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Abstract

It is well-known that readers are less likely
to fixate their gaze on closed class syn-
tactic categories such as prepositions and
pronouns. This paper investigates to what
extent the syntactic category of a word in
context can be predicted from gaze fea-
tures obtained using eye-tracking equip-
ment. If syntax can be reliably predicted
from eye movements of readers, it can
speed up linguistic annotation substan-
tially, since reading is considerably faster
than doing linguistic annotation by hand.
Our results show that gaze features do dis-
criminate between most pairs of syntactic
categories, and we show how we can use
this to annotate words with part of speech
across domains, when tag dictionaries en-
able us to narrow down the set of potential
categories.

1 Introduction
Eye movements during reading is a well-
established proxy for cognitive processing, and it
is well-known that readers are more likely to fixate
on words from open syntactic categories (verbs,
nouns, adjectives) than on closed category items
like prepositions and conjunctions (Rayner, 1998;
Nilsson and Nivre, 2009). Generally, readers seem
to be most likely to fixate and re-fixate on nouns
(Furtner et al., 2009). If reading behavior is af-
fected by syntactic category, maybe reading be-
havior can, conversely, also tell us about the syn-
tax of words in context.

This paper investigates to what extent gaze data
can be used to predict syntactic categories. We
show that gaze data can effectively be used to dis-
criminate between a wide range of part of speech

(POS) pairs, and gaze data can therefore be used to
significantly improve type-constrained POS tag-
gers. This is potentially useful, since eye-tracking
data becomes more and more readily available
with the emergence of eye trackers in mainstream
consumer products (San Agustin et al., 2010).
With the development of robust eye-tracking in
laptops, it is easy to imagine digital text providers
storing gaze data, which could then be used to im-
prove automated analysis of their publications.
Contributions We are, to the best of our knowl-
edge, the first to study reading behavior of syntac-
tically annotated, natural text across domains, and
how gaze correlates with a complete set of syntac-
tic categories. We use logistic regression to show
that gaze features discriminate between POS pairs,
even across domains. We then show how gaze fea-
tures can improve a cross-domain supervised POS
tagger. We show that gaze-based predictions are
robust, not only across domains, but also across
subjects.

2 Experiment
In our experiment, 10 subjects read syntactically
annotated sentences from five domains.

Data The data consists of 250 sentences: 50
sentences (min. 3 tokens, max. 120 characters),
randomly sampled from each of five different,
manually annotated corpora: Wall Street Jour-
nal articles (WSJ), Wall Street Journal headlines
(HDL), emails (MAI), weblogs (WBL), and Twit-
ter (TWI). WSJ and HDL syntactically annotated
sentences come from the OntoNotes 4.0 release of
the English Penn Treebank.1 The MAI and WBL
sections come from the English Web Treebank.2

1catalog.ldc.upenn.edu/LDC2011T03
2catalog.ldc.upenn.edu/LDC2012T13
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Figure 1: Fixation probability boxplots across five
domains

The TWI data comes from the work of Foster et
al. (2011). We mapped the gold labels to the 12
Universal POS (Petrov et al., 2011), but discarded
the category X due to data sparsity.
Experimental design The 250 items were read
by all 10 participants, but participants read the
items in one of five randomized orders. Neither
the source domain for the sentence, nor the POS
tags were revealed to the participant at any time.
One sentence was presented at a time in black on a
light gray background. Font face was Verdana and
font size was 25 pixels. Sentences were centered
vertically, and all sentences could fit into one line.
All sentences were preceded by a fixation cross.
The experiment was self-paced. To switch to a
new sentence and to ensure that the sentence was
actually processed by the participant, participants
rated the immediate interest towards the sentence
on a scale from 1-6 by pressing the corresponding
number on the numeric keypad. Participants were
instructed to read and continue to the next sentence
as quickly as possible. The actual experiment was
preceded by 25 practice sentences to familiarize
the participant with the experimental setup.

