Total 57342 13518

Table 1: Coverage relative to the number of suc-
cessive empty elements that have the same head.

defined in Section 6). We show the statistics in
Table 1. The length indicates the number of suc-
cessive empty elements that are governed by the
same overt word. At most three empty elements
are next to each other.

4.2 Algorithm 3: Partial Sibling Model

4.2.1 DP Structures

Now we consider parsing with empty category de-
tection by extending Algorithm 1. We consider
six DP structures when we construct a tree with
empty elements on a given span [i, k] of vertices.
See Figure 5 for graphical visualization. The first
two are adapted in concord with Algorithm 1, and
we introduce four new DP structures, transformed
from incomplete constituent, which can manipu-
late the empty nodes. These new DP structures are
explained below. Without loss of generality, we
only illustrate the left-headed versions.

Overt-outside Incomplete Span. The right-
most word must be an overt word.

Overt-both Incomplete Span. Both the right-
most mode and the inner sibling of incomplete
spans are overt words. An incomplete span struc-
ture is associated with an edge that crosses the
whole span. We also care about its left sibling,
and thus record it using an extra index. We call
this sibling the inner sibling.

Covert-inside Incomplete Span. The rightmost
word must be an overt word, while the inner sib-
ling of incomplete span is a covert word.

Covert-ouside Incomplete Span. The right-
most word must be a covert word, while the inner
sibling of incomplete span is an overt word.

Note that we already combine all successive
empty nodes as one, so there is no covert-both in-
complete span.
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Figure 5: Graphic representations of new DP
structures and their derivations of Algorithm 3.
For brevity, we elide the right-headed versions.

4.2.2 Construction Rules
Figure 5 provides a graphical specification of the
construction of all six DP structures. The follow-
ing is the explaination for each construction rule.

1. The rightmost child of the head in a com-
plete span may be an empty node. If so, the
empty node must located at the boundary, be-
cause no empty node can be a head. There-
fore a complete span itself is a covert-outside
incomplete span. Otherwise, the rightmost
child separates the complete span into an
overt-outside incomplete span and another
smaller complete span.

2. A sibling span is decomposed in the same
way to Algorithm 1.

3. An overt-outside incomplete span is the ex-
tension of the incomplete span from the old
algorithm. We consider two cases according
to the type of the inner sibling. So it is ei-
ther an overt-both or a covert-inside incom-
plete span.

4. Like a standard incomplete span in Algo-
rithm 1, an overt-both incomplete span is

made of an overt-outside incomplete span
and a sibling span. A normal edge is created
during the construction.

5. A covert-inside incomplete span is built from
a covert-outside incomplete span and a com-
plete span in the opposite direction rather
than a sibling span. This is because the empty
node does not have any child. A normal edge
is also created here.

6. A covert-outside incomplete span is made up
of an overt-outside incomplete span, an adje-
cent complete span and a new covert word.
In this step, we add a new empty element as
well as an empty edge.

4.2.3 Complexity

The set of complete or sibling spans has O(n2) el-
ements, while the set of each type of incomplete
spans has O(n2) elements. Therefore, the space
requirement is of O(n2). To build a new DP struc-
ture in any type, we either change the type of an
existing DP structure or search for the best posi-
tion to separate the whole structure into two parts.
The second case is worse and needs time ofO(n3).
As a result, Algorithm 3 runs in time of O(n3).

4.3 Algorithm 4: Full Sibling Model

Now consider the difference between Algorithm 1
and 3. It is easy to figure out that not all sibling
factors summed by Algorithm 1 are included by
Algorithm 3. Specifically, if two normal edges that
are adjacent to each other (say e1 and e2) are in-
serted with an empty edge, e1 and e2 are taken as a
sibling part by Algorithm 1 but not 3. Now we are
going to modify Algorithm 3 to include all such
sibling parts. To this end, we modify the covert-
inside span structure as well as its the construction
rule. In particular, we explictly utilize the index of
the inner child provided by a covert-inside span.
Figure 6 gives a specification.

rml

=

ml
+

rm+ 1
[covert-inside span]

Figure 6: The modified construction rule for overt-
both incomplete span in Algorithm 4. For brevity,
we elide the right-headed versions.
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Figure 7: Graphic representations of new DP
structures and their derivations of Algorithm 5.
For brevity, we elide the right-headed versions.

The modification of the construction rule for the
covert-inside incomplete span increases the com-
plexity. The time and space requirements of Al-
gorithm 4 are O(n4) and O(n3) respectively, be-
cause we must consider the position of the inner
sibling, viz. m, in Figure 6.

4.4 Algorithm 5: Partial Tri-sibling Model

Previous work shows that it is relatively easy to ex-
tend the second-order sibling factorization to parts
containing multiple siblings for standard parsing.
It is similar when empty elements are taken into
account. Adding the index of one more inner mod-
ifier to all incomplete span structures allows tri-
sibling features to be calculated. We sketch the
idea in Figure 7.

We add one more index to all the four incom-
plete DP structures in Algorithm 3. The time
and space complexity are increased by a factor of
O(n). The analysis of the complexity of Algo-
rithm 5 is similar to Algorithm 3. In short, Algo-
rithm 5 runs in time O(n4) with a space require-
ment ofO(n3). We can also extend Algorithm 5 to
a full version, like what we have done for sibling
models. The time complexity will go up toO(n5),
which makes the algorithm somehow impractical.

5 Structure Regularization via Joint
Decoding

We can see from the definition of the extended al-
gorithms that the search space for decoding is sig-
nificantly increased. This results in a side effect
for practical parsing. Given the limit of available
annotations for training, searching for more com-
plicated structures in a larger space is harmful to
the generalization ability in structured prediction
(Sun, 2014). Incorporating empty elements sig-
nificantly increases the difficulty for parameter es-
timation, and therefore it is harder to find a good
disambiguation model. To control structure-based
overfitting, we propose a new way to perform
structure regularization: combining the two score
functions learned from models with and without
empty elements.

We formalize the idea as follows. Consider
a sentence s = w1w2 · · ·wn. We denote the
index set of all possible dependencies as I =
{(i, j)|i, j ∈ {1, · · · , n}, i 6= j}. A dependency
parse then can be represented as a vector

y = {y(i, j) : (i, j) ∈ I}

where y(i, j) = 1 if there is an arc i → j in
the graph, 0 otherwise. Let Y denote the set of
all possible y. We use another index set I ′ =
{(i, j)|i, j ∈ {1, · · · , n+ 12}}, where i > n in-
dicates an empty node. Then a dependency parse
with empty nodes can be represented as a vector
similar to y:

z = {z(i, j) : (i, j) ∈ I ′}.

Let Z denote the set of all possible z. Assume
that f : Y → R and g : Z → R assign scores
to parse trees without and with empty elements. A
reasonable model to integrate f and g is to find the
optimal parse by solving the following optimiza-
tion problem:

max. λf(y) + (1− λ)g(z)
s.t. y ∈ Y, z ∈ Z

y(i, j) = z(i, j), ∀(i, j) ∈ I
(1)

λ is a weight for combining scores. We use the
validation data to get an appropriate value for λ3.

3Given the similarity of the parsing models with and with-
out empty elements, λ = 0.5 usually achieves optimal per-
formance.
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1 u(0) ← 0
2 for k ← 0..T do
3 y ← arg maxy∈Y(f(y) +

∑
i,j u(i, j)y(i, j))

4 z ← arg maxz∈Z(g(z)−∑
i,j u(i, j)z(i, j))

5 if ∀(i, j) ∈ I, y(i, j) = z(i, j) then
6 return z
7 else
8 u(k+1) ← u(k) − α(k)(y − z)
9 return z

Figure 8: Joint decoding based on dual decompo-
sition.

5.1 Chart Merging
The optimization problem (1) can be solved using
Algorithm 3 to 5. For example, if we try to com-
bine models coupled with Algorithm 1 and 3, or
Algorithm 1 and 4, we can merge the local scores
of all sibling parts and then apply Algorithm 4 for
solutions. Note that Algorithm 3 here cannot pro-
duce the exact solution. If we try to combine mod-
els coupled with Algorithm 2 and 5, we can use an
algorithm of which the time complexity is O(n5).
We have mentioned such an algorithm at the end of
Section 4.4. Similar to sibling factorization, Algo-
rithm 5 can only produce approximate solutions.

5.2 Dual Decomposition
The chart merging method can be applied to al-
gorithms that have highly coherent DP structures.
Dual decomposition is an alternative yet more
flexible method for solving the optimization prob-
lem (1). Heterogeneous models can be combined,
and for the majority of input sentences exact solu-
tions can be found in a few iterations. We sketch
the solution as follows.

The Lagrangian of (1), i.e. L(y, z; u), is

f(y) + g(z) +
∑

(i,j)∈I
u(i, j)(y(i, j)− z(i, j))

where u is the Lagrangian multiplier. Then the
dual is

L(u) = max
y∈Y,z∈Z

L(y, z; u)

= max
y∈Y

(f(y) +
∑

(i,j)∈I
u(i, j)y(i, j))

+ max
z∈Z

(g(z)−
∑

(i,j)∈I
u(i, j)z(i, j))

We instead try to find the solution for minu L(u).
By using a subgradient method for this optimiza-

#{Sent} #{Overt} #{Covert}
En train 38667 909114 57342

test 2336 54242 3447
Ch train 8605 193417 13518

test 941 21797 1520

Table 2: Numbers of sentences, overt and covert
elements in training and test sets.

tion problem, we have another joint decoding al-
gorithm, as shown in Figure 8.

6 Experiments

6.1 Data Sets
We conduct experiments on both English and Chi-
nese treebanks. In particular, PTB and CTB are
used. Because PTB and CTB are phrase-structure
treebanks, we need to convert them into depen-
dency annotations. To do so, we use the tool pro-
vided by Stanford CoreNLP to process PTB, and
the tool provided by Xue and Yang (2013) to pro-
cess CTB 5.0. We use gold-standard POS to derive
features for disambiguation.

To simpify our experiments, we preprocess the
obtained dependency tree in the following way.

1. We combine successive empty elements with
identical head into one new empty node
which is still linked to the common head
word.

2. Because the high-order algorithm spends is
very expensive, we only use relatively short
sentence. Here we only keep sentences less
than 64 tokens.

3. We focus on unlabeled parsing.

The statistics of the data after cleaning is shown
in Table 2

We use standard training, validation, and test
splits to facilitate comparisons. Accuracy is mea-
sured with unlabeled attachment score for all overt
words (UASo): the percentage of overt words with
the correct head. We are also concerned with the
prediction accuracy for empty elements. To evalu-
ate performance on empty nodes, we consider the
correctness of empty edges. We report the percent-
age of empty words in right slot with correct head.
The i-th slot in the sentence means that the posi-
tion immediately after the i-th concrete word. So
if we have a sentence with length n, we get n+ 1
slots.
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funi(X):
X.w, Y.p, X.w ◦X.p
fbi(X,Y ):
X.wp ◦ Y.w, X.wp ◦ Y.p, X.w ◦ Y.wp, X.p ◦
Y.wp, X.wp ◦ Y.wp
fcontext(X,Y ):
X.p◦Y.p◦X1.p◦Y−1.p, X.p◦Y.p◦X−1.p◦
Y−1.p, X.p ◦ Y.p ◦ X1.p ◦ Y1.p, X.p ◦ Y.p ◦
X−1.p ◦ Y1.p
X.p ◦Y.p ◦Z.p, Z is token between X and Y
fsib(X,Y ):
X.w ◦ Y.w, X.w ◦ Y.p, X.p ◦ Y.w, X.p ◦ Y.p
fsib(X,Y, Z):
X.p ◦ Y.p ◦ Z.p
ftsib(X,Y, Z,W ):
X.w◦Y.w◦Z.p◦W.p,X.w◦Y.p◦Z.w◦W.p,
X.w◦Y.p◦Z.p◦W.w,X.p◦Y.w◦Z.w◦W.p,
X.p◦Y.w◦Z.p◦W.w,X.p◦Y.p◦Z.w◦W.w,
X.w ◦Y.p◦Z.p◦W.p, X.p◦Y.w ◦Z.p◦W.p,
X.p◦Y.p◦Z.w ◦W.p, X.p◦Y.p◦Z.p◦W.w

Table 3: Feature template functions.

6.2 Statistical Disambiguation
In the context of data-driven parsing, we still need
an extra disambiguation model for building a prac-
tical parser. As with many other parsers, we em-
ploy a global linear model. To estimate parame-
ters, we utilize the averaged perceptron algorithm
(Collins, 2002). Developing features has been
shown crucial to advancing the state-of-the-art in
dependency parsing. We adopt features from pre-
vious work.

We refer to the head/child of the arc as h/c, the
k-th inner split point as mk, and the grand point
as g. We list features selected by different algo-
rithm as follows, and all following features should
be concatenated with direction and distance of the
arc.

• arc features: funi(h),
funi(c), fbi(h, c), fcontext(h, c).

• sibling features: fsib(c,m0), fsib(h, c,mk).

• tri-sibling features: fsib(h, c,m1),
ftsib(h, c,m,m1).

6.3 Results of Individual Models
Table 4 lists the accuracy of individual models
coupled with different decoding algorithms on the
test sets. We focus on the prediction for overt

Algo English Chinese
1 91.73 89.16
3 91.70 (−0.03) 89.20 (+0.04)
4 91.72 (−0.01) 89.28 (+0.12)
2 92.23 90.00
5 92.41 (+0.18) 89.82 (−0.18)

Table 4: UASo of different individual models on
test data. The upper and bottom blocks present
results obtained by sibling and tri-sibling models
respectively.

Algo English Chinese
CM 1+3 91.94 (+0.21) 89.53 (+0.37)

1+4 91.88 (+0.15) 89.44 (+0.28)
DD 1+3 91.96 (+0.23) 89.53 (+0.37)

1+4 91.94 (+0.21) 89.53 (+0.37)
CM 2+5 92.60 (+0.37) 90.35 (+0.35)
DD 2+5 92.71 (+0.48) 90.38 (+0.38)

Table 5: UASo of different joint decoding mod-
els on test data. “CM” and “DD” are short for
joint decoders based on chart merging and dual
decomposition respectively. The upper and bot-
tom blocks present results obtained by sibling and
tri-sibling models respectively. All improvements
are statistically significant.

words only. Models coupled with Algorithm 1, 3
and 4 are second-order models, while with 2 and
5 third-order ones. When we take into account
empty categories, more information is available.
The empirical results suggest that deep linguis-
tic information does not necessarily help surface
analysis.

6.4 Results of Joint Decoding

Table 5 lists the accuracy of different joint de-
coding models on the test sets. We can see that
the joint decoding framework is effective to deal
with structure-based overfitting. This time, the
accuracy of analysis for overt words is consis-
tently improved across a wide range of condi-
tions. Especially, the third-order model is im-
proved more. We use the Hypothesis Tests method
(Berg-Kirkpatrick et al., 2012) to evaluate the im-
provements. When the p-value is set to 0.05, all
improvements in Figure 5 is statistically signifi-
cant.

We separate all sentences in test data set into
two subsets: One contains sentences that have no
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English Chinese
Algo −EC +EC −EC +EC

3 92.50 91.53 90.92 88.60
1+3 92.83 91.77 91.12 88.97

4 92.82 91.48 91.29 88.58
1+4 92.84 91.74 91.10 88.98

5 93.68 92.13 92.00 89.06
2+5 93.99 92.43 92.10 89.77

Table 6: UASo evaluated using different types of
sentences. Dual decomposition is used for joint
decoding.
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Figure 9: The exact decoding rate on development
data.

empty elements and the other contains other sen-
tences. The accuracy evaluated on the two sets
are summarized in Table 6. For those sentences
in which there is no empty element, accuracy is
improved as well. This indicates that empty cate-
gory can help reduce the approximation error for
surface analysis.

6.5 Efficiency of Joint Decoding

One thing worth noting is that the chart merging
method with an approximate decoder is compara-
ble to other more complex solutions that produce
exact or nearly exact results. Chart merging with
approximate decoders only modifies scores as-
signed to secord- or third-order parts, while keep-
ing intact the decoding procedure. As a result, the
efficiency of approximate chart merging is compa-
rable to individual models.

Dual decomposition-based joint decoder itera-
tively calls individual decoders. Due to the simi-
larity of models with and without empty elements,
this iteration procedure usually terminates very
fast. We calculate the percentage of finding ex-
act decoding below k iterations, and the result is
show in Figure 9. For most sentences, dual de-

composition practically gives the exact solutions
in a few iterations. One advantage relevant is that
such a decoder can integrate parsing models that
are somehow heterogeneous. Refer to (Koo et al.,
2010) for example.

7 Discussion and Conclusion

Can deep syntactic information help surface pars-
ing, which is the mainstream focus of NLP re-
search. In this paper, we investigate this topic
under the umbrella of Transformational Grammar,
GB in particular. We focused on empty category
augmented dependency analysis. We demonstrate
that on the one hand deep information helps re-
duce the approximation error for traditional (sur-
face) parsing, while on the other hand traditional
parsing helps reduce the estimation error for deep
parsing. Coupling surface and deep information
in an appropriate way is able to produce better
syntactic analysis. A natural avenue for further
research would be the integrating parsing models
under deep and shallow grammar formalisms.

In addition to empty category detection, empty
categories should be linked to an overt element if
possible. Take the second empty element in Fig-
ure 1 for example. The information about its exis-
tance is valuable, but knowing it acturally refers
to GM is more helpful. However, adding such
coreference information makes the syntactic rep-
resentation no long trees and thus brings along
new challenges for designing algorithms. How to
deal with empty category detection and resolution
in one unified model? It would be an interesting
topic for future investigation.
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