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We describe work toward the construction of a very wide-coverage probabilistic parsing system for 
natural language (NL), based on LR parsing techniques. The system is intended to rank the large 
number of syntactic analyses produced by NL grammars according to the frequency of occurrence 
of the individual rules deployed in each analysis. We discuss a fully automatic procedure for 
constructing an LR parse table from a unification-based grammar formalism, and consider the 
suitability of alternative LALR(1) parse table construction methods for large grammars. The 
parse table is used as the basis for two parsers; a user-driven interactive system that provides 
a computationally tractable and labor-efficient method of supervised training of the statistical 
information required to drive the probabilistic parser. The latter is constructed by associating 
probabilities with the LR parse table directly. This technique is superior to parsers based on 
probabilistic lexical tagging or probabilistic context-free grammar because it allows for a more 
context-dependent probabilistic language model, as well as use of a more linguistically adequate 
grammar formalism. We compare the performance of an optimized variant of Tomita's (1987) 
generalized LR parsing algorithm to an (efficiently indexed and optimized) chart parser. We 
report promising results of a pilot study training on 150 noun definitions from the Longman 
Dictionary of Contemporary English (LDOCE) and retesting on these plus a further 55 
definitions. Finally, we discuss limitations of the current system and possible extensions to deal 
with lexical (syntactic and semantic)frequency of occurrence. 

1. Wide-Coverage Parsing of Natural Language 

The task of syntactically analyzing substantial corpora of naturally occurring text and 
transcribed speech has become a focus of recent work. Analyzed corpora would be of 
great benefit in the gathering of statistical data regarding language use, for example to 
train speech recognition devices, in more general linguistic research, and as a first step 
toward robust wide-coverage semantic interpretation. The Alvey Natural Language 
Tools (ANLT) system is a wide-coverage lexical, morphological, and syntactic analysis 
system for English (Briscoe et al. 1987). Previous work has demonstrated that the ANLT 
system is, in principle, able to assign the correct parse to a high proportion of English 
noun phrases drawn from a variety of corpora. The goal of the work reported here 
is to develop a practical parser capable of returning probabilistically highly ranked 
analyses (from the usually large number of syntactically legitimate possibilities) for 
material drawn from a specific corpus on the basis of minimal (supervised) training 
and manual modification. 
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The first issue to consider is what the analysis will be used for and what constraints 
this places on its form. The corpus analysis literature contains a variety of proposals, 
ranging from part-of-speech tagging to assignment of a unique, sophisticated syntactic 
analysis. Our eventual goal is to recover a semantically and pragmatically appropriate 
syntactic analysis capable of supporting semantic interpretation. Two stringent require- 
ments follow immediately: firstly, the analyses assigned must determinately represent 
the syntactic relations that hold between all constituents in the input; secondly, they 
must be drawn from an a priori defined, well-formed set of possible syntactic analyses 
(such as the set defined by a generative grammar). Otherwise, semantic interpretation 
of the resultant analyses cannot be guaranteed to be (structurally) unambiguous, and 
the semantic operations defined (over syntactic configurations) cannot be guaranteed 
to match and yield an interpretation. These requirements immediately suggest that ap- 
proaches that recover only lexical tags (e.g. de Rose 1988) or a syntactic analysis that 
is the 'closest fit' to some previously defined set of possible analyses (e.g. Sampson, 
Haigh, and Atwell 1989), are inadequate (taken alone). " 

