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A pragmatic architecture for voice dialog machines aimed at the equipment repair problem has 
been implemented. This architecture exhibits a number of behaviors required for efficient human- 
machine dialog. These behaviors include: 

(1) 

(2) 

(3) 

(4) 

(5) 

problem solving to achieve a target goal 

the ability to carry out subdialogs to achieve appropriate subgoals and to pass 
control arbitrarily from one subdialog to another 

the use of a user model to enable useful verbal exchanges and to inhibit 
unnecessary ones 

the ability to change initiative from strongly computer controlled to strongly user 
controlled or to some level in between 

the ability to use context dependent expectations to correct speech recognition and 
track user movement to new subdialogs. 

The paper gives a description of the dialog theory, presents examples of its capabilities, and 
includes a detailed trace of one of those examples showing all significant mechanisms. The paper 
gives performance data for a series of 141 problem-solving dialogs carried out with human subjects. 

1. A Theory of Voice Dialog Systems 

This paper presents a theory of voice dialog systems that integrates into a single, 
self-consistent architecture a variety of capabilities necessary for successful dialog. 
These capabilities include problem solving, natural language input and output,  a user 
model, variable initiative, and the use of expectation for speech error correction and 
plan recognition. The theory revolves around a Prolog-style theorem-proving model 
with a variety of special features to accommodate the needs of a dialog system. The 
paper describes the target behaviors of the processor, the theory that achieves them, 
an implementation of the theory in a system to aid in electric circuit repair, and per- 
formance statistics gathered as human  subjects used it in a series of tests. 
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2. Target Behaviors 

The purpose of the architecture is to deliver to users in real time the behaviors needed 
for efficient human-machine dialog. Specifically, it is aimed at achieving the following: 

Convergence to a goal. Efficient dialog requires that each participant understand 
the purpose of the interaction and have the necessary prerequisites to cooperate in 
its achievement. This is the intentional structure of Grosz and Sidner (1986), the goal- 
oriented mechanism that gives direction to the interaction. The primary required fa- 
cilities are a problem solver that can deduce the necessary action sequences and a set 
of subsystems capable of carrying out those sequences. 

Subdialogs and effective movement between them. Efficient human dialog is usually seg- 
mented into utterance sequences, subdialogs, that are individually aimed at achieving 
relevant subgoals (Grosz 1978; Linde and Goguen 1978; Polanyi and Scha 1983; Reich- 
man 1985). These are called "segments" by Grosz and Sidner (1986) and constitute the 
linguistic structure defined in their paper. The global goal is approached by a series of 
attempts at subgoals each of which involves a set of interactions, the subdialogs. 

An aggressive strategy for global success is to choose the subgoals judged most 
likely to lead to success and carry out their associated subdialogs. As the system 
proceeds on a given subdialog, it should always be ready to drop it abruptly if some 
other subdialog suddenly seems more appropriate. This leads to the fragmented style 
that so commonly appears in efficient human communication. A subdialog is opened, 
leading to another, then another, then a jump to a previously opened subdialog, and 
so forth, in an unpredictable order until the necessary subgoals have been solved for 
an overall success. 

An accounting for user knowledge and abilities. Cooperative problem solving involves 
maintaining a dynamic profile of user knowledge, termed a user model. This concept 
is described, for example, in Kobsa and Wahlster (1988, 1989), Chin (1989), Cohen 
and Jones (1989), Finin (1989), Lehman and Carbonell (1989), Morik (1989), and Paris 
(1988). The user model specifies information needed for efficient interaction with the 
conversational partner. Its purpose is to indicate what needs to be said to the user to 
enable the user to function effectively. It also indicates what should be omitted because 
of existing user knowledge. 

Because considerable information is exchanged during the dialog, the user model 
changes continuously. Mentioned facts are stored in the model as known to the user 
and are not repeated. Previously unmentioned information may be assumed to be 
unknown and may be explained as needed. Questions from the user may indicate 
lack of knowledge and result in the removal of items from the user model. 

Change of initiative. A real possibility in a cooperative interaction is that the user's 
problem-solving ability, either on a given subgoal or on the global task, may exceed 
that of the machine. When this occurs, an efficient interaction requires that the machine 
yield control so that the more competent partner can lead the way to the fastest possible 
solution. Thus, the machine must be able to carry out its own problem-solving process 
and direct the actions to task completion or yield to the user's control and respond 
cooperatively to his or her requests. This is a variable initiative dialog, as studied by 
Kitano and Van Ess-Dykema (1991), Novick (1988), Whittaker and Stenton (1988), and 
Walker and Whittaker (1990). As a pragmatic issue, we have found that at least four 
initiative modes are useful: 

(1) directive. The computer has complete dialog control. It recommends a 
subgoal for completion and will use whatever dialog is necessary to 
obtain the needed item of knowledge related to the subgoal. 
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(2) suggestive. The computer still has dialog control, but not as strongly. The 
computer will make suggestions about the subgoal to perform next, but 
it is also willing to change the direction of the dialog according to stated 
user preferences. 

(3) declarative. The user has dialog control, but the computer is free to 
mention relevant, though not required, facts as a response to the user's 
statements. 

(4) passive. The user has complete dialog control. The computer responds 
directly to user questions and passively acknowledges user statements 
without recommending a subgoal as the next course of action. 

Expectation of user input. Since all interactions occur in the context of a current sub- 
dialog, the user's input is far more predictable than would be indicated by a general 
grammar for English. In fact, the current subdialog specifies the focus of the interac- 
tion, the set of all objects and actions that are locally appropriate. This is the attentional 
structure described by Grosz and Sidner (1986), and its most important function in our 
system is to predict the meaning structures the user is likely to communicate in an 
input. For illustration, the opening of a chassis cover plate will often evoke com- 
ments about the objects behind the cover; the measurement of a voltage is likely to 
include references to a voltmeter, leads, voltage range, and the locations of measure- 
ment points. 

T h u s  the subdialog structure provides a set of expected utterances at each point 
in the conversation, and these have two important roles: 

(1) 

(2) 

The expected utterances provide strong guidance for the speech 
recognition system so that error correction can be enhanced. Where 
ambiguity arises, recognition can be biased in the direction of 
meaningful statements in the current context. Earlier researchers who 
have investigated this insight are Erman et al. (1980), Walker (1978), Fink 
and Biermann (1986), Mudler and Paulus (1988), Carbonell and Pierrel 
(1988), Young (1990), and Young et al. (1989). 

The expected utterances from subdialogs other than the current one can 
indicate that a shift from the current subdialog is occurring. Thus, 
expectations are one of the primary mechanisms needed for tracking the 
conversation as it jumps from subdialog to subdialog. This is known 
elsewhere as the plan recognition problem, and it has received much 
attention in recent years. See, for example, Allen and Perrault (1980), 
Allen (1983), Kautz (1991), Litman and Allen (1987), Pollack (1986), and 
Carberry (1988, 1990). 

Systems capable of all of the above behaviors are rare, as has been observed by 
Allen et al. (1989): "no one knows how to fit all of the pieces together." An impressive 
early example along these lines is the MINDS system of Young et al. (1989). This 
system maintains an AND-OR goal tree to represent the problem-solving space, and 
it engages in dialog in the process of trying to achieve subgoals in the tree. A series 
of interactions related to a given subgoal constitute a subdialog, and expectations 
associated with currently active goals are used to predict incoming user utterances. 
These predictions are further sharpened by a user model and then are passed down 
to the signal-processing level to improve speech recognition. The resulting system 
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demonstrated dramatic improvements over performance levels that had been observed 
without such predictive capabilities. For example, the effective perplexity in one test 
was reduced from 242.4 to 18.3 using dialog level constraints, while word accuracy 
recognition was increased from 82.1 percent to 97.0 percent. 

In another dialog project, Allen et al. (1989) describe an architecture that con- 
centrates on representations for subdialog mechanisms and their interactions with 
sentence-level processing. Their mechanism uses the blackboard organization, which 
displays at a global level all pertinent information and has subroutines with specialty 
functions to update the blackboard. There are subroutines, for example, to do process- 
ing at the lexical, syntactic, and semantic levels, to handle referencing problems, to 
manage discourse structure and speech act issues, tense, and much more. A typical 
task for their system is to properly parse and analyze a given dialog. 

A third interesting project has produced the TINA system (Seneff 1992), which 
uses probabilistic networks to parse token sequences provided by a speech recognition 
system, SUMMIT, created by Zue et al. (1989). The networks and their probabilities are 
created automatically from grammatical rules and text samples input by the designer. 
Their main utility is to provide expectation for error correction as we do in our system. 
However, their expectation is primarily syntax-based while ours uses structure from 
all levels, subdialog (or focus-based), semantic, and syntactic. Their semantics is built 
directly into the parse trees and translated into SQL for access to a database. 

Our approach resembles that of Young et al. (1989), except that we employ Prolog- 
style rules for the knowledge base and the associated proofs for directing the goal- 
oriented behavior. This leads to the "missing axiom theory" we describe for processing 
discourse, and some rather simple mechanisms for employing the user model, for 
managing multiple subdialogs, and for creating and using expectation. Our theory 
also shows how variable initiative is built into the same simple architecture. Our 
implementation shows that the mechanisms are efficient enough to run in real time 
and sufficiently well designed to yield successful dialogs with humans. 

3. Sample Dialogs 

Many of the points discussed above are illustrated by the following excerpts from 
repair dialogs using our system. In the following example, the system is in direc- 
tive mode. It has determined that a particular knob should be set to 10 and then a 
voltage measurement should be made. The movement to subdialogs is indicated by 
indentation. 

1. Computer: 
2. User: 
3. Computer: 

4. User: 
5. Computer: 
6. User: 
7. Computer: 

8. User: 
9. Computer: 

10. User: 

Put the knob to one zero. 
Okay. 
What is the voltage between connector one two one 
and connector three four? 
I do not know. 

Locate the voltmeter. 
Done. 
Add a wire between the minus com hole on the 
voltmeter and the connector one two one. 
How do I do that? 

Connect the end of the black wire with the small 
plug to the minus corn hole on the voltmeter. 
Done. 
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11. Computer: Connect the end of the black wire with the large 
plug to connector one two one. 

12. User: Which knob? 
13. Computer: Near the top boundary and in the center is a green 

region. Now, in the middle right of this green 
region is the control knob. 

14. User: Okay. 
15. Computer: Put the knob to zero one. 
16. User: Done. 
17. Computer: Connect the end of the black wire with the large 

plug to connector one two one. 
18. User: Where is connector three four? 
19. Computer: Near the left boundary and toward the middle is a 

green region. Now, in the bottom center of this 
green region is connector three four. 

20. User: Okay. 
21. Computer: What is the voltage between connector one two one 

and connector three four? 
22. User: Zero. 

This dialog fragment is interesting in that it illustrates goal-oriented behavior while 
simultaneously jumping between subdialogs. The dialog also illustrates the effects of 
the user model. For example, the user model at the beginning of the dialog indicates 
that the user can find the knob (find(knob)). This assertion prevents the system from 
giving any explanation about the location of the knob. However, utterance 12 indicates 
an error in the current model and the system removes this assertion from the user 
model. This leads to a clarification subdialog explaining the position of the knob and 
a response from the user, "Okay." The user's affirmation then enables the system to 
add the assertion find(knob) back into the user model and proceed. 

