
Book Reviews

Time-constrained Memory: A Reader-based Approach to Text
Comprehension

Jean-Pierre Corriveau
(Carleton University)

Mahwah, NJ: Lawrence Erlbaum
Associates, 1995, xx+408 pp;
hardbound, ISBN 0-8058-1711-5, $79.95;
paperbound, ISBN 0-8058-1712-3, $34.50

Reviewed by
Arthur C. Graesser
The University of Memphis

The computational model proposed in this book is incompatible with any theory that
assumes that a single, invariant interpretation is built as a result of comprehending
a particular text. The book also challenges the claim that traditional formal theories
of syntax, semantics, and reasoning can adequately implement text comprehension
on a computer. Corriveau's computational model is called IDIOT, which stands for
"Idiosyncratically-Directed Interpretation of Text." According to IDIOT, the interpre-
tation of a text depends on the individual reader's knowledge and mental state at
a particular point in time. Therefore, the interpretation is generated by a mechanism
that is nondeterministic (i.e., it varies from person to person) and diachronic (i.e., it
varies across time).

The major assumptions of IDIOT are embraced by most contemporary models of
comprehension in cognitive psychology and discourse processing (Britton and Graesser
1996; Weaver, Mannes, and Fletcher 1995). In particular, most psychological models
assume that memory plays a critical role in constructing interpretations. Long-term
memory is a vast repository of knowledge units that get activated during comprehen-
sion, in a limited-capacity working memory (and short-term memory). Text interpre-
tation fluctuates among readers to the extent that readers have different knowledge
units in long-term memory and different spans of working memory. According to ID-
IoT, the activation and processing of the knowledge units interact in parallel, much
in the spirit of Minsky's Society of Mind (1986) and connectionist models. It takes a
nontrivial amount of time for some knowledge units to be activated and to complete
their processing steps; if the processing is not completed by some deadline temporal
duration, then a knowledge unit might not have any impact on the final interpreta-
tion of a text. Readers differ in their processing time parameters (such as learning rate,
activation rate, and memory decay rate), which also results in fluctuations in interpre-
tations among readers. Once again, these basic claims about memory and processing
time are adopted by many of today's researchers who develop psychological models
of reading and comprehension, so these researchers would applaud Corriveau's efforts
in the field of computational linguistics.

Corriveau uses IDIOT to simulate a broad spectrum of linguistic and discourse
phenomena: constructing syntactic trees, resolving the referents of nouns and pro-
nouns, determining the context-appropriate sense of an ambiguous lexical item, and

Computational Linguistics Volume 22, Number 2

generating knowledge-based bridging inferences. When IDIOT receives a sentence or a
short excerpt of two or three sentences (long texts are beyond its present capabilities),
a human user must declare what knowledge units it knows about and the values of
various parameters that refer to capacity and processing time. One or more interpre-
tations of the input text are produced by IDIOT, along with a trace of the processing
steps at different levels of linguistic and discourse analysis.

Unfortunately, it was sometimes difficult to determine where to assign credit or
blame when examining the model's output. When IDIOT produced interesting out-
put, was the success due to the knowledge units declared by the user, to particular
processing time parameters, or to components of IDioT's computational architecture?
This question could be answered by performing a systematic evaluation of the model
and a sensitivity analysis on the importance of various components. However, it was
beyond the scope of Corriveau's book to systematically evaluate the success of IDIOT.
He never reported data on the extent to which his model could handle a corpus of
naturalistic texts (on relevant evaluation criteria), nor did he fit the model to available
psychological data at a fine-grained level.

Some critics will fault Corriveau for skirting attempts to systematically evaluate
his model, whereas others will allow him some leeway in his early stages of model
development. In either case, the book is more of a "proof of concept" than evidence
of a decisive, successful model that has survived some critical tests.

This book makes two serious contributions to the scientific study of text compre-
hension. Regarding the first contribution, Corriveau covers theories of comprehension
in diverse fields, including computational linguistics, artificial intelligence, cognitive
psychology, cognitive science, and discourse processes. Whereas most researchers stay
encapsulated within their pet fields, Corriveau has the courage to adopt a more inter-
disciplinary stance. I was genuinely impressed with the scope of the work cited in this
book. Corriveau also critically evaluated the theories and foundational assumptions
in the various fields, but I was not uniformly impressed with the accuracy or depth
of these critiques. Regarding the second contribution, Corriveau has presented a de-
tailed computational model that specifies the representations and processes of readers
during text comprehension. The existing models in psychology have not implemented
all of the mechanisms of text comprehension on computer, whereas existing models
in computational linguistics and artificial intelligence are many steps removed from
psychological data and constraints. This book helps narrow the gap between cognitive
psychology and computation. As a next step, I encourage Corriveau to team up with
an accomplished researcher in cognitive psychology and discourse processing.