Pioneering approaches to corpus analysis proceeded on the assumption that com- 
putationally tractable generative grammars of sufficiently general coverage could not 
be developed (see, for example, papers in Garside, Leech, and Sampson 1987). How- 
ever, the development of wide-coverage declarative and computationally tractable 
grammars makes this assumption questionable. For example, the ANLT word and 
sentence grammar (Grover et al. 1989; Carroll and Grover 1989) consists of an English 
lexicon of approximately 40,000 lexemes and a 'compiled' fixed-arity term unification 
grammar containing around 700 phrase structure rules. Taylor, Grover, and Briscoe 
(1989) demonstrate that an earlier version of this grammar was capable of assigning 
the correct analysis to 96.8% of a corpus of 10,000 noun phrases extracted (without 
regard for their internal form) from a variety of corpora. However, although Taylor, 
Grover, and Briscoe show that the ANLT grammar has very wide coverage, they ab- 
stract away from issues of lexical idiosyncrasy by formimg equivalence classes of noun 
phrases and parsing a single token of each class, and they do not address the issues 
of 1) tuning a grammar to a particular corpus or sublanguage 2) selecting the correct 
analysis from the set licensed by the grammar and 3) providing reliable analyses of 
input outside the coverage of the grammar. Firstly, it is clear that vocabulary, idiom, 
and conventionalized constructions used in, say, legal language and dictionary defini- 
tions, will differ both in terms of the range and frequency of words and constructions 
deployed. Secondly, Church and Patil (1982) demonstrate that for a realistic grammar 
parsing realistic input, the set of possible analyses licensed by the grammar can be 
in the thousands. Finally, it is extremely unlikely that any generative grammar will 
ever be capable of correctly analyzing all naturally occurring input, even when tuned 
for a particular corpus or sublanguage (if only because of the synchronic idealization 
implicit in the assumption that the set of grammatical sentences of a language is well 
formed.) 

In this paper, we describe our approach to the first and second problems and 
make some preliminary remarks concerning the third (far harder) problem. Our ap- 
proach to grammar tuning is based on a semi-automatic parsing phase during which 
additions to the grammar are made manually and statistical information concerning 
the frequency of use of grammar rules is acquired. Using this statistical information 
and modified grammar, a breadth-first probabilistic parser is constructed. The latter 
is capable of ranking the possible parses identified by the grammar in a useful (and 
efficient) manner. However, (unseen) sentences whose correct analysis is outside the 
coverage of the grammar ren,.~in a problem. The feasibility and usefulness of our ap- 
proach has been investigated in a preliminary way by analyzing a ~small corpus of 
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noun definitions drawn from the Longman Dictionary of Contemporary English (LDOCE) 
(Procter 1978). This corpus was chosen because the vocabulary employed is restricted 
(to approximately 2,000 morphemes), average definition length is about 10 words (with 
a maximum of around 30), and each definition is independent, allowing us to ignore 
phenomena such as ellipsis. In addition, the language of definitions represents a rec- 
ognizable sublanguage, allowing us to explore the task of tuning a general purpose 
grammar. The results reported below suggest that probabilistic information concern- 
ing the frequency of occurrence of syntactic rules correlates in a useful (though not 
absolute) way with the semantically and pragmatically most plausible analysis. 

In Section 2, we briefly review extant work on probabilistic approaches to cor- 
pus analysis and parsing and argue the need for a more refined probabilistic model 
to distinguish distinct derivations. Section 3 discusses work on LR parsing of natu- 
ral language and presents our technique for automatic construction of LR parsers for 
unification-based grammars. Section 4 presents the method and results for construct- 
ing a LALR(1) parse table for the ANLT grammar and discusses these in the light of 
both computational complexity and other empirical results concerning parse table size 
and construction time. Section 5 motivates our interactive and incremental approach 
to semi-automatic production of a disambiguated training corpus and describes the 
variant of the LR parser used for this task. Section 6 describes our implementation of 
a breadth-first LR parser and compares its performance empirically to a highly op- 
timized chart parser for the same grammar, suggesting that (optimized) LR parsing 
is more efficient in practice for the ANLT grammar despite exponential worst case 
complexity results. Section 7 explains the technique we employ for deriving a proba- 
bilistic version of the LR parse table from the training corpus, and demonstrates that 
this leads to a more refined and parse-context-dependent probabilistic model capa- 
ble of distinguishing derivations that in a probabilistic context-free model would be 
equally probable. Section 8 describes and presents the results of our first experiment 
parsing LDOCE noun definitions, and Section 9 draws some preliminary conclusions 
and outlines ways in which the work described should be modified and extended. 