The use of expectation can also be illustrated by the example. When the user is 
preparing to respond with utterance 2, the system expects the response to pertain to 
the command "Put the knob to one zero." The primary expectations are for an as- 
sertion that this request has been done or for a question about how to do this task. 
Consequently, speech recognition can be biased to accept this limited class of utter- 
ances. A different use of expectation appears in sentence 12, where local expectations 
were related to the connection of a wire. Here, local expectations failed but a previous 
expectation from sentence 1 is fulfilled. So control is returned to the previously active 
subdialog where the goal was to "Put the knob to one zero." 

The following dialog segment illustrates the behavior of the system in declarative 
mode. 

1. Computer: This is the circuit-fixit-shop. How may I help you? 
2. User: RSlll  is not working. 
3. Computer: I am familiar with that circuit. The LED is supposed to be 

displaying alternately flashing one and seven. 
4. User: There is no wire on one zero four. 
5. Computer: There is supposed to be a wire between connector 

one zero four and connector one zero two. 
6. User: The circuit is working. 
7. Computer: Glad to have been of assistance. Good-bye. 

Here the machine diagnoses as well as it can the current subdialog from user 
comments. Then it presents information it surmises may be helpful, specifically facts 
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from the currently active subdialog that are not in the user model. The user may 
ignore suggestions by following his or her own preferred dialog paths, as occurs in 
statements 4 and 6. In each case, the system tracks the selected topic and responds in 
an appropriate manner. 

4. Mechanisms for Achieving the Behaviors 

This paper presents a single self-consistent mechanism capable of achieving simulta- 
neously the above-described behavior. We will examine sequentially (1) a theory of 
task-oriented language, (2) an implementation of the subdialog feature, (3) a method 
for accounting for user knowledge, (4) mechanisms needed to obtain variable initia- 
tive, and (5) the implementation and uses of expectation. The section following this 
one will give a detailed example showing all of these mechanisms working together. 

4.1 A Theory of Task-Oriented Language 
The central mechanism of our architecture is a Prolog-style theorem-proving system. 
The goal of the dialog is stated in a Prolog-style goal and rules are invoked to "prove 
the theorem" or "achieve the goal" in a normal top-down fashion. If the proof succeeds 
using internally available knowledge, the dialog terminates without any interaction 
with the user. Thus it completes a dialog of length zero. More typically, however, the 
proof fails, and the system finds itself in need of more information before it can pro- 
ceed. In this case, it looks for so-called "missing axioms," which would help complete 
the proof, and it engages in dialog to try to acquire them. 

As an example, the system might have the goal of determining the position, up 
or down, of a certain switch swl. This might appear in the proof tree as 

observeposition(swl,X) *-- find(swl), reportposition(swl,X) 

That is, it is necessary to find swl and then to report its position X. It is possible that 
in the process of the interaction the user has both found the switch and reported its 
position and that both find(swl) and report position(swl,up) appear in the database. 
Then the system will achieve observeposition(swl,up) and answer its question with- 
out interaction with the user. It is also possible that the user has previously found the 
switch but not recently reported its position. Here theorem proving would succeed 
with the first goal, find(swl), but fail to find reportposition(swl,-). Then reportpo- 
sition(swl,X) would become a missing axiom and could be returned to the dialog 
controller for possible vocalization. The third possibility is that neither find(swl) or 
reportposition(swl,-) would exist in the database, in which case both could be sent to 
the controller as missing axioms for possible vocalization. (The decision as to whether 
to send a missing axiom to the controller depends on whether the axiom represents 
an answerable question by the user. The system maintains a mechanism for indicating 
what is reasonable to ask and what is not, as described below.) 

Thus our system is built around a theorem prover at its core, and the role of 
language is to supply missing axioms. Our system engages in dialog only for the 
purpose of enabling theorem proving, and voice interactions do not otherwise occur. 
(A later publication will propose other uses of voice interactions, but our current 
system uses them for only this purpose.) 

The user may not always respond with the desired information. He or she may 
respond with a request for a clarifcation such as "Where is the switch?" or with an 
unanticipated comment such as "There is no wire connected to terminal 102." Thus 
the theorem prover needs to be immensely more flexible than ordinary Prolog, and 
this is the topic of the next section. 
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4.2 Implementing the Subdialog Feature 
Instead of turning control over to a depth first policy, theorem proving in this sys- 
tem must allow for abrupt freezing of any proof and transfer of control to any other 
partially completed subproof or function of the system. The implementation of this 
was the IPSIM (Interruptible Prolog SIMulator) theorem prover, which can maintain 
a set of partially completed proofs and jump to the appropriate one as dialog pro- 
ceeds. 

The processing of IPSIM proceeds with normal theorem proving, but is interrupt- 
able in two ways. First, IPSIM may discover that there could be outside information 
that could be used to supply missing axioms, as described above. When this occurs, 
IPSIM can halt and pass control to the dialog controller, indicating an opportunity to 
engage in dialog. The dialog controller may choose to invoke the proposed interac- 
tion or it may select another action. Second, IPSIM may be interrupted by the dialog 
controller to inquire about proof status. In a real-time system, a theorem prover can 
never be released arbitrarily. Timing considerations by the controller may dictate the 
halting of a given proof and resorting to other action. 

Since voice dialog is always tied to proving a given subgoal, the set of all inter- 
actions related to that goal comprise a subdialog. The set of logical rules leading to 
the subgoal are, by definition, related to that subgoal, and the voice interactions will 
necessarily have the coherence that theorists (Hobbs 1979) have often discussed. 

The partial or completed proof of a subgoal is not erased or popped from any 
stack when processing moves to another part of the proof tree. This makes it possible 
to reopen any subdialog at a later time to clarify, revise, or continue that interaction. 
The reopening may be initiated either by the system because of a change in priorities 
in its agenda or by the user. 

Subdialogs are entered in several ways. First, normal theorem proving may create 
a new subgoal to be proved, and its related voice interactions will yield a subdialog. 
Second, the controller may halt an interaction that it deems unfruitful and send the 
system in pursuit of a new subgoal. Third, the user may initiate dialog on a new 
subgoal in ways that will be discussed below. 

4.3 Accounting for User Knowledge 
Theorem proving will often reach goals that can only be satisfied by interactions with 
the user. For example, if the machine has no means to manipulate some variable and 
the user does, the only alternative is to make a request of the user. It is necessary 
that the knowledge base store information related to what the user can be expected 
to do, and the system only should make requests that will be within this repertoire. 
Of course, the abilities of the user will depend on his or her level of expertise and 
experience in the current environment. Thus most users will know how to adjust a 
knob to a specified level even if they are novices; but they may be able to measure 
a voltage only after they have been told all of the steps at least once in the current 
situation. 

It is necessary to style outputs to the user to account for these variations, and 
the Prolog theorem-proving tree easily adapts to this requirement. The example above 
related to finding the position of a switch shows how this works. If the user knows, 
for example (according to the user model), how to find the switch, the model prevents 
the useless interaction related to finding the switch from occurring. If the user does 
not know (according to the user model) where the switch is, the model releases the 
system to so inform the user. The theory of user modeling thus is simply to specify 
user capabilities in the Prolog-style rules and let the natural execution of IPSIM select 
what to say or not say. 
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The user model must change continuously during a dialog as the interactions 
occur. Almost every statement will change the useVs knowledge base, and future 
interactions will be ill-conceived if the appropriate updates are not made. Acquisition 
of user model axioms is made from inferences based on user inputs. A description of 
the inferences is given below: 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

If the input indicates that the user has a goal to learn some information, 
then conclude that the user does not know about the information. 

If the input indicates that an action to achieve or observe a physical state 
was completed, then conclude that the user knows how to perform the 
action. 

If the input describes some physical state, then conclude that the user 
knows how to observe this physical state. In addition, if the physical 
state is a property, then infer that the user knows how to locate the 
object that has the property. 

If the input indicates that the user has not performed some primitive 
action, make the appropriate inference about the user's knowledge about 
how to perform this action. 

If the user has completed an action by completing each substep, then 
conclude that the user knows how to do the action. 

Infer that the user has intensional knowledge about a physical state if 
the user has knowledge on how to observe or achieve the physical state. 

Infer that the user has knowledge on how to observe a physical state if 
he or she has knowledge on how to achieve the physical state. 

The basic implementation of these rules is a "compute_inferences" predicate in Prolog 
that takes the meaning of the user's current utterance and causes inferences to be 
asserted into the axiom base. Here is an example from the Prolog code. It is the 
implementation of statement (2) given above: 

/* Inference 2: 
If we have learned that an action to achieve or observe a physical state was com- 
pleted, then conclude that the physical state has the appropriate status and that the 
user knows how to perform the action. */ 

compute_inferences(ProofNum,Meaning,_) :- 
Meaning = phys~state(prop(GoalAction,actionAttribute,done),true), 
( GoalAction = ach(phys_state(StateDes,TS)) ; 

GoalAction = obs(phys_state(StateDes,TS))), 
make_inference(ProofNum,phys~state(StateDes,TS),infer(Meaning)), 
makeAnference(ProofNum, mentaLstate(user, int_know~action(how_to_do( 

GoalAction)),true),infer(Meaning)). 

In typical dialogs, the user modeling system added a net of about 1.2 Prolog-style 
assertions to the user model per user utterance. There are both additions and deletions 
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occurring after each utterance, and this figure gives the average increase in assertions 
per user utterance. 

Formalizing a theory of what constitutes appropriate inferences could be a separate 
research project. What this research has contributed is a theory of usage for these 
inferences, which is usage by the theorem prover as it attempts to complete task 
goals. 

4.4 Mechanisms for Obtaining Variable Initiative 
Variable initiative dialog allows either participant to have control, and it allows the 
initiative to change between participants during the exchange. It also allows interme- 
diate levels of control where one participant may gently rather than strongly lead the 
interactions. 

A system can participate in variable initiative dialog if it properly manages (1) the 
selection of the current subdialog, (2) the level of assertiveness in its outputs, and (3) 
the interpretation of its inputs. We discuss each in the following paragraphs. 

Selection of Subdialog. The most important aspect of dialog control is the ability to 
select the next subdialog to be entered. Very strong control means that the participant 
will select the subdialog and will ignore attempts by the partner to vary from it. 
Weaker control allows the partner to introduce minor but not major variations from 
the selected path. Loss of control means that the partner will select unconditionally 
the next subgoal. 

In our system, the four implemented levels of initiative follow these guidelines: 

(1) Directive Mode. Unless the user explicitly needs some type of 
clarification, the computer will select its response solely according to its 
next goal for the task. If the user expresses need for clarification about 
the previous goal, this must be addressed first. No interruptions to other 
subdialogs are allowed. 

(2) Suggestive Mode. The computer will again select its response according 
to its next goal for the task, but it will allow minor interruptions to 
subdialogs about closely related goals. As before, user requests for 
clarification of the previous goal have priority. 

(3) Declarative Mode. The user has dialog control. Consequently, the user 
can interrupt to any desired subdialog at any time, but the computer is 
free to mention relevant, though not required, facts as a response to the 
user's statements. 

(4) Passive Mode. The user has complete dialog control. Consequently, the 
computer will passively acknowledge user statements. It will provide 
information only as a direct response to a user question. 

Level of Assertiveness of Outputs. The system must output statements that are com- 
patible with its level of initiative. This means that the output generator must have a 
parameter that enables the system to specify assertiveness. Examples of the request to 
"turn the switch up" at various levels of assertiveness are as follows: 

Turn the switch up. 
Would you [please] turn the switch up? 
Can you turn the switch up? 
The switch can be turned up. 
Turning the switch up is necessary. 

(command) 
(request) 
(indirect request) 
(statement of fact) 
(statement of fact) 
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Two examples of querying for the switch position are as follows: 

What is the switch position? 
I need to know the switch position. 

(request) 
(indirect request) 

Interpretation of Inputs. Inputs from a passive participant can be expected to be 
more predictable and well behaved than those from a directive one. Our system does 
not account for this effect at this time. The only implemented variation in behavior 
concerns the treatment of silence. The system may allow rather longer silences when 
it is in passive mode than when it is in directive mode. 

4.5 The Implementation and Uses of Expectation 
The response received after a given input is likely to be related to the currently active 
subdialog. If it is not, then it may be related to a nearby active subdialog or, with 
less probability, a more remote one. The expectation facility provides a list of expected 
meanings organized in a hierarchy, and it is used for two purposes: (1) If the incom- 
ing utterance is syntactically near the syntax for an expected meaning in the active 
subdialog, the expectation provides a powerful error-correction mechanism. (2) If the 
incoming utterance is not in the locally active subdialog, the expectations of other ac- 
tive subdialogs provide a means for tracing the movement to those subdialogs. (This 
is known as "plan recognition" in the literature. See, for example, Allen and Perrault 
(1980), Allen (1983) and Carberry (1990). Expectations are specified in GADL (Goal 
and Action Description Language) form, an internal language for representing pred- 
icates. For example, the expectation that the user is going to report the setting of a 
switch would be represented as 

obs(phys_state(prop(switchl,state, PropValue), TruthStatus)). 

Expectation of user responses provides a model of the attentional state described 
by Grosz and Sidner (1986). It contains the list of semantic structures that have mean- 
ing for the current subdialog and for other active subdialogs. For example, after the 
computer produces an utterance that is an attempt to have a specific task step S per- 
formed, there are expectations for any of the following types of responses: 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

A statement about missing or uncertain background knowledge 
necessary for the accomplishment of S. 

A statement about a subgoal of S. 

A statement about the underlying purpose for S. 

A statement about ancestor task steps of which accomplishment of S is a 
part. 

A statement about another task step which, along with S, is needed to 
accomplish some ancestor task step. 

A statement indicating accomplishment of S. 

The central pragmatic issues for the management of expectation are, what are the 
sources of expectation (or how is the expectation list created) and how is it used. The 
following paragraphs describe both. 
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Sources of expectation. The first source of expectation is the domain processor de- 
scribed below. One of the main tasks of this system is to supply the dialog ma- 
chine with debugging queries such as "What is the LED showing?" A secondary 
task is to associate with each such query a list of expected answers. Thus the query 
about the LED would yield as expectations some possible descriptions for the LED. 
These are called situation_specific_expectations. The domain processor also supplies situ- 
ation_related_expectations, which are not directly connected to the observation but which 
could naturally occur. For example, the LED query might also result in observations 
about the presence or absence of wires, the position of the power switch, and the 
presence or absence of a battery. 

The other source of expectations is the dialog_controller, also described below, which 
provides coordination for the complete system. The dialog controller manages a num- 
ber of generic rules related to dialog and can provide the associated expectations. For 
example, "What is the LED showing?" can represent the action "observe the value for 
the display property of the object LED." The associated task~specific_expectations would 
represent expectations based on this general notion with values for property and object 
instantiated to the situation values. Thus the task-specific expectations for the sample 
topic would include questions on the location of the object, on the definition of the 
property, and on how to perform the action. In addition, these expectations would 
include responses that can be interpreted as state descriptions of the relevant prop- 
erty. In general, they include potential questions and statements about subtasks of the 
current task. There are rules for 12 different generic actions (Smith 1991). The rules are 
based on a characterization of response types obtained during a Wizard-of-Oz study 
on the effects of restricted vocabulary (Moody 1988). 

The dialog controller also provides a broader class of expectations, called task- 
related expectations, which are based on general principles about the performance of 
actions. Example task-related expectations would include general requests for help 
or questions about the purpose of an action. Another important member of the task- 
related expectations are the expectations for topics that are ancestors of the current 
topic in the discourse structure. For example, the current topic could be the location 
of a connector, which could be a subtopic of connecting a voltmeter wire, which could 
be a subtopic of performing a voltage measurement. The task-related expectations for 
the location of this connector would include all the expectations related to the topics 
of connecting a voltmeter wire and performing a voltage measurement. 

Utilizing expectation. After the semantic expectations are computed, they are trans- 
lated into linguistic expectations according to grammatical rules. Once the linguistic 
expectations are produced, they are labeled with an expectation cost, which is a measure 
of how strongly each is anticipated at the current point in the dialog. The situation- 
specific expectations are the most strongly anticipated, followed by the other three 
types. Meanings output by the minimum distance parsing algorithm (described be- 
low) have a corresponding utterance cost, which is the distance between the user's 
input and an equivalent well-formed phrase. Each meaning is matched with its cor- 
responding dialog expectation, and its expectation and utterance costs are combined 
into a total cost by an expectation function. The meaning with the smallest total cost 
is selected to be the final output of the parser. An important side effect of matching 
meanings with expectations is the ability to interpret an utterance whose content does 
not fully specify its meaning. These semantic and linguistic expectations can provide 
the necessary context. Some examples are as follows: 

(a) The referent of pronouns (In the implemented system, the only pronoun is "it.") 
The parser leaves the slot for the referent of "it" unspecified in its interpretation. If this 
interpretation of the utterance can be matched to the linguistic expectation, the value 
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for "it" is filled with the value provided by the expectation. Consider the following 
example: 

(1) 

(2) 

Computer: Turn the switch up. 

User: Where is it? 

In computing the task-specific expectations for the user utterance, one expectation is 
for a statement asking about the location of the object of interest in the current topic-- 
in this case the switch. The parser interprets the user statement as a statement asking 
about the location of an unspecified object. The linguistic expectation provides the 
value of the unspecified object. 

(b) The meaning of short answers (In the implemented system, these include such 
responses as "yes," "no," and "okay.") The idea for each of these is similar. These 
utterances may have any of several meanings. The proper choice is determined by the 
expectations produced based on the situation. In the following example, it is likely 
that "okay" denotes affirmation of completion of the goal to turn up the switch: 

(1) Computer: Turn the switch up. 

(2) User: Okay. 

It is less likely that it denotes comprehension of the request. In any case, after statement 
(1), the situation-specific expectations include an expectation for an affirming utterance 
indicating completion, and this becomes the interpretation given to "okay." Contrast 
this with the following: 

(1) Computer: Turn up the switch. 

(2) User: Where is it? 

(3) Computer: In the lower left corner. 

(4) User: Okay. 

In this case, the interpretation of "okay" could be either that the location description 
(3) has been understood or that the original goal (1) has been accomplished. The 
expectation system scores the likelihood of each meaning and selects the most likely 
one using its scoring method. 

(c) Maintain dialog coherence. Consider the following subdialog taken from usage of 
the implemented system: 

(1) Computer: What is the voltage between connector 121 and connector 
120? 

(2) User: I need help. 

(3) Computer: Locate the voltmeter. 

(4) User: Done. 

(5) Computer: Add a wire between the "- corn" hole on the voltmeter and 
connector 121. 

(6) User: Done. 
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(7) Computer: Add a wire between the "+ v omega a" hole on the voltmeter 
and connector 120. 

(8) User: Nine. 

When utterance (8) is spoken, there are two active task steps: (1) performing the 
voltage measurement and (2) connecting a wire between the "+ v omega a" hole and 
connector 120. The user response does not satisfy the missing axiom for completing 
the substep (7). The expectations for the response to (7) are checked, but this utterance 
is not one of them. However, (8) does satisfy the missing axiom for completing the 
main task step (1). It has meaning in that context and it is so interpreted. 

5. The Zero-Level Model 

The system built in our laboratory (described at length in Smith [1991] and Hipp [1992] 
and Smith and Hipp [1995]) implements the theory given above. Figure 1 presents a 
zero-level model of the main processor, which illustrates the system principles of oper- 
ation without burdening the reader with too much detail. This model is the recursive 
subroutine ZmodSubdialog, and it is entered with a single argument, a goal to be 
proven. Its actions are to carry out a Prolog-style proof of the goal. A side effect of 
the proof may be some voice interactions with the user to supply missing axioms as 
described above. In fact, the only voice interactions the system undertakes are those 
called for by the theorem-proving machinery. 

The ZmodSubdialog routine is a Prolog-style interpreter with a number of special 
features designed for the dialog processing application. It is typical of such interpreters 
in that it lifts goals from a priority queue and applies rules from the knowledge base 
to try to satisfy them. See, for example, the first and third branches beginning with "If 
R. . ."  where respectively, the trivial case and the general case for applying a rule are 
handled. The deviations from a standard such interpreter are (1) in the second branch 
"If R.. .",  which handles the case of a missing axiom where voice interaction is to be 
invoked, (2) in three steps (marked "mode") where processing will vary according to 
the level of the initiative the system is in, and (3) in the controlling module for the 
interpreter, which may freeze execution of this computation at any time to initiate or 
continue some other such computation. 

Typical execution of ZmodSubdialog involves opening a proof tree and proceeding 
with a computation until an interrupt or clarification subdialog occurs. This may come, 
for example, from a new goal suggested by the domain processor or from a statement 
by the user causing movement to a different subdialog. The interrupt will cause control 
to pass to another existing proof tree (that was previously frozen) or to a new one 
aimed at the newly presented goal. Thus a set of partially completed trees will exist at 
all times, and control will jump back and forth between them. Of course, many of these 
trees will invoke associated voice interactions--and these constitute the subdialogs of 
the conversation. 

The process of dialog described here is a kind of interactive theorem proving where 
the guidance down paths can come from either the user's knowledge or system knowl- 
edge. However, the emphasis in the traditional interactive theorem-proving literature 
is on giving the user substantial opportunity to propose the notations and individual 
steps of the proof in a way that is not possible or desirable in our environment. 
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Recursive subdialog routine (enter with a goal to prove) 

ZmodSubdialog(Goal) 

Create subdialog data structures 
While there are rules available which may achieve Goal 

Grab next available rule R from knowledge; unify with Goal 
If R trivially satisfies Goal, return with success 
If R is vocalize(X) then 

Execute verbal output X (mode) 
Record expectation 
Receive response (mode) 
Record implicit and explicit meanings for response 
Transfer control depending on which expected response was received 

Success response: Return with success 
Negative response: No action 
Confused response: Modify rule for clarification; prioritize for execution 
Interrupt: Match response to expected response of another subdialog; 

Go to that subdialog (mode) 
If R is a general rule then 

Store its antecedents 
While there are more antecedents to process 

Grab the next one and enter ZmodSubdialog with it 
If the ZmodSubdialog exits with failure then terminate processing of R 

If all antecedents of R succeed, return with success 
Halt with failure 

NOTE: SUCCESSFUL COMPLETION OF THIS ROUTINE DOES NOT NECESSARILY 
MEAN TRANSFER OF CONTROL TO THE CALLING ROUTINE. CONTROL PASSES 
TO THE SUBDIALOG SELECTED BY THE DIALOG CONTROLLER. 

Figure 1 
The zero-level model of the main subdialog processing algorithm. 

6. Executing an Example Subdialog 

The operation of ZmodSubdialog (and similarly our implemented system) becomes 
clear if a complete example subdialog is carried out. Here we will trace the execution 
of the example 22 utterance subdialog given in Section 3 and thereby illustrate the 
theory of operation in detail. An overview of the computation is given here and a 
detailed trace of all significant details appears in Appendix A. The following database 
of Prolog-like rules is needed for proper system operation. 

Specific Device Debugging Rule 

Tl_circuit_Test2(V) ~ set(knob,10), measurevoltage(121, 34, V). 

General Debugging Rules 

set(knob,Y) ~ find(knob), adjust(knob,Y). 
measurevoltage(X,Y,V) *-- find(voltmeter), 
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set(voltmeterscale,20), 
connect(bw, com,X), 
connect(rw,+,Y), 
vocalize(read(voltmeter, V)) 

set(voltmeterscale,20) 

connect(W,X,Y) +- connectend(W,X), 
connectend(W,Y) 

General Dialog Rules 

Y +-- usercan(Y), vocalize(Y) 
vocalize(Y) 
find(Y) ~ vocalize(find(Y)) 

User Modeling Rules 

find(knob) 
usercan(adjust(knob,X)) 
usercan(measurevoltage(X,Y,V)) 
usercan(find(voltmeter)) 
usercan(connect(X,Y,Z)) 
usercan(connectend(X,Y)) 

We assume that the machine has selected a new goal that comes from the domain 
processor: Tl_circuit_Test2(V), where V is a voltage to be returned by the test. Thus, the 
domain processor is asking that test 2 on circuit T1 be performed returning a voltage 
V. ZmodSubdialog begins in Prolog fashion looking for a rule in the database to prove 
the goal Tl_circuit_Test2(V), and it finds the debugging rule Tl_circuit_Test2(V) 
set(knob,10), measurevoltage(121,34,V). Referring to Figure 1, this rule R is a general 
rule resulting in the third choice branch. Here the algorithm selects the first subgoal 
set(knob,10) of R and creates another subdialog by entering ZmodSubdialog with this 
subgoal. 

The new subdialog finds the rule 

set(knob,Y) *-- find(knob), adjust(knob,Y), 

which says the way to set the knob is to first find it and then do the adjustment. Execu- 
tion of this rule demonstrates the mechanisms related to the use of the user model and 
the initiation of voice interaction. For example, the first new subgoal find(knob) causes 
a new entry into ZmodSubdialog, where it is immediately satisfied by find(knob) in 
the user model. That is, the user has achieved find(knob) (knows how to find the 
knob), and no further consideration of this subgoal is needed. If the user did not 
know (according to the user model) how to find the knob, the system might have 
invoked a voice interaction to try to achieve this subgoal. Moving to the second goal, 
adjust(knob,10), again it might have occurred that the user has just achieved this also. 
(Since the algorithm does unification as a rule is invoked, the variable Y has been set 
to 10.) Entry of ZmodSubdialog with this subgoal, however, finds no trivial resolution 
for this subgoal. But it can invoke 

Y ~ usercan(Y), vocalize(Y), 

which says that a goal Y can be achieved if the user is capable of doing Y (which 
is represented as usercan(Y)) and if we vocalize Y. (This type of rule has not been 
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explicitly implemented in our system, but we include it here as a model of what does 
happen.) Further recurrences on ZmodSubdialog discover usercan(adjust(knob,X)) and 
undertake vocalize(adjust(knob,10)). 

Entry of ZmodSubdialog with vocalize(adjust(knob,10)) sends control down its 
second path. Sentence generation and voice output produces the statement 

"Put the knob to one zero." 

Next a set of expected responses is compiled. Some of these include: 

question(location,knob). 
question(ACTION,how-to-do). 
assertion(knob,status,10). 
assertion(ACTION,done). 

When a vocalized response comes back, parsing and error correction will be biased to 
recognize one of these meanings. 

After a response meaning has been resolved, it is entered into the database with all 
its presuppositions. For example, the mention of an object is assumed to indicate that 
the user can recognize and find that object if needed. These assertions are entered into 
the user model. The user model thus changes on almost every interaction to note new 
facts that are probably known to the user or to remove facts that the user apparently 
does not know. Finally, control changes because of the response either to (1) return 
from this subdialog with success, (2) continue in this subdialog searching for a success 
(having received an unsuccessful response), (3) enter special processing to deal with 
a need for clarification, or (4) interrupt processing to jump to some other subdialog. 

In the example subdialog, the user responds "OK," which corresponds to one of 
the expected meanings: assertion(ACTION, done). Expectations equate ACTION to the 
current action. Consequently, there is a successful exit of the current subdialog and 
achievement of the set(knob,10) goal. 

The first invoked rule, 

Tl_circuit_Test2(V) ~ set(knob,10), measurevoltage(121,34,V), 

is thus half satisfied, and the goal measurevoltage(121,34,V) is undertaken. 
The new goal leads to vocalization in the same manner described above. But the 

response in this case is negative: "I do not know." So attempts to achieve measure- 
voltage(121,34,V) continue and involve the rule 

measurevoltage(X,Y,V) *-- find(voltmeter), 
set(voltmeter,20), 
connect(bw, com,X), 
connect(rw,+,Y), 
vocalize(read(voltmeter, V)). 

This leads to a number of interactions, as traced in detail in Appendix A. The reader 
should note in this continued interaction the manner in which the theorem proving 
drives the dialog and the user model inhibits or enables voice interactions appropriate 
to the situation. 

The next interesting action occurs in utterance 12, when the user answers a re- 
quest to connect a wire with the question "Which knob?" Here the response is parsed 
against expected meanings without success. So the system looks for expectations of 
other subdialogs that either have been invoked or might be invoked. In this example, 
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"which knob" is an expected response for the first utterance, so control returns to 
that subdialog. In fact, in that subdialog, this response corresponds to a request for 
clarification. In our studies, we have found such requests for clarification to be routine 
and have designed a special mechanism for handling them. Our system dynamically 
modifies the active rule 

adjust(knob,10) <-- usercan(adjust(knob,10)), 
vocalize(adjust(knob,10)). 

to include a clarification subdialog: 

adjust(knob,10) +-- find(knob), 
usercan(adjust(knob,10)), 
vocalize(adjust(knob,10)). 

Thus, the original user model was incorrect where it  included find(knob), and this 
assertion is deleted. Next, as specified in Figure 1, the system reattempts the compu- 
tation with this revised rule. The newly inserted subgoal causes the voice output of 
utterance 13. 

This discussion shows the operation of all parts of the ZmodSubdialog model and 
illustrates the mechanisms used in our dialog machine. Appendix A gives the detailed 
steps required for completing the first part of the 22-utterance sample dialog. 

7. An Overview of the System Architecture 

The architecture of the system is given in Figure 2, where five major subsystems are 
shown: the dialog controller, the domain processor, the knowledge base, the general 
reasoning system, and the linguistic interface. These modules will be described next. 

Dialog controller. This is the overall "boss" of the dialog processing system. It formu- 
lates goals at the top level to be passed on to the theorem-proving stage. It determines 
the role that the computer plays in the dialog by determining how user inputs relate 
to already established dialog as well as determining the type of response given. It 
also maintains all dialog information shared by the other modules and controls their 
activation. Its control algorithm is the highest-level dialog processing algorithm. 

The basic cycle followed by the dialog controller is shown below. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

Obtain suggested goal from the domain processor. 

Based on the suggested goal and the current state of the dialog, select 
the next goal to be pursued by the computer and determine the 
expectations associated with that goal. (The goal may thus be selected 
from one of the active subdialogs. The choice is partially dependent on 
the current level of initiative.) 

Attempt to complete the goal using the IPSIM system, possibly invoking 
voice interactions. 

Update system knowledge based on efforts at goal completion. 

Determine next operations to be performed by the domain processor in 
providing a suggested goal. 

Go to step 1. 
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DOMAIN PROCESSOR GENERAL REASONING 
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Figure 2 
The system architecture. 

The domain processor. This is the primary application-dependent portion of the sys- 
tem. It contains much of the information about the application domain. It receives 
from the controller a request for the next suggested goal to be undertaken, and it re- 
turns to the controller its suggestion along with expected results from attempting the 
test. It then receives the results of the interaction and appropriately updates its data 
structures. 

In the implemented system, the domain processor assists in electronic equipment 
repair and contains a debugging tree that organizes the debugging task. The debug- 
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ging tree has as its root a node representing the whole device to be debugged and 
other nodes representing all of the subsystems. It is organized using the "part of" 
relationship with each node that represents a part of a subsystem connected as a child 
node below that subsystem. 

Device 

/ I \ 
Subsystem1 Subsystem 2 Subsystem 3 

For example, in the implemented system, the top level device is a circuit called the 
RSl11; its subsystems are the power circuit, the T1 and T2 circuits, and the LED circuit. 
Their subsystems are wires, switches, transistors, and so forth. The lowest level of this 
tree is the atomic element that can be addressed in a dialog. 

Each node has as its primary constituents a set of specifications and a set of flags 
representing its state. The specifications have three parts, giving the observation to be 
made, the conditions to be satisfied before making the observation, and the actions to 
be taken depending on what is observed. An example of one of the specifications for 
the LED is as follows: 

Observation: Observe the behavior of the LED. 

Conditions: The switch must be on, and the control must be set to 10. 

Actions: IF the LED is alternately displaying a 1 and 7 with frequency greater than 
once per second THEN assert the specification is satisfied 

ELSE IF the LED is not on 
THEN assert the battery is suspicious, in which case the power circuit 
is suspicious 

ELSE IF the LED is on but not blinking 
THEN assert that the transistor circuits are suspicious 

ELSE IF the LED is blinking but not alternately displaying a 1 and a 7 
THEN assert that the LED circuit is suspicious 

ELSE IF the LED is damaged 
THEN assert that the LED device should be replaced 

ELSE I F . . .  

The actions may be to assert that the specification is checked, to set suspicion flags on 
other nodes in the tree, or to replace parts. 

The other major component of a node is a set of status flags for the subsys- 
tem represented by the node. One flag indicates whether the subsystem is checked, 
unchecked, partially checked, or suspicious. Other flags give for each individual spec- 
ification its status and a counter for the number of iterations that the specification has 
been checked. 

The domain processor algorithm chooses the node (subsystem) with the greatest 
suspicion and the specification on that node with greatest suspicion and sends it to 
the dialog controller for possible checking. When two nodes or specifications are tied 
for being most suspicious, finer-grained criteria are used to break the tie. 

The algorithm is designed to guarantee that false information that may be entered 
into the tree will be eventually found. This is done by allowing the iterations counter 
on each specification to reduce its effective level of suspicion. Thus in a problematic 
debugging situation, specifications with the smallest count will be checked again and 
again until all have been checked the same number of times. Additional checking will 

299 



Computational Linguistics Volume 21, Number 3 

then make the rounds of all specifications. If erroneous information has been entered 
after any observation, that observation will eventually be repeated, enabling progress 
and guaranteeing ultimate success. 

The set of possible observations provides the situation-specific and situation- 
related expectations discussed in the section on expectations. Thus, in the example 
listed above where the LED is being observed, the expectations are as follows: 

(1) 

(2) 

(3) 

(4) 

(5) 

the LED is alternately displaying a 1 and 7 with frequency greater than 
once per second 

the LED is not on 

the LED is on but not blinking 

the LED is blinking but not alternately displaying a 1 and a 7 

the LED is damaged 

etc. 

These are passed to the controller at the time of the request for the LED observation. 
The reasoning system. The IPSIM system receives as input goals to be proven and 

commands to start, stop, and furnish information. It yields as output theorems that 
are proven and status reports on the proof in progress. Its processing follows the usual 
mechanisms of Prolog-style theorem-proving, and it is modeled by the ZmodSubdialog 
routine given above. It uses the rules in the knowledge base described below. 

The knowledge base. This is the repository of information about task-oriented dialogs. 
This includes the following general knowledge about the performance of actions and 
goals: 

(1) Knowledge about the decompositions of actions into substeps. 

(2) Knowledge about theorems for proving completion of goals. 

(3) Knowledge about the expectations for responses when performing an 
action. 

There is also general task knowledge about completing locative descriptions. General 
dialog knowledge includes knowledge about the linguistic realizations of task expec- 
tations as well as discourse structure information maintained on the current dialog. 
Finally, there is also knowledge about the user that is acquired during the course of 
the dialog. Note that the predefined information of this module is easily modified 
without requiring changes to the dialog controller. 

Linguistic interface. This system receives the spoken inputs from the user and re- 
turns spoken outputs. We will examine first the voice input system. 

The inputs to the voice input system for each utterance are the set of expectations 
from the dialog controller and the speech utterance from the user. The output from 
this system is a GADL meaning representation. 

The core of the processor is a syntax-directed translator (Aho and Ullman 1969) 
with rules of the form A --* Wl:W2, where Wl should be thought of as an ordinary 
context-free grammar righbhand side. If the terminal string w can be generated by 
the grammar rules of the from A --* Wl, then the analogous derivation using the rules 
A ~ w2 will produce the translated output in GADL form. As an example, suppose 
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the utterance "no wire" has been received and the following rules are in the system 
grammar: 

StartState ~ A : A 

A ~ TIS NOT WIRE : assertion(NOT, state(exist,WIRE,present)) 
TIS --* : 
WIRE --* DET WIRE2 : WIRE2 
DET ~ • 
NOT --* no : false 
WIRE2 --* wire : wire(+,+) 

Then the derivation of the source string yields the meaning string as shown. 

StartState 
A 
TIS NOT WIRE 
NOT WIRE 
NOT DET WIRE2 
NOT WIRE2 
no WIRE2 
no wire 

StartState 
A 
assertion(NOT, state(exist,WIRE,present)) 
assertion(NOT, state(exist,WIRE,present)) 
assertion(NOT, state(exist,WIRE2,present)) 
assertion(NOT, state(exist,WIRE2,present)) 
assertion(false,state(exist,WIRE2,present)) 
assertion(false,state(exist, wire(+,+),present)) 

That is, the meaning representation from the input "no wire" is 

assertion(false,state(exist,wire(+,+),present)). 

The dialog controller, of course, will provide an expectation for each received 
input. In the current example, assume the machine has previously output "there should 
be a wire from terminal 102 to terminal 104." Then the expectations would be 

assertion(true, state(exist,wire(102,104),present)) 

assertion(false, state(exist, wire(102,104),present)) 

assertion(true,do(user, achieve(state(exist, wire(102,104),present)))) 

question(yn,do_action(achieve(state(exist,wire(102,104),present)))) 

assertion(true,comprehension) 

assertion(false, comprehension) 

question(wh,location(102,_)) 

question(wh,location(104,_)) 

question(wh,how_to_do(achieve(state(exist,wire(102,104),present)))) 

The selected meaning of the incoming utterance will be the least-cost match between an 
output for the translation grammar and the expectations. The mechanisms for finding 
this least-cost match will be described next. 

The cost C of selecting a given expectation is a function of two parameters: (1) the 
utterance cost U, which measures the distance of the perceived voice signal from a 
grammatical utterance as defined by the system grammar, and (2) the expectation cost 
E, which measures the degree of locality of the selected expectation with respect to 
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the current subdialog. The utterance cost U will be small if the voiced signal precisely 
matches a token sequence generated by the system grammar. The expectation cost E 
will be small if the meaning of the utterance as generated by the translation grammar 
precisely matches an expected meaning for the currently active subdialog. Thus the 
total cost can be represented as 

C =f(U,E)  

where the exact nature of the function f is a problem to be solved. 
In this project, it was assumed that the speech recognizer would provide a graph 

of alternate guesses of the current input. Thus it might pass the following to the parser 
after a user had spoken "no wire." 

The parser then searches for paths through the graph that match as closely as possible 
grammatical inputs. In searching for a path, the parser may delete or insert words to 
achieve a match. Each such edit operation has an associated cost, depending on the 
significance of the word being edited. Some words, such as "not" or major nouns, 
make a large difference in sentence meaning; other words, such as articles, may not 
carry significant meaning in a given context. U is the sum of the edit costs required 
to traverse the graph path and match a grammatical input. In the example, the path 
no-a-wire matches the grammatical "no wire" with the deletion of only an article "a." 

The computation of E was simple in our project. A low value was assigned for all 
expectations at the current subdialog. The sequential levels of more distant subdialogs 
each were given higher expectation costs. 

The original hypothesized combining function for U and E was 

C = f lU+ (1 - fl)E 

where fl is a weighting factor between 0 and 1. A fl near 0 will tend to prefer matches 
to local expectation, regardless of the values of U; a fl near 1 will place most weight 
on getting a good match between the input graph and a grammatical string, regard- 
less of the value of E. Our experimentation, as described in Hipp (1992), indicated 
that fl should be near 1. This supports the intuition that definitive source data at 
the time of the utterance should be the preferred evidence regardless of expectation. 
Consequently, the usefulness of the expectation is for selecting between grammatical 
utterances derived from the perceived voice signal that have minimal utterance cost. 
Reflecting this experimentally determined result, the cost computation was revised to 

C =  ~ E i f U = U ~ n  

\ oo Otherwise 

where U~n is the smallest observed utterance cost for the given utterance. This func- 
tion selects the meaning with minimum utterance cost and uses expectation to break 
ties. A big advantage to using this form comes from the fact that any partial parse 
that exceeds the currently known minimum can be abandoned immediately at great 
savings in computation time. 

The details of the minimization algorithm are given in Hipp (1992). It follows 
some of the ideas of Aho and Peterson (1972), Levinson (1985), and Lyon (1974), and 
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will not be described here. It finds optimum answers in less than two seconds' time 
for most utterances of lengths used in the environment of our system when running 
on a Sun Sparc Station 2. 

The voice output system will not be discussed here. It receives a GADL specifi- 
cation for an output and some parameters regarding the statement context, and uses 
a grammar to generate the desired word sequence. It uses the context information to 
adapt outputs to their environment and sends the sequence to a DECtalk system for 
voicing. 

8. Some Implementation Details 

The system has been implemented on a Sun 4 workstation with the majority of the code 
written in Quintus Prolog. The parser is coded in C. Speech recognition is performed 
by a Verbex 6000 user-dependent connected-speech recognizer running on an IBM 
PC, and the vocabulary is currently restricted to 125 words. The users are required 
to begin each utterance with the word "verbie" and end with the word "over." The 
Verbex machine acknowledges each input with a small beep sound. These sentinel 
interactions help to keep the user and machine in synchronization. The grammar used 
by the parser consists of 491 rules and 263 dictionary entries. The dictionary entries 
define insertion and deletion costs for individual words as well as substitution costs 
for phonetically similar words (such as "which" and "switch"). 

The dialog system exclusive of the parser and error correction code consists of 
about 17,000 lines of Prolog (and this includes some comments) apportioned as follows: 
Dialog Controller procedural mechanisms (including IPSIM) 15%, Dialog Controller 
knowledge base 11%, Domain Processing procedural mechanisms 25%, Domain Pro- 
cessing knowledge base 14%, Linguistic Interface including much language generation 
code 30%, miscellaneous 5%. 

The implemented domain processor was loaded with a model for a particular 
circuit assembled on a Radio Shack 160-in-One Electronic Project Kit. The model was 
complete enough to solve any problem of the circuit that involved missing wires. 
For example, if the system were asked to debug the circuit with no wires, it would 
systematically discover each missing wire and request that the user install it. 

The speech output was done with a DECtalk (trademark of Digital Equipment 
Corp.) DTCO1 text-to-speech converter. 

9. Testing the System 

A reasonable test of the theory and implementation described here is to bring human 
subjects to the laboratory and determine whether they can converse sufficiently well 
with the machine to effectively solve problems. The purpose of the testing was to 
gather general statistics on system performance and timing, to study the effects of 
mode, and to judge the human factors issues, learnability, and user response. The 
hypotheses were that the system would function acceptably, that with a reasonable 
amount of user training, machine directive mode would yield longer completion times 
and less complex verbal behaviors than a more passive mode, and that users would 
respond positively to using the system. This section describes the design of the tests 
and the results obtained. 

9.1 Experimental Design 
Three experimental sessions were used for each subject. The first was to train the 
subject and register subject pronunciations on the Verbex machine. The second session 
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was a data-gathering test in which the subject could attempt up to ten problems with 
the dialog system locked in either directive or declarative mode. The third session 
allowed the subject to attempt up to ten additional problems. It was similar to the 
second except that the system was placed in the mode that was not used in session 2 
(either declarative or directive). Experimentation was thus to be limited to just two 
modes even though four were operative. 

Eight subjects were recruited from computer science classes. They were selected 
on the criteria that they (1) have demonstrated problem-solving skills by having suc- 
cessfully completed a computer science course and having enrolled in another, (2) not 
have excessive familiarity with artificial intelligence or natural language processing as 
would occur, for example, if they had had a course on one of these topics, and (3) 
not be an electrical engineering major (in which case they could probably repair the 
circuits without aid). They were told they would receive $36.00 for participating in 
the three-part experiment. All selected subjects were used and all collected data are 
reported regardless of the level of success achieved. 

Session 1 introduced the subjects to the voice equipment and required that they 
speak at least two examples of each of the 125 vocabulary words. They then were 
asked to speak 239 sentences to train the system for coarticulation. Repetitions in 
either of these sessions were used as needed to obtain acceptable recognition rates. 
Next the subjects were told about the dialog system and its functions and capabili- 
ties in brief and simple terms. They were given the basic rules on how to speak to 
the system, including the need for carefully enunciated speech, the requirement for 
verbie-over bracketing, the importance of hearing the acknowledging beep, and spe- 
cial requirements for stating numbers. They were told not to direct any comments to 
the experimenter; however, the experimenter would occasionally give them help, as 
will be described below. The subjects were asked to listen to and repeat four sentences 
spoken by the DECtalk system; this exercise was repeated until they overcame any 
difficulties in understanding. They were shown the target LED displays and given 
suggestions on how to successfully describe such displays to the system; specifically, 
the user should tell what they see present on the display (as in "the top of a seven is 
displaying") and not describe what does not appear (as in "the bottom of the seven 
is missing"). The subjects were provided with a list of the allowed vocabulary words 
and charts on a poster board suggesting implemented syntax if they wished to use it. 
Finally, they were given four practice problems and allowed to try solving them with 
the machine operating in directive mode. The complete session lasted up to two and 
one half hours. 

Session 2 was scheduled for three or four days later. It began with a reorientation, 
60 practice sentences on the speech recognizer, and some review questions on the 
general instructions. If this session was in directive mode, the subjects were told the 
system would act like a teacher and that they should follow its instructions. If this 
session was in declarative mode, they were told the system would act like an assistant 
so that they could control the dialog, and they were given an example of a short 
interaction so that they could observe the kind of control that can be achieved. Then 
they were released to do up to ten problems. 

Session 3 was scheduled for three or four days after the second session. Appro- 
priate instructions were given to change the subject expectations to the new mode, 
and ten more sample problems were given. Finally, the subjects were asked to fill in 
a short form and describe their reactions to using the system. 

An important issue in such tests, as has been observed elsewhere (Biermann, Fine- 
man, and Heidlage 1992), is the problem of giving the subject sufficient error messages 
to enable satisfactory progress. Users may wander aimlessly in their behaviors without 
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some guidance when things go wrong. If the input speech is discrete with a pause 
after every word, an automatic system can confirm words individually and give the 
user adequate feedback (Biermann et al. 1985). But with connected speech, the system 
cannot easily pinpoint the source of errors and may not provide satisfactory guidance. 
The user may receive an unexpected response from the system and then speak again 
but with increased volume or nonstandard vocabulary; this may yield worse machine 
responses and even more extreme behavior from the user. Our answer to this prob- 
lem was to post the experimenter nearby and to allow him or her to give the subject 
several different standard error messages if they were needed. The experimenter was 
allowed to deliver any of the following messages if certain criteria were met: 

1. Due to misrecognition your words came out as . (Most 
misrecognitions were corrected automatically and thus resulted in no 
such messge. This message was given if the interpreted meaning 
contradicted the intended meaning or referenced the wrong object.) 

2. Please be patient. The system is taking a long time to respond. 

3. The system is ready for your next utterance. (Or other synchronization 
warnings.) 

4. Please remember to start /end utterances with verbie/over. 

5. Recognition is indicated by a beep. 

6. The word _ _  is not in the vocabulary. 

7. (a number) must be spoken as digits. 

8. Please restrict your utterances to one sentence. 

9. Please keep your tone/volume/rhythm similar to the way you trained. 

10. Please focus on interaction with the computer. (In case of a comment to 
the experimenter.) 

11. Please follow the computer's guidance. (After three repetitions caused by 
subject's refusal to cooperate.) 

Statistics were kept on the number of such messages that were delivered during the 
test sessions, as reported below. 

9.2 Test Problems 
The circuit to be repaired was a multivibrator circuit constructed on a Radio Shack 
160 in One Project Kit. It contained twenty wires and used a number of components 
on the board: a switch, potentiometer, light-emitting diode (LED), battery, and two 
transistors. Its correct behavior was to alternately display a 1 and a 7 on the LED with 
the rate of alternation being adjustable by the potentiometer. For the purposes of the 
experiment, failures were introduced by removing one or two wires. The first eight 
problems for the two sessions were matched in difficulty as well as possible in order to 
give balance between sessions and to prevent a varying difficulty from overshadowing 
important effects. The last two problems were repeats of the practice problems from 
the first session. 

9.3 Test Dialog System 
The dialog system being tested was the version that was operative at the time of the 
test, mid February, 1991. At that time, it was running on a Sun 4 machine, which caused 
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Table 1 
Experimental results for eight sClbjects operating at two levels of machine initiative; 
declarative and directive. Numbers in parentheses are for the first eight problems only; the 
last two problems were repeats of the practice problems from Session 1. 

Declarative Mode Directive Mode 

Number of problems attempted 75 66 
Number of problems diagnosed 66 61 
Number of problems completed 60 58 
Average diagnosis time 199.9 (225.0) 258.9 (277.3) 
Average completion time 270.6 (303.8) 511.3 (541.0) 
Average number of utterances per dialog 10.7 (12.0) 27.6 (28.8) 
Average subject response time (sec.) 17.0 11.8 
Average number of utterances per minute 2.3 3.1 
Percent of nontrivial utterances 62.9 39.7 
Average length of nontrivial utterances 5.4 4.8 
Number of different words used 100 84 
Number of utterances 1011 1829 
Number of experimenter interactions 174 100 
Number of misrecognition interactions 118 69 
Recognition rate (parser) 75.3 85.0 
Recognition rate (Verbex) 44.3 53.1 

Overall recognition rate (parser) 81.5 
Overall recognition rate (Verbex) 50.0 

significant problems with execution time. A few responses dur ing the exper iment  were 
as slow as 10 seconds or in some cases as much  as 30 seconds, which hampered  the 
flow of the interaction. These slow responses were primari ly due  to the computat ional  
costs of parsing long utterances containing man y  misrecognized words.  The system 
was later enhanced by  moving  it to Sparc-2 machine. 

The ability of the system to respond to silence as a legitimate input  was disabled 
because it had earlier confused our  pilot subjects. If the user was silent for a per iod 
of time, the system patiently waited for his or her input. A small number  of g rammar  
omissions and other minor  system shortcomings were noticed in the early subjects 
and fixed for later subjects. 

Later versions of the system, such as the one on our  demonst ra t ion tape (Hipp and 
Smith 1991), included some error message capabilities that were not  available in the 
experiment.  Those would  have led to substantially better performance if they could 
have been used. 

9.4 Results  
The results f rom the exper iment  are summar ized  in Table 1. 

Each entry in the table will be explained: 
Number of problems attempted. Each subject had the oppor tuni ty  to do 10 problems 

at each initiative level. Therefore if t ime constraints had not existed, a total of 80 
problems would  have been a t tempted in each mode.  However ,  subjects progressed 
slowly enough so that the two-hour  session (session 2 or 3) ended before all 10 were  
a t tempted in some cases. 

Number of problems diagnosed. The diagnosis of a problem involved discovering what  
wires were missing. However ,  substantial more  interaction was needed  to correctly 
fix the problem and to test the circuit to be sure its complete functioning had been 
restored. 
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Number of problems completed. A dialog was completed when the machine was sat- 
isfied that the repair was complete and had signed off by saying "good-bye" to the 
user. Most of the failures to complete were simply the result of limited time. If a 
dialog exceeded 10 minutes without a successful diagnosis or 15 minutes without a 
successful completion, and there was no expectation that progress would occur in the 
next couple of minutes, the dialog was halted and scored as a failure. The percent of 
problems completed might have been nearly 100 percent if unlimited time had been 
available. 

Average diagnosis time. The elapsed time from the beginning of the dialog to dis- 
covery of the missing wire(s). 

Average completion time. The elapsed time from the beginning of the dialog to the 
completion of the task. 

Average number of utterances per dialog. The average number of utterances by the 
subject per dialog. 

Average subject response time. The average elapsed time (in seconds) from the com- 
puter 's utterance to the subject's response. It is believed that this is a better indicator 
for the "speech rate" of a subject than average utterances per minute because the num- 
ber of utterances per minute is dependent on the speed of the computer system as 
well, and long utterances by the subject required long response times for the computer. 

Average number of utterances per minute. The average number of utterances per 
minute spoken by the subject on all dialogs, even those that were not completed. 

Percent of nontrivial utterances. The percent of utterances spoken by the subject that 
included more than one word and the bracketing words (verbie and over). 

Average length of nontrivial utterances. The average number of words in a nontrivial 
utterance by the subject not including the bracketing words. 

Number of different words used. The total number of different words used by the 
subjects that were implemented in the system. 

Number of utterances. The total number of utterances spoken by all subjects in all 
dialogs. 

Number of experimenter interactions. The total number of times the experimenter 
spoke to a subject during the dialogs. 

Number ofmisrecognition interactions. The number of experimenter interactions that 
were caused by misrecognitions. This figure shows how many of the interactions 
specified in the previous row were due to the single cause of misrecognition. The 
message in this case was "Due to misrecognition, your words came out as . . . .  " 

Recognition rate (parser). The percentage of subject utterances that were correctly 
interpreted by the parser after error correction and the use of expectation. 

Recognition rate (Verbex). The percentage of subject utterances that were correctly 
recognized word-for word by the speech recognition system. 

Overall recognition rate. The recognition rate obtained by combining data across 
both modes. 

After subjects completed session 3, they were given a form to gather their reac- 
tions to the use of the system. Table 2 summarizes their answers on a scale from 1 
(representing "strongly disagree") to 5 (representing "strongly agree"). Additional in- 
formation about user responses, including their extensive remarks, is given in Smith 
(1991). 

9.5 Test Data Analysis 
9.5.1 General results. Overall system functioning was good. All subjects were able 
to use the system, and they solved the problems at the rates of 80 and 88 percent 
(that is 60 out of 75 trials and 58 out of 66 trials) in the declarative and directive 
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Table 2 
User reactions to system use. 

Subjects Using Directive Subjects Using Declarative 
then Declarative Modes then Directive Modes 

Easy to learn to use 4.5 4.2 
Enjoyed using 4.2 3.9 
Easy to use 3.8 4.0 
Tiring 3.8 4.0 
System had too much control initially 3.0 2.6 
System had too much control at end 2.5 4.1 

modes, respectively. Most of the failures to finish were from time outs rather than any 
ultimate system failure. Subject speech rates were around two to three utterances per 
minute, but this might have risen to four to six sentences per minute if the system 
response time had been better. (This higher speech rate occurred in an earlier system 
built in this lab (Biermann, Fineman, and Heidlage 1992), and might also be possible 
with our current faster version of this system.) The powerful error correction from the 
nearest neighbor algorithm using expectation improved overall recognition from 50.0 
to 81.5 percent. The number of experimenter interactions was about 1 for every 18 
user utterances in the directive mode, and 1 for every 6 user utterances in the more 
complex declarative mode. 

The effects of mode were clear and as predicted. During session 1, subjects had 
gained substantial information about how to debug this circuit, so the extremely 
pedantic directive mode was too detailed for them in most cases. They functioned 
much better in declarative mode, in which the machine stated relevant facts but al- 
lowed the user to lead the interaction. The completion times and numbers of utterances 
were far smaller for the declarative mode. In addition, the complexity of the sentences 
and the time required for the user to respond was larger for the declarative mode. The 
directive mode involves far more questions from the machine with only one-word 
answers, yielding faster responses and higher recognition rates. The directive mode 
requires far fewer experimenter interactions to help the subject through the task. 

Users responded positively to the system and definitely noticed the effects of the 
mode change. 

The posters for providing syntax assistance were not used extensively. Based on 
exit interviews with subjects, two of them did not use them at all during the formal 
experimental sessions (sessions 2 and 3). Three subjects used them only for a specific 
situation (such as notifying the system that the circuit was working), while the remain- 
ing three subjects used the charts for assistance with more than one class of utterances 
(such as voltage statements and LED description statements). However, even these 
subjects did not continually refer to the charts, but only used them infrequently. 

Additional study of the data yielded some interesting information about the sub- 
jects' rate of learning of the system. One might wonder how users' behaviors improved 
with time. The total number of problems attempted in both modes in session 2 was 
67, and this rose to 74 in session 3. The rate of success rose from 79 percent to 88 
percent. It is also interesting to speculate how long it would be necessary to keep the 
experimenter at hand to give error messages. The number of experimenter interactions 
dropped from 162 in session 2 to 112 in session 3. 
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Table 3 
The statistical results for the eight problems. 

Completion Time Utterances % Non Trivial 

Prob. n t p value t p value t p value 

1 5 .686 --  3.340 .05* -3.619 .05* 
2 5 -.018 --  1.170 .40 -3.267 .05* 
3 4 1.547 .30 3.633 .05* -3.441 .05* 
4 4 2.971 .10 4.586 .02* -3.118 .10 
5 4 1.342 .30 4.557 .02* -2.281 .20 
6 7 3.136 .05* 4.516 .01"* -1.874 .20 
7 5 2.145 .10 3.783 .02* -2.665 .10 
8 4 1.876 .20 3.235 .05* -1.811 .20 

Another phenomenon often noticed in the speech recognition world is the "sheep- 
goats" dichotomy that seems to divide users. Some users seem to function well with 
voice recognition equipment ("sheep") while others ("goats") have considerable diffi- 
culties. We noticed this in that four of our subjects were able to attempt all 80 problems 
given them and solved 79 of the 80. Their recognition rates tended to be in the high 
80s or low 90s. The much lower reported average figures given above are the result 
of averaging in performance figures from the less successful class of users. 

A final issue of interest is the level of software reliability achieveable by such 
a system. It has been observed in previous research systems that the code is suffi- 
ciently complex and the level of development in a research laboratory sufficiently 
incomplete that substantial numbers of software failures do occur in such tests. For 
example, Damerau (1981), Miller, Herschman, and Kelly (1978) on the LADDER sys- 
tem, and Biermann, Ballard, and Sigmon (1983) reported software failures at the rates 
of approximately 5, 2, and 2 percents, respectively. In the current test, of the 2, 840 ut- 
terances that were processed, only one resulted in such a software failure. The reasons 
for the high reliability were (1) the quality of the code was high and (2) the nature of 
the design that finds a nearest neighbor to an input string among expected inputs is 
one in which high reliability is much more easily obtained. 

9.5.2 Statistical Analysis .  Although the summary results provide a strong indication 
that there are behavioral differences as a function of initiative, there are two major 
problems in demonstrating the statistical significai~ce of these differences: (1) only 
four subjects completed a high enough percentage of the dialogs to enable a within- 
subject comparison of these differences across all problems, and (2) there were large 
sample variances in the data. 

To alleviate these problems, behavioral differences were analyzed separately for 
each problem. This was possible because of the balancing of problems between sessions 
according to problem type. That is, problem "k" of each session had the same erroneous 
LED display. Consequently, the system's diagnosis procedure was virtually identical 
for problem "k" in each session. The only difference came in identifying the missing 
wire or wires that caused the circuit failure. The missing wires were different in each 
session. 

Three performance criteria were examined: (1) completion time, (2) number of 
utterances spoken, and (3) percentage of nontrivial utterances. By examining the dif- 
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ference in a subject's performance on problem "k" as a function of initiative, a paired 
t test (Larsen and Marx 1981) could be conducted. The null hypothesis would say that 
the average of the paired differences is 0. Table 3 shows the results. For example, for 
problem 1, there were five subjects who completed the dialog in both sessions, and 
their paired difference for each criterion is obtained by the following formula: 

"directive mode value" - "declarative mode value" 

For example, the first subject spoke 18 utterances in directive mode for problem 1, 
but only 11 utterances when in declarative mode, a paired difference of +7. The set of 
paired differences for a given problem provides the sample data for the test statistic. 

The t statistic and the individual observed significance levels are shown for each 
phenomena, one row per problem. In the results for number of utterances spoken, 
all problems but problem 2 showed an observed significance in user behavior as a 
function of initiative at the p = 0.05 level or less. There are also strong trends to- 
ward statistically significant behavioral differences with respect to completion time 
and nontrivial utterances for several of the problems. One difficulty with respect to 
completion time is the fact that the implementation of the parsing algorithm was not 
yet optimized during the experiment, and the more prevalent nontrivial utterances 
of declarative mode would require a longer time to parse. Note that while almost 
all of the significance levels support the hypothesis of a real difference, because the 
problems are interrelated, and the tested subjects overlap from problem to problem, 
we cannot claim overwhelming statistical significance. Nevertheless, we believe these 
results provide a strong indication that our system demonstrates variable initiative 
behavior, and that user behavior differs according to the level of initiative. 

10. Theoretical Issues from the Literature 

Grosz and Sidner (1986) have given a high-level theory of dialog. The theory specifies 
three components, the linguistic, intentional, and attentional structures, and describes 
their nature and relationships to each other. However, their theory leaves a whole 
variety of issues undetermined; without a full implementation, the question of its 
applicability remains unanswered. This project shows a successful instantiation of 
these ideas and provides some verification of their correctness. In fact, it presents 
a working speech dialog system that follows their theory in most of its details. In 
doing so, the project clarifies the nature of the three components and increases our 
understanding of them. 

The linguistic component is the actual sequence of dialog interactions, and its most 
significant characteristic is that it can be naturally divided into what Grosz and Sidner 
call segments. (We have used the term "subdialog" instead of "segment" because we 
feel the latter term connotes contiguity, which may be misleading.) These segments 
are semantically coherent subparts of the dialog, and their union constitutes the whole 
dialog. An individual segment may be a contiguous sequence of interactions, or it may 
be broken into several sequences, as described in earlier sections of this paper. Many 
researchers have studied the properties of such segments, including linguistic and 
intonational markers to delineate them (Hirschberg and Litman 1993; Hirschberg and 
Pierrehumbert 1986), the resolution of noun phrases within the context of a segment 
(Grosz 1978; Reichman 1985), and their semantic self-consistency (Hobbs 1979). Our 
theory provides an automatic mechanism for participating in dialogs, for following 
segments initiated by the user, for initiating segments on its own, and for properly 
utilizing segment semantics for many language-processing purposes, such as noun 
phrase resolution, error correction in speech recognition, and so forth. 

310 



Smith, Hipp, and Biermann An Architecture for Voice Dialog Systems 

The intentional component specifies the purpose of the dialog. Grosz and Sidner 
(1986) use the notation DP and DSP to stand for "discourse purpose" and "discourse 
segment purpose." These entities correspond to the predicate goals that our system 
poses and then builds the dialog around. Our system, in fact, constructs a set of partial 
proofs and these are our instantiation of the intentional component. Grosz and Sidner 
introduce the relation of "dominance" between two DSPs; one DSP dominates another 
if the other "is intended to provide part of the satisfaction" of the first. This relation 
corresponds to the natural precedence in our system that a Horn clause proof gives 
to the predicates in the proof tree. Grosz and Sidner emphasize that the number of 
possible discourse purposes must be infinite in a dialog system, an assertion that 
we agree with. Our predicates allow for arbitrarily complex nesting of functional 
structures. As a trivial example, in our theory applied to the block-stacking world, the 
DSP buildtower (A on B on C on . . .  on X) is a legal goal regardless of how many 
blocks are specified to be stacked. Another issue they discuss is the possibility of 
multiple simultaneous goals. Thus the speaker may wish to both convey information 
and impress the hearer with his or her intelligence. This is a problem we have not 
attempted to deal with in our theory, and we do not offer any solutions to it. Our 
system deals with multiple goals but each subdialog addresses only one at a time. 

The attentional structure is a stack in the theory of Grosz and Sidner and in many 
other theories as well (Litman and Allen 1987). The current incoming sentence is 
matched to local expectation, the entities at the top of the stack, and its meaning will 
be processed with respect to these structures in focus unless some kind of inconsistency 
occurs. If the sentence does not have meaning within this context, the stack may be 
pushed to introduce a new topic, or it may be popped and processing can occur 
within the next context in the priority. In our theory, the local expectation or focus is 
represented by the set of predicates that are related by our Prolog-style rules to the 
currently active predicate or DP. If no successful match is made, then other nonlocal 
but recently active DPs are tried. 

The fact that our representation of local focus is a set of predicates on the proof tree 
(the intentional structure) may seem to contradict the Grosz-Sidner assertions that the 
focus-space hierarchy and the intentional structure should not be conflated. However, a 
closer look reveals that our focus stack exists independently of the intentional structure 
even though the items on the stack are listed on the intentional structure. The focus 
structure may be thought of as a stack of pointers; those pointers give addresses on 
the intentional structure, but the independence of the two entities is not compromised. 

An example given by Grosz and Sidner (which in turn was borrowed from L. Pol- 
anyi and R. Scha) illustrates many of these points. 

DI: John came by and left the groceries 
D2: Stop that you kids 
D3: and I put them away after he left 

Figure 3 shows our representation of the interaction after the utterance D1. Two goals 
are currently active, DSP=describe prepare dinner and DSP=reduce stress; their partial 
proof trees are shown. The focus stack contains the description of getting food as its 
top entry, and previous topics have been pushed down to lower levels. The speaker's 
priority system, however, in the next instant has pushed the goal "reduce stress" into 
the foreground with the associated utterance D2, as shown in Figure 4. Here the stack 
receives an additional entry, a pointer to the control-children DSP. With the control- 
children DSP achieved, the focus stack can pop back to the previous interaction and 
continue, as shown in Figure 5. Actually, we deviate from Grosz and Sidner here and 
keep the recent subdialog active near the top of the stack. It may be returned to; for 
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Other DSP 
IA DS]P=de~ribe 

focus ~ de.,m:ril~ romp find 
sm,:k bring put dimulmon al~nmive 

away 

Figure 3 
Intentional and attentional structures after "John came by and left the groceries." 

Other DSP 

.focm ~ de, m:ril~ slop find 
stack Ixing put ~ ~ v e  

groceries away 

Figure 4 
The speaker's priority intervenes to reduce stress: "Stop that you kids." 

example ,  the next ut terance could be  

D4: H a v e  y o u  finished your  h o m e w o r k ?  

We do this because we  do not wan t  our  sys tem to have  to look far to find the appro-  
priate referents in any  recently active subdialog. 
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Other DSP 

m 

" I1\  . . . .  I1\  - 

away 

Figure 5 
Returning to the DSP=describe get food intention: "and I put them away after he left." The 
recent focus on DSP=control children is retained on the focus stack. 

Litman and Allen (1987) introduce the concept of a "discourse plan" that meshes 
with the domain plans of the traditional literature (Fikes and Nilsson 1971). The idea 
of discourse plans is that they operate on domain plans and act as meta operators. 
But they still are plans and are interpreted by the same mechanism as traditional 
planning systems. Discourse plans fit into three classes: the continue, clarification, and 
topic shift classes. As each incoming utterance arrives, one of these discourse plans 
comes into action to interpret that utterance in terms of the existing domain plans. 
A continue class discourse plan relates the utterance to the existing domain plan as 
a continuation of that domain plan. A clarification class plan relates the utterance to 
the existing domain plan as a clarification of that domain plan. A topic shift plan 
rejects any relationship to the current domain plan and introduces a new domain 
plan. Our system has corresponding behaviors, but they are coded into the interpreter 
for the Prolog-style rules. (Litman and Allen comment that the discourse plans are 
a small set and that they are domain-independent, so we find their inclusion in the 
interpreter to be a realistic choice.) Continuations and clarifications are handled as 
standard mechanisms of our interpreter. Topic shifts are handled by the mechanism 
that seeks matches of an incoming meaning with other subdialogs if the meaning has 
no local match. 

Webber and Baldwin (1992) have examined the phenomenon called "context 
change" in discourse, which refers to the movement from subdialog to subdialog (or 
from segment to segment). Their discussion focuses on the concept of the working set, 
which specifies "the set of entities in the discourse context." As discourse proceeds, 
this working set is updated and it provides at each point in time the set of objects 
for definite noun phrase resolution. They describe two mechanisms for updating the 
working set; one, called context change by entity introduction, adds entities to the work- 
ing set as they appear in the discourse. The other is called context change by event 
simulation, and it assumes that operators within the reasoning system add and delete 
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items from the working set as a side effect of planning. In our system, the analog to 
the working set is the set of objects, relationships, and actions specified by the rules 
in the current subdialog. However, our system does not increment or decrement its 
working set in a gradual manner, one object at a time or one noun phrase at a time. 
When a subdialog is invoked, all of its objects, relationships, and actions come into 
focus at once; when the subdialog is abandoned, all of these entities are demoted to 
nonprimary but still near-at-hand availability. Our system does not typically change 
subdialog merely because an unexpected entity has been introduced. The specification 
of a new entity without any sentential context would probably confuse our system; it 
looks for utterances that will be meaningful in the current subdialog and it changes 
subdialog when an incoming utterance fails to have meaning locally but does have 
meaning in another available subdialog. 

The semantic interpretation of sentences in realistic situations sometimes can be 
enabled by abduction mechanisms, as described by Hobbs et al. (1988). Abduction is 
needed when a literal interpretation of incoming tokens will not match the items or 
relationships in the existing database; it provides a mechanism to "coerce" a specific 
and literal meaning into a meaning that accounts for the sentence context. For example, 
Hobbs et al. (1988) address the issue of finding a referent for the implied fluid in the 
first sentence below. 

Flow obstructed. Metal particles in lube oil filter. 

According to Hobbs et al. (1988), the second sentence will require proving there exists 
x lube-oil (x), and the problem is to find a logical connection between the fluid of 
sentence one and the "lube oil." Their solution is to propose the identity 

V x ((fluid (x) A etq (x)) - lube-oil (x)) 

where etcl(x) specifies a set of additional characteristics of x needed to ensure the 
identity. These properties etcl(x) need not be known; they are what Hobbs et al. call 
"assumable," and the act of making the assumption is the abductive act central to the 
"coercion" being carried out. This identity and the associated assumption make it pos- 
sible to equate the fluid of the first sentence with the lube oil of the second sentence. 
The mechanism of our system achieves a similar result but via different means. Some 
currently active subdialog, which might or might not be at the highest level on the 
focus stack, would contain the lube oil and a variety of its characteristics and rela- 
tionships. As incoming sentences arrive, their interpretations would be matched to the 
objects and relationships in the focus spaces using the minimum distance algorithm 
according to the stack priority until an acceptable match is found. In this example, 
there would be a focus space with an object "lube oil" that has the property of being a 
"fluid" that can "flow" and so forth. The words in the given sentences would naturally 
match to these without any special mechanisms. In summary, the abduction takes care 
of the situation where the semantic model is inadequate, and our design attempts to 
avoid such inadequacies. 

A number of important contributions have been made in the area of user modeling 
(Kobsa and Wahlster 1988; Rich 1988; Paris 1988; McCoy 1988). One of the most com- 
prehensive is the "General User Modeling Shell" (GUMS), described by Finin (1989). 
He lists five important features for user models: 

(1) 

(2) 

Separate knowledge base. The user model is kept as a separate module. 

Logical representation. The user model knowledge is encoded so as to be 
directly usable in inferential processes. 
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(3) 

(4) 

(5) 

Declarative knowledge. The user knowledge should be in a declarative 
rather than procedural form. 

Support for abstraction. The user knowledge should be able to represent 
generalizations. For example, it should be possible to represent 
information about classes of users as well as individuals. 

Multiple use. The user model knowledge should be represented in a 
form such that it can be reasoned about as well as reasoned with. 

An important feature of this model is a hierarchical structure for stereotypes about 
users. Each level in the structure assumes a set of "definite" knowledge and a set of 
"default" knowledge. The given user in an interaction is placed somewhere on the 
hierarchy according to the best information. Then, as new information is gathered, he 
or she can be moved to a more general level (less definite information) if the user's 
knowledge is in contradiction with the required definite knowledge of that level. 

In addition to a user's stereotype, an individual model of the user will also be 
developed. As specific information is acquired about the user, the system will begin 
to rely more on the individual model and less on the stereotype model. 

• Our system supports the first three features described by Finin. These are side 
effects of the Prolog-style representation. We could easily support the ideas related to 
classes of users and the hierarchy of stereotypes, but they were not addressed in this 
project. 

We do not know of any systems that claim to support nontrivial variable initiative 
as described in our system. However, there is some literature on the topic. Whittaker 
and Stenton (1988) propose a definition of dialog control based on the utterance type 
of the speaker: question, assertion, command, prompt. In the first three, the speaker 
usually has control unless the utterance is a direct response to a question. In the 
last, control is usually being relinquished. They note that there is a close relationship 
between topic shift and control shift, and thus dialog control is useful in identifying 
the discourse structure. 

Kitano and Van Ess-Dykema (1991) extend the plan recognition model of Litman 
and Allen (1987) to consider variable initiative dialog. They note that the two partici- 
pants may have different domain plans. Consequently, there must be speaker-specific 
plans as well as the joint plans proposed in the Litman and Allen model. This sep- 
aration of plans enables a more flexible plan recognition process. In addition, they 
extend the initiative control rules of Whittaker and Stenton to consider utterance con- 
tent. They note that when a speaker makes an utterance that is relevant to his or her 
speaker-specific domain plan, then that speaker has dialog control. Their observation 
that there are speaker-specific plans or goals is crucial to our proposed model for par- 
ticipating in variable initiative dialogs. Selecting the next subdialog to be entered may 
require selecting between differing computer and user goals. This selection process 
must be a function of the current level of dialog initiative. 

11. Summary 

A voice-interactive dialog architecture that achieves simultaneously a variety of behav- 
iors believed to be necessary for efficient human-machine dialog has been developed. 
Goal-oriented behavior is supplied by the theorem-proving paradigm, and the missing 
axiom theory provides the machinery for voice interactions. Subdialogs and movement 
between them is implemented with an interruptible theorem prover that maintains a 
set of partially completed proofs and can work on the most appropriate one at any 
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given time. A user model is provided by a continuously changing set of rules that 
are referenced during theorem proving either to enable or to inhibit voice interaction. 
Variable initiative is made possible by variable types of processing by the input and 
output routines and by restricting or releasing the ability to interrupt to a new subdi- 
alog. Expectation is associated with individual subdialogs, is compiled from domain 
and dialog information related to each specific output, and is used to improve voice 
recognition and enable movement between subdialogs. 

While this system simultaneously achieves behaviors that have been studied in- 
dividually by a variety of earlier researchers, it cannot be reasonably characterized as 
an amalgamation of other systems. The behaviors are achieved by a new mechanism, 
namely the system-controlled Prolog-style inference machine, and the contribution of 
the work is in the demonstration that these behaviors can be done with this mech- 
anism and in its description of how to do it. The contribution of other researchers 
has been to investigate the individual issues related to achieving dialog so that as we 
faced them, we had ideas about what to do using our mechanisms. 

The implementation of the system shows the viability of the architecture and 
provides information regarding achievable behaviors in real-time voice dialogs. Eight 
subjects were able to solve 84 percent of attempted problems and reported a positive 
experience in doing it. 

A number of important unsolved problems need attention to enable further 
progress. For example, an automatic mechanism is needed for setting the appropriate 
level of initiative as an interaction proceeds. Also, techniques are required that will 
enable the system to better diagnose user problems so that adequate messages can be 
provided automatically rather than depending on the experimenter. And the system, 
as it stands, can probably be improved greatly by increasing its knowledge base and 
refining its mechanisms. 

The dialog theory described here has been aimed at implementing voice interac- 
tions. However, the theory could be used in other contexts using menus and multi- 
media or other interaction styles. This is another area for future work. 

Appendix A: Trace of ZmodSubdialog Processing the 22-Sentence Example Dialog 
from Section 3 

1. 1 

2. 1 
3. 2 
4. 2 

5. 2 
6. 2 
7. 2 
8. 2 

9. 2 
10. 3 
11. 3 

12. 3 

Retrieve goal from dialog controller 
Tl_circuit_Test2(V) 

Enter subdialog with that goal 
Create subdialog data structures 
Grab next available rule from knowledge 

Tl_circuit_Test~(V) ~ set(knob,10),measurevoltage(121,34,V) 
Unify with current goal 
This is a general rule 
Store its right hand side as goals 
Grab next one and enter a subdialog 

set (knob,10) 
Enter subdialog with that goal 

Create subdialog data structures 
Grab next available rule from knowledge 

set(knob,Y)+--find(knob),adjust(knob,Y) 
Unify with current goal 
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13. 3 This is a general rule 
14. 3 Store its right hand side goals 
15. 3 Grab next one and enter a subdialog 

find(knob) 
16. 3 Enter subdialog with that goal 
17. 4 Create subdialog data structures 
18. 4 Grab next available rule from knowledge 

find(knob) 
19. 4 Unify with current goal 
20. 4 Trivially answers question 
21. 4 Exit subdialog 

Current rule: set(knob,Y)*-find(knob),adjust(knob,Y) 
22. 3 Grab next right hand side and enter a subdialog 

adjust(knob,10) 
23. 3 Enter subdialog with that goal 
24. 4 Create subdialog data structures 
25. 4 Grab next available rule from knowledge 

Y ~ usercan(Y),vocalize(Y) 
26. 4 Unify with current goal 
27. 4 This is a general rule 
28. 4 Store its right hand side goals 
29. 4 Grab next one and enter a subdialog 

usercan(adjust(knob,10)) 
30. 4 Enter subdialog with that goal 
31. 5 Create subdialog data structures 
32. 5 Grab next available rule from knowledge 

usercan(adjust(knob,X)) 
33. 5 Unify with current goal 
34. 5 Trivially answers question 
35. 5 Exit subdialog 

Current rule: Y~usercan(Y),vocalize(Y) 
36. 4 Grab next right hand side and enter a subdialog 

vocalize(adjust(knob,10)) 
37. 4 Enter subdialog with that goal 
38. 5 Create subdialog data structures 
39. 5 Grab next available rule from knowledge 

vocalize(Y) 
40. 5 Unify with current goal 
41. 5 Goal is to vocalize 
42. 5 Execute verbal output 

Put the knob to one zero. 
43. 5 Record expectation A 

affirmative 
negative 
user put knob to 10 
where is knob 
etc. 

44. 5 Receive response 
OK. 
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45. 5 Record implicit, explicit meanings for response 
46. 5 Transfer control depending  on response 
47. 5 Successful response: Return 
48. 5 Exit subdialog 

Current  rule: Y ~ usercan(Y),vocalize(Y) 
49. 4 Exit subdialog 

Current  rule: set(knob, Y) ~ find(knob),adjust(knob, Y) 
50. 3 Exit subdialog 

Current  rule: Tl_circuit_Test2(V) ~ set(knob,10), measurevoltage(121, 34, V) 

And so forth. The rest of the 330-step trace for processing the example 22-sentence 
dialog is available f rom the third author  on request. 
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