References
Britton, Bruce K. and Arthur C. Graesser,

editors. 1996. Models of Understanding Text.
Mahwah, NJ: Lawrence Erlbaum
Associates.

Minsky, Marvin. 1986. The Society of Mind.

New York: Simon and Schuster.
Weaver, Charles A., Suzanne Mannes, and

Charles R. Fletcher, editors. 1995.
Discourse Comprehension: Essays in Honor of
Walter Kintsch. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Arthur C. Graesser is a professor in the Departments of Psychology and Mathematical Sciences
at The University of Memphis. His research investigates cognitive models of comprehension,
knowledge representation, connected discourse, inference generation, and question answering.
He is an associate editor of the journal Discourse Processes. Graesser's address is: Department of
Psychology, The University of Memphis, Memphis, TN 38152; e-mail: a-graesser@memphis.edu

266

Book Reviews

The Trouble with Computers: Usefulness, Usability, and Productivity

Thomas K. Landauer
(University of Colorado)

Cambridge, MA: The MIT Press, 1995,
xiii+423 pp; hardbound, ISBN
0-262-12186-7, $27.50

Reviewed by
Harold Thimbleby
Middlesex University

The first computer was developed by Charles Babbage. It cost more than a locomotive
and did not work properly. Even though everyone tells us that computers are now
"more powerful," the basic story does not seem to have changed. Computer projects
are still costly and ineffective. Over the last few decades, industry has invested heavily
in computers, yet has shown flat, if not decreasing, productivity. Spreadsheets, inven-
tory control, management information systems--weren't they designed specifically for
industrial productivity?

You use computers. Are your programs as effective as you wished? Has your
research productivity gone up even when you take account of the time it takes to
get the programs working, and when you take into account the lost data when you hit
'OK' by mistake? And would you like to know how to make your use of computers
more effective?

When a paper is published in Computational Linguistics that relies on a computer,
do you believe it? If you think the authors have got a point, which you would like
to test, extend, or develop, can you do so easily by working with the same programs
as the original authors did? I have written to authors of papers (in other journals)
and asked if they could allow me to use their programs; I've often had replies that
are tantamount to admitting the programs do not exist in quite the way they were
written up in the published papers. Further, if you can get hold of and use the original
programs, do you have ways to check that they are valid? To what extent, then, do
computers contribute to the actual progress of computational linguistics rather than
to its imagined progress?

If the so-called performance enhancements that computers have achieved in the
last decade had been achieved in almost any other technology, such as land transport,
then the world would certainly have been transformed beyond recognition. Yet com-
puters have done no such thing. We may be bombarded with facts about how fast
they are, but they do not seem to get any more work done for us. Every year they
will get faster, as they have been doing since they were invented. Every year people
will buy more of them. Yet somehow the world will not become a better place (except
perhaps for the consultants and trainers).

Landauer's discussion in the first part of his book, and his analysis of all sides of
the arguments--for and against--is one of the most thorough and well written that
I have seen. He has certainly given me more ammunition for the battle of getting
computers to be used thoughtfully. Elsewhere there is remarkably little computer-
critical thought around. Take the Scientific American, which, as Landauer says, goes
all wild-eyed when dreaming about the future of computers in a way that it would
not with medicine or any other subject. Somehow the fantasies of the computerphiles,

267

Computational Linguistics Volume 22, Number 2

of utopia-just-around-the-corner (when computers become just a bit faster, or just a bit
smaller), infect even a usually rigorous, scientific journal.

Computers are hard to use effectively, and the main reason is that they allow
people to make gross errors that are hard to fix. A whole day's work can be zapped
with a misplaced mouse click. There are few other aids to modern life that are so
perverse!

A more quantified way of showing the scope for low productivity is the following
comparison: If you ask twenty expert typists to type a letter, the slowest takes about
30% longer than the fastest. Put a group of twenty word-processing typists onto word
processors, and the slowest takes six times as long as the fastest. In programming, the
comparisons are extreme: the slowest programmer (from a sample of twenty) takes
fifty times longer than the fastest. In other areas of human effort, say athletics, ratios
of performance across the same-sized groups of twenty subjects is about two. Apart
from anything else, the data suggest that if you select computer users at random,
productivity will be much worse than optimal.

Similar cynical thoughts have been expressed elsewhere: Clifford Stoll's Silicon
Snake Oil (1995), which is technological, and Stephen Talbott's The Future Does Not
Compute (1995), which is oddball and nonscientific (and hence argues some unfamiliar
points). Where Thomas Landauer shines through is, first, his discussion is more bal-
anced and academically sound, backed by empirical data and evaluation; second, he
tries to explain why; and, last, he promotes a recipe to solve the trouble.

Landauer's explanation is disappointing---especially after the careful fairness of
his arguments, after his recruitment of a wide-ranging literature--but close enough
to the truth: he says we love computers, so we use them even if they are not strictly
economically sound investments. I think there is more to it than that. Computers
are fashion accessories, and there is more to be said about exploitation by subtle
marketing: but if it boils down to love (and greed), which are hardly scientific or
technical concepts, how are we to plan and progress?

Landauer's recipe for improving system performance is the most important part
of his book. He has persuaded us that computers are a mess, and he has done so
carefully in a way that would persuade the most unrepentant technophiles. He has
tried to explain why we put up with computers. Now the rest of the book turns to
ways of avoiding low productivity and disasters.

It is well known that designers often design for themselves unless they have been
trained to realize that people are diverse, and that users are unlikely to be like them.
In computing, the design problem is exacerbated because designers, who are self-
selected to be computer competent, are typically many times better at using computers
than everyone else. In contrast, in any other common area of design--say, designing
chairs--the designers would be unlikely to have such special and distinctive skills that
marked them out as so different from everyone else. Who is so good at, say, sitting
that they might underestimate how hard everyone else finds using chairs? But what
is ridiculous in chairs is commonplace in computing. It is likely that researchers in
computational linguistics, to take just one speciality allied to computing, are not only
better at these subjects than most other people but are very much better. So to the
extent that we build programs for others to use even to advance our research--we
are probably not getting the best out of them because the users are so different from
US.

User-centered design is Landauer's way of improving productivity. As a general-
purpose acronym, UCD, Landauer means user-centered design, user-centered devel-
opment, and user-centered deployment. UCD is a way of solving human problems,
rather than concentrating too exclusively on technical problems--which the first half

268

Book Reviews

of the book has shown to be surprisingly counter-productive. UCD concentrates on
getting empirical data on how systems help (or hinder) people working with comput-
ers. He shows that the cost-benefit of UCD is very impressive: it is cheap and it is
effective.

The Trouble with Computers finishes with a personal view of "fantasy business sys-
tems," future systems designed, developed, and deployed in this way. By his own
admission, fantasizing is not enough, when you've just persuaded your readers to
collect empirical data! I did not find the examples impressive. In fact, they made it
more obvious that Landauer has forgotten theory.

The reason why it is so important to collect empirical data about how people use
computers and why recruiting these data to the design process has such dramatic
effects is, I suggest, because computer system design is typically a-theoretical, and
the people working with computers--despite Landauer's claims about their flair--
are relatively incompetent and unimaginative with respect to the complex computer
design task they undertake.

Consider this analogy: If buildings were built by decorators with no idea beyond
wall paint, no ideas about structural engineering, and no idea that one might sub-
contract, then empirical data about how buildings fail would help improve building
utility enormously. One would also be tempted, as UCD suggests, to build prototypes,
test them, and involve users in testing to help find the problems the so-called design-
ers missed. It would surely be easy to show how cost-effective UCD would be in this
imaginary world of bad design.

In safety-critical areas, such as medical applications, adequate testing may be im-
practical: the designs have to work well enough before they are delivered. Lengthy
testing might not exercise enough of a design to provide any significant data. And
that means systems have to be known to work well enough a priori--that is, by their
design being based in theory. Users are not going to be able to explore much of a
design or contribute much to the generality of the language-processing algorithms.
UCD, if you still want to call it that, has to be done in theory or in simulation by the
designers, not by using empirical data as a substitute for thinking.

UCD will still be necessary when programmers are more competent (or when
better theories are available to aid design); but in the meantime, programmers' com-
petence probably has a greater influence on why systems fail than any other single
factor.

The Trouble with Computers is a challenge to everyone who works with comput-
ers: first, that we can do better---embarrassed into action by Landauer's expos6 of
computer failure and under-achievement; secondly, that by developing theory we, as
active scientists developing computer systems and theories, can do better than users
can either express or expect.

To summarize: The Trouble with Computers is a good book. It should be read by
everyone who uses or buys computers. For people who design computer systems, or
who work in computational theories it is, more so, a challenge to do even better, for
I am sure we have a lot of catching up to do. If Thomas Landauer is right when he
would have us believe that we use computers because we love them, it is time we
made them worthy of our attention.

References
Stoll, Clifford. 1995. Silicon Snake Oil: Second

Thoughts on the Information Highway.
Doubleday.

Talbott, Stephen L. 1995. The Future Does Not
Compute: Transcending the Machines in Our
Midst. O'Reilly & Associates.

269

Computational Linguistics Volume 22, Number 2

Harold Thimbleby is Professor of Computing Research and Faculty of Technology Director of
Research at Middlesex University, London. He has over 200 publications, centering upon human-
computer interaction. Thimbleby's address is: Computing Science, Middlesex University, Bounds
Green Road, London, England Nll 2NQ; e-mail: harold@mdx.ac.uk; URL:
http://www.cs.mdx.ac.uk/harold

270