2. Probabilistic Approaches to Parsing 

In the field of speech recognition, statistical techniques based on hidden Markov mod- 
eling are well established (see e.g. Holmes 1988:129f for an introduction). The two main 
algorithms utilized are the Viterbi (1967) algorithm and the Baum-Welch algorithm 
(Baum 1972). These algorithms provide polynomial solutions to the tasks of finding 
the most probable derivation for a given input and a stochastic regular grammar, and 
of performing iterative re-estimation of the parameters of a (hidden) stochastic regu- 
lar grammar by considering all possible derivations over a corpus of inputs, respec- 
tively. Baker (1982) demonstrates that Baum-Welch re-estimation can be extended to 
context-free grammars (CFGs) in Chomsky Normal Form (CNF). Fujisaki et al. (1989) 
demonstrate that the Viterbi algorithm can be used in conjunction with the CYK pars- 
ing algorithm and a CFG in CNF to efficiently select the most probable derivation 
of a given input. Kupiec (1991) extends Baum-Welch re-estimation to arbitrary (non- 
CNF) CFGs. Baum-Welch re-estimation can be used with restricted or unrestricted 
grammars/models in the sense that some of the parameters corresponding to possible 
productions over a given (non-)terminal category set/set  of states can be given an 
initial probability of zero. Unrestricted grammars/models quickly become impracti- 
cal because the number of parameters requiring estimation becomes large and these 
algorithms are polynomial in the length of the input and number of free parameters. 
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Typically, in applications of Markov modeling in speech recognition, the derivation 
used to analyze a given input is not of interest; rather what is sought is the best 
(most likely) model of the input. In any application of these or similar techniques 
to parsing, though, the derivation selected is of prime interest. Baum (1972) proves 
that Baum-Welch re-estimation will converge to a local optimum in the sense that the 
initial probabilities will be modified to increase the likelihood of the corpus given 
the grammar and 'stabilize' within some threshold after a number of iterations over 
the training corpus. However, there is no guarantee that the global optimum will be 
found, and the a priori initial probabilities chosen are critical for convergence on useful 
probabilities (e.g. Lari and Young 1990). The main application of these techniques to 
written input has been in the robust, lexical tagging of corpora with part-of-speech 
labels (e.g. Garside, Leech, and Sampson 1987; de Rose 1988; Meteer, Schwartz, and 
Weischedel 1991; Cutting et al. 1992). 

Fujisaki et al. (1989) describe a corpus analysis experiment using a probabilistic 
CNF CFG containing 7550 rules on a corpus of 4206 sentences (with an average sen- 
tence length of approximately 11 words). The unsupervised training process involved 
automatically assigning probabilities to each CF rule on the basis of their frequency 
of occurrence in all possible analyses of each sentence of the corpus. These probabil- 
ities were iteratively re-estimated using a variant of the Baum-Welch algorithm, and 
the Viterbi algorithm was used in conjunction with the CYK parsing algorithm to effi- 
ciently select the most probable analysis after training. Thus the model was restricted in 
that many of the possible parameters (rules) defined over the (non-)terminal category 
set were initially set to zero and training was used only to estimate new probabilities 
for a set of predefined rules. Fujisaki et al. suggest that the stable probabilities will 
model semantic and pragmatic constraints in the corpus, but this will only be so if 
these correlate with the frequency of rules in correct analyses, and also if the 'noise' 
in the training data created by the incorrect parses is effectively factored out. Whether 
this is so will depend on the number of 'false positive' examples with only incorrect 
analyses, the degree of heterogeneity in the training corpus, and so forth. Fujisaki et 
al. report some results based on testing the parser on the corpus used for training. 
In 72 out of 84 sentences examined, the most probable analysis was also the correct 
analysis. Of the remainder, 6 were false positives and did not receive a correct parse, 
while the other 6 did but it was not the most probable. A success rate (per sentence) 
of 85% is apparently impressive, but it is difficult to evaluate properly in the absence 
of full details concerning the nature of the corpus. For example, if the corpus con- 
tains many simple and similar constructions, unsupervised training is more likely to 
converge quickly on a useful set of probabilities. 