Our apparatus was a Tobii X120 eye tracker
with a 15” monitor. Sampling rate was 120 Hz
binocular. Participants were seated on a chair ap-
proximately 65 cm from the display. We recruited

10 participants (7 male, mean age 31.30 ±4.74))
from campus. All were native English speakers.
Their vision was normal or corrected to normal,
and none were diagnosed with dyslexia. All were
skilled readers. Minimum educational level was
an ongoing MA. Each session lasted around 40
minutes. One participant had no fixations on a few
sentences. We believe that erroneous key strokes
caused the participant to skip a few sentences.

Features There are many different features for
exploring cognitive load during reading (Rayner,
1998). We extracted a broad selection of cognitive
effort features from the raw eye-tracking data in
order to determine which are more fit for the task.
The features are inspired by Salojärvi et al. (2003),
who used a similarly exploratory approach. We
wanted to cover both oculomotor features, such as
fixations on previous and subsequent words, and
measures relating to early (e.g. first fixation du-
ration) and late processing (e.g. regression desti-
nations / departure points and total fixation time).
We also included reading speed and reading depth
features, such as fixation probability and total fix-
ation time per word. In total, we have 32 gaze
features, where some are highly correlated (such
as number of fixations on a word and total fixation
time per sentence).

Dundee Corpus The main weakness of the exper-
iment is the small dataset. As future work, we
plan to replicate the experiment with a $99 eye
tracker for subjects to use at home. This will
make it easy to collect thousands of sentences,
leading to more robust gaze-based POS models.
Here, instead, we include an experiment with the
Dundee corpus (Kennedy and Pynte, 2005). The
Dundee corpus is a widely used dataset in re-
search on reading and consists of gaze data for
10 subjects reading 20 newswire articles (about
51,000 words). We extracted the same word-based
features as above, except probability for 1st and
2nd fixation, and sentence-level features (in the
Dundee corpus, subjects are exposed to multiple
sentences per screen window), and used them as
features in our POS tagging experiments (§3).

Learning experiments In our experiments, we
used type-constrained logistic regression with
L2-regularization and type-constrained (averaged)
structured perceptron (Collins, 2002; Täckström
et al., 2013). In all experiments, unless otherwise
stated, we trained our models on four domains and
evaluated on the fifth to avoid over-fitting to the
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Rank Feature % of votes

0 Fixation prob 19.0
1 Previous word fixated binary 13.7
2 Next word fixated binary 13.2
3 nFixations 12.2
4 First fixation duration on every word 9.1
5 Previous fixation duration 7.0
6 Mean fixation duration per word 6.6
7 Re-read prob 5.7
8 Next fixation duration 2.0
9 Total fixation duration per word 2.0

Table 1: 10 most used features by stability selec-
tion from logistic regression classification of all
POS pairs on all domains, 5-fold cross validation.
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Figure 2: Scatter plot of frequency and fixation
probability for content words (NOUN, VERB,
ADJ, NUM) and function words (PRON, CONJ,
ADP, DET, PRT)

characteristics of a specific domain. Our tag dic-
tionary is from Wiktionary3 and covers 95% of all
tokens.

3 Results
Domain differences Our first observation is that
the gaze characteristics differ slightly across do-
mains, but more across POS. Figure 1 presents the

3https://code.google.com/p/
wikily-supervised-pos-tagger/downloads/
list
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Figure 3: Error reduction of logistic regression
over a majority baseline. All domains

fixation probabilities across the 11 parts of speech.
While the overall pattern is similar across the five
domains (open category items are more likely to
be fixated), we see domain differences. For ex-
ample, pronouns are more likely to be fixated in
headlines. The explanation could lie in the dif-
ferent distributions of function words and content
words. It is established and unchallenged that
function words are fixated on about 35% of the
time and content words are fixated on about 85%
of the time (Rayner and Duffy, 1988). In our data,
these numbers vary among the domains according
to frequency of that word class, see Figure 2. Fig-
ure 2a shows that there is a strong linear correla-
tion between content word frequency and content
word fixation probability among the different do-
mains: Pearson’s ρ = 0.909. From Figure 2b,
there is a negative correlation between function
word frequency and function word fixation proba-
bility: Pearson’s ρ = −0.702.
Predictive gaze features To investigate which
gaze features were more predictive of part of
speech, we used stability selection (Meinshausen
and Bühlmann, 2010) with logistic regression
classification on all binary POS classifications.
Fixation probability was the most informative fea-
ture, but also whether the words around the word
is fixated is important along with number of fixa-
tions. In our binary discrimination and POS tag-
ging experiments, using L2-regularization or av-
eraging with all features was superior (on Twitter
data) to using stability selection for feature selec-
tion. We also asked a psycholinguist to select a
small set of relatively independent gaze features fit
for the task (first fixation duration, fixation proba-
bility and re-read probability), but again, using all
features with L2-regularization led to better per-
formance on the Twitter data.
Binary discrimination First, we trained L2-
regularized logistic regression models to discrim-
inate between all pairs of POS tags only using
gaze features. In other words, for example we
selected all words annotated as NOUN or VERB,
and trained a logistic regression model to discrim-
inate between the two in a five-fold cross valida-
tion setup. We report error reduction acc−baseline

1−baseline
in Figure 3.
POS tagging We also tried evaluating our gaze
features directly in a supervised POS tagger.4 We

4https://github.com/coastalcph/
rungsted
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SP +GAZE +DGAZE +FREQLEN +DGAZE+FREQLEN

HDL 0.807 0.822 0.822 0.826 0.843
MAI 0.791 0.831 0.834 0.795 0.831
TWI 0.771 0.787 0.800 0.772 0.793
WBL 0.836 0.854 0.858 0.850 0.861
WSJ 0.831 0.837 0.838 0.831 0.859

Macro-av 0.807 0.826 0.830 0.815 0.837

Table 2: POS tagging results on different test sets using 200 out-of-domain sentences for training.
DGAZE is using gaze features from Dundee. Best result for each row in bold face

trained a type-constrained (averaged) perceptron
model with drop-out and a standard feature model
(from Owoputi et al. (2013)) augmented with the
above gaze features. The POS tagger was trained
on a very small seed of data (200 sentences), doing
20 passes over the data, and evaluated on out-of-
domain test data; training on four domains, testing
on one. For the gaze features, instead of using to-
ken gaze features, we first built a lexicon with av-
erage word type statistics from the training data.
We normalize the gaze matrix by dividing with
its standard deviation. This is the normalizer in
Turian et al. (2010) with σ = 1.0. We condition
on the gaze features of the current word, only. We
compare performance using gaze features to us-
ing only word frequency, estimating from the (un-
labeled) English Web Treebank corpus, and word
length (FREQLEN).

The first three columns in Table 2 show, that
gaze features help POS tagging, at least when
trained on very small seeds of data. Error reduc-
tion using gaze features from the Dundee corpus
(DGAZE) is 12%. We know that gaze features cor-
relate with word frequency and word length, but
using these features directly leads to much smaller
performance gains. Concatenating the two fea-
tures sets leads to the best performance, with an
error reduction of 16%.

In follow-up experiments, we observe that aver-
aging over 10 subjects when collecting gaze fea-
tures does not seem as important as we expected.
Tagging accuracies on raw (non-averaged) data are
only about 1% lower. Finally, we also tried run-
ning logistic regression experiments across sub-
jects rather than domains. Here, tagging accura-
cies were again comparable to our set-up, suggest-
ing that gaze features are also robust across sub-
jects.

4 Related work
Matthies and Søgaard (2013) present results that
suggest that individual variation among (academ-
ically trained) subjects’ reading behavior was not
a greater source of error than variation within sub-
jects, showing that it is possible to predict fixations
across readers. Our work relates to such work,
studying the robustness of reading models across
domains and readers, but it also relates in spirit to
research on using weak supervision in NLP, e.g.,
work on using HTML markup to improve depen-
dency parsers (Spitkovsky, 2013) or using click-
through data to improve POS taggers (Ganchev et
al., 2012).

5 Conclusions
We have shown that it is possible to use gaze
features to discriminate between many POS pairs
across domains, even with only a small dataset and
a small set of subjects. We also showed that gaze
features can improve the performance of a POS
tagger trained on small seeds of data.
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