Sharman, Jelinek, and Mercer (1990) conducted a similar experiment with a gram- 
mar in ID/LP format (Gazdar et al. 1985; Sharman 1989). ID/LP grammars separate the 
two types of information encoded in CF rules--immediate dominance and immediate 
precedence--into two rule types that together define a CFG. This allows probabilities 
concerning dominance, associated with ID rules, to be factored out from those con- 
cerning precedence, associated with LP rules. In this experiment, a supervised training 
regime was employed. A grammar containing 100 terminals and 16 nonterminals and 
initial probabilities based on the frequency of ID and LP relations was extracted from 
a manually parsed corpus of about one million words of text. The resulting probabilis- 
tic ID/LP grammar was used to parse 42 sentences of 30 words or less drawn from 
the same corpus. In addition, lexical syntactic probabilities were integrated with the 
probability of the ID/LP relations to rank parses. Eighteen of the parses were identical 
to the original manual analyses, while a further 19 were 'similar,' yielding a success 
rate of 88%. What is noticeable about this experiment is that the results are no better 
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than Fujisaki et al.'s unsupervised training experiment discussed above, despite the 
use of supervised training and a more sophisticated grammatical model. It is likely 
that these differences derive from the corpus material used for training and testing, 
and that the results reported by Fujisaki et al. will not be achieved with all corpora. 

Pereira and Schabes (1992) report an experiment using Baum-Welch re-estimation 
to infer a grammar and associated rule probabilities from a category set containing 
15 nonterminals and 48 terminals, corresponding to the Penn Treebank lexical tagset 
(Santorini 1990). The training data was 770 sentences, represented as tag sequences, 
drawn from the treebank. They trained the system in an unsupervised mode and also 
in a 'semi-supervised' mode, in which the manually parsed version of the corpus was 
used to constrain the set of analyses used during re-estimation. In supervised training 
analyses were accepted if they produced bracketings consistent but not necessarily 
identical with those assigned manually. They demonstrate that in supervised mode, 
training not only converges faster but also results in a grammar in which the most 
probable analysis is compatible with the manually assigned analysis of further test 
sentences drawn from the tree bank in a much greater percentage of cases--78% as 
opposed to 35%. This result indicates very clearly the importance of supervised train- 
ing, particularly in a context where the grammar itself is being inferred in addition to 
the probability of individual rules. 

In our work, we are concerned to utilize the existing wide-coverage ANLT gram- 
mar; therefore, we have concentrated initially on exploring how an adequate proba- 
bilistic model can be derived for a unification-based grammar and trained in a super- 
vised mode to effectively select useful analyses from the large space of syntactically 
legitimate possibilities. There are several inherent problems with probabilistic CFG 
(including ID/LP)-based systems. Firstly, although CFG is an adequate model of the 
majority of constructions occurring in natural language (Gazdar and Mellish 1989), 
it is clear that wide-coverage CFGs will need to be very large indeed, and this will 
lead to difficulties of (manual) development of consistent grammars and, possibly, to 
computational intractability at parse time (particularly during the already computa- 
tionally expensive training phase). Secondly, associating probabilities with CF rules 
means that information about the probability of a rule applying at a particular point 
in a parse derivation is lost. This leads to complications distinguishing the probability 
of different derivations when the same rule can be applied several times in more than 
one way. Grammar 1 below is an example of a probabilistic CFG, in which each pro- 
duction is associated with a probability and the probabilities of all rules expanding a 
given nonterminal category sum to one. 

Grammar 1 

i) s' -~ S (i.O) 

2) S -~ NP VP (I.0) 

3) VP -~ Vt NP (.4) 

4) VP -+ Vi (.6) 

5) NP -~ ProNP (.4) 

6) NP -+ Det N (.3) 

7) NP -~ NP PP (.3) 

8)  N --+ N N ( . 3 )  

9 )  PP --+ P NP ( 1 . 0 )  

~o) N -+ N© (.7) 
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a) 
s 

NP VP 

Det N Vt NP 

I I 
N@ ProNP 

b) 

d) e) 

N 

N N 

N N 

c) 
N 

N N 

N N 

0 
NP NP 

NP pp NP pp NP 

P NP NP PP ProNP 

NP PP P NP 

Figure 1 
Probabilistic context-free derivations. 

VP 

vt NP 

Det N 

I 

The probability of a particular parse is the product of the probabilities of each 
rule used in the derivation. Thus the probability of parse a) in Figure 1 is 0.0336. The 
probability of parse b) or c) must be identical though (0.09), because the same rule is 
applied twice in each case. Similarly, the probability of d) and e) is also identical (0.09) 
for essentially the same reason. However, these rules are natural treatments of noun 
compounding and prepositional phrase (PP) attachment in English, and the different 
derivations correlate with different interpretations. For example, b) would be an ap- 
propriate analysis for toy coffee grinder, while c) would be appropriate for cat food tin, 
and each of d) and e) yields one of the two possible interpretations of the man in the 
park with the telescope. We want to keep these structural configurations probabilistically 
distinct in case there are structurally conditioned differences in their frequency of oc- 
currence; as would be predicted, for example, by the theory of parsing strategies (e.g. 
Frazier 1988). Fujisaki et al. (1989) propose a rather inelegant solution for the noun 
compound case, which involves creating 5582 instances of 4 morphosyntactically iden- 
tical rules for classes of word forms with distinct bracketing behavior in noun-noun 
compounds. However, we would like to avoid enlarging the grammar and eventually 
to integrate probabilistic lexical information with probabilistic structural information 
in a more modular fashion. 

Probabilistic CFGs also will not model the context dependence of rule use; for 
example, an NP is more likely to be expanded as a pronoun in subject position than 
elsewhere (e.g. Magerman and Marcus 1991), but only one global probability can 
be associated with the relevant CF production. Thus the probabilistic CFG model 
predicts (incorrectly) that a) and f) will have the same probability of occurrence. These 
considerations suggest that we need a technique that allows use of a more adequate 
grammatical formalism than CFG and a more context-dependent probabilistic model. 
Our approach is to use the LR parsing technique as a natural way to obtain a finite- 
state representation of a non-finite-state grammar incorporating information about 
parse context. In the following sections, we introduce the LR parser and in Section 8 
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we demonstrate that LR parse tables do provide an appropriate amount of contextual 
information to solve the problems described above. 

3. LR Parsing in a Unification-Based Grammar Framework 

The heart of the LR parsing technique is the parse table construction algorithm, which 
is the most complex and computationally expensive aspect of LR parsing. Much of 
the attraction of the technique stems from the fact that the real work takes place in a 
precompilation phase and the run time behavior of the resulting parser is relatively 
simple and directed. An LR parser finds the 'rightmost derivation in reverse,' for a 
given string and CF grammar. The precompilation process results in a parser control 
mechanism that enables the parser to identify the 'handle,' or appropriate substring 
in the input to reduce, and the appropriate rule of the grammar with which to per- 
form the reduction. The control information is standardly encoded as a parse table 
with rows representing parse states, and columns terminal and nonterminal symbols 
of the grammar. This representation defines a finite-state automaton. Figure 2 gives 
the LALR(1) parse table for Grammar 1. (LALR(1) is the most commonly used variant 
of LR since it usually provides the best trade-off between directed rule invocation and 
parse table size.) If the grammar is in the appropriate LR class (a stronger restric- 
tion than being an unambiguous CFG), the automaton will be deterministic; however, 
some algorithms for parse table construction are also able to build nondeterministic 
automata containing action conflicts for ambiguous CFGs. Parse table construction is 
discussed further in Section 4. 

Actions 

State $ Det N@ P ProNP Vi Vt 
........................................................... 

0 s3 s2 
........................................................... 

1 rl 
........................................................... 

2 r5 r5 r5 r5 
........................................................... 

3 s4 
........................................................... 

4 rl0 rl0 r10 rl0 rl0 
........................................................... 

5 r6 s4 r6 r6 r6 
........................................................... 

6 r8 rS/s4 r8 r8 r8 
........................................................... 

7 s8 s13 sll 
........................................................... 

8 s3 s2 
........................................................... 

9 r9 rg/s8 r9 r9 
........................................................... 

i0 r7 r7 r7 r7 
........................................................... 

ii s3 s2 
........................................................... 

12 r3 s8 
........................................................... 

13 r4 
........................................................... 

14 r2 
........................................................... 

15 acc 

Figure 2 
LALR(1) parse table for Grammar 1. 

Gotos 

State N NP PP S S' VP 
....................................... 

0 7 1 15 
....................................... 

1 
....................................... 

2 
....................................... 

3 5 
....................................... 

4 
....................................... 

5 6 
....................................... 

6 6 
....................................... 

7 I0 14 
....................................... 

8 9 
....................................... 

9 i0 
....................................... 

i0 
....................................... 

ii 12 
....................................... 

12 i0 
....................................... 

13 
....................................... 

14 
....................................... 

15 
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3.1 Creating LR Parse Tables from Unification Grammars 
Tomita (1987) describes a system for nondeterministic LR parsing of context-free gram- 
mars consisting of atomic categories, in which each CF production may be augmented 
with a set of tests (which perform similar types of operations to those available in 
a unification grammar). At parse time, whenever a sequence of constituents is about 
to be reduced into a higher-level constituent using a production, the augmentation 
associated with the production is invoked to check syntactic or semantic constraints 
such as agreement, pass attribute values between constituents, and construct a rep- 
resentation of the higher-level constituent. (This is the standard approach to parsing 
with attribute grammars). The parser is driven by an LR parse table; however, the 
table is constructed solely from the CF portion of the grammar, and so none of the 
extra information embodied in the augmentations is taken into account during its 
construction. Thus the predictive power of the parser to select the appropriate rule 
given a specific parse history is limited to the CF portion of the grammar, which must 
be defined manually by the grammar writer. This requirement places a greater load 
on the grammar writer and is inconsistent with most recent unification-based gram- 
mar formalisms, which represent grammatical categories entirely as feature bundles 
(e.g. Gazdar et al. 1985; Pollard and Sag 1987; Zeevat, Calder, and Klein 1987). In 
addition, it violates the principle that grammatical formalisms should be declarative 
and defined independently of parsing procedure, since different definitions of the CF 
portion of the grammar will, at least, effect the efficiency of the resulting parser and 
might, in principle, lead to nontermination on certain inputs in a manner similar to 
that described by Shieber (1985). 

In what follows, we will assume that the unification-based grammars we are con- 
sidering are represented in the ANLT object grammar formalism (Briscoe et al. 1987). 
This formalism is a notational variant of Definite Clause Grammar (e.g. Pereira and 
Warren 1980), in which rules consist of a mother category and one or more daughter 
categories, defining possible phrase structure configurations. Categories consist of sets 
of feature name-value pairs, with the possibility of variable values, which may be 
bound within a rule, and of category-valued features. Categories are combined using 
fixed-arity term unification (Prolog-style). The results and techniques we report be- 
low should generalize to many other unification-based formalisms. An example of a 
possible ANLT object grammar rule is: 

IN -, V +, BAR 2, PER x, PLU y, VFORM z] --+ 
[N +, V -, BAR 2, PER x, PLU y, CASE Nom] 
[N -, V +, BAR i, PER x, PLU y, VFORM z] 

This rule provides a (simple) analysis of the structure of English clauses, corresponding 
to S --* NP VP, using a feature system based loosely on that of GPSG (Gazdar et al. 
1985). In Tomita's LR parsing framework, each such rule must be manually converted 
into a rule of the following form in which some subpart of each category has been 
replaced by an atomic symbol. 

Vb[BAR 2, PER x, PLU y, VFOKM z] -~ 
Nn[BAR 2, PER x, PLU y, CASE Nom] 
Vb[BAR I, PER x, PLU y, VFORM z] 

However, it is not obvious which features should be so replaced--why not include 
BAR and CASE? It will be difficult for the grammar writer to make such substitutions 
in a consistent way, and still more difficult to make them in an optimal way for the 
purposes of LR parsing, since both steps involve consideration and comparison of all 
the categories mentioned in each rule of the grammar. 
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Constructing the LR parse table directly and automatically from a unification 
grammar would avoid these drawbacks. In this case, the LR parse table would be 
based on complex categories, with unification of complex categories taking the place 
of equality of atomic ones in the standard LR parse table construction algorithm (Os- 
borne 1990; Nakazawa 1991). However, this approach is computationally prohibitively 
expensive: Osborne (1990:26) reports that his implementation (in HP Common Lisp 
on a Hewlett Packard 9000/350) takes almost 24 hours to construct the LR(0) states 
for a unification grammar of just 75 productions. 

3.2 Construct ing  a CF Backbone  from a Unif icat ion Grammar 
Our approach, described below, not only extracts unification information from complex 
categories, but is computationally tractable for realistic sized grammars and also safe 
from inconsistency. We start with a unification grammar and automatically construct 
a CF 'backbone' of rules containing categories with atomic names and an associated 
'residue' of feature name-value pairs. Each backbone grammar rule is generally in di- 
rect one-to-one correspondence with a single unification grammar rule. The LR parse 
table is then constructed from the CF backbone grammar. The parser is driven by this 
table, but in addition when reducing a sequence of constituents the parser performs 
the unifications specified in the relevant unification grammar rule to form the cate- 
gory representing the higher-level constituent, and the derivation fails if one of the 
unifications fails. Our parser is thus similar to Tomita's (1987), except that it performs 
unifications rather than invoking CF rule augmentations; however, the main difference 
between our approach and Tomita's is the way in which the CF grammar that drives 
the parser comes into being. 

Even though a unification grammar will be, at best, equivalent to a very large 
(and at worst, if features are employed in recursive or cyclic ways, possibly infinite) 
set of atomic-category CF productions, in practice we have obtained LR parsers that 
perform well from backbone grammars containing only about 30% more productions 
than the original unification grammar. The construction method ensures that for any 
given grammar the CF backbone captures at least as much information as the optimal 
CFG that contains the same number of rules as the unification grammar. Thus the 
construction method guarantees that the resulting LR parser will terminate and will 
be as predictive as the source grammar in principle allows. 

Building the backbone grammar is a two-stage process: 

. Compute the largest maximally specific set (in terms of subsumption) of 
disjoint categories covering the whole grammar and assign to each 
category a distinct atomic category name. That is: 

initialize disjoint-set to be empty; 

for each category C in grammar 

let disjoint-merge be the categories in disjoint-set 

which unify with C; 

if disjoint-merge is empty 

then add C to disjoint-set; 

else replace all elements of disjoint-merge in disjoint-set 
with the single most specific category which subsumes C 

and all categories in disjoint-merge; 
assign a distinct name to each category in disjoint-set. 
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IN -, V +, BAR 2, PER x, PLU y, VFORM z] --> 

[N +, V -, BAR 2, PER x, PLU y, CASE Nom] 

[N -, V +, BAR i, PER x, PLU y, VFOKM z] 

IN +, V -, BAR 2, PER x, PLU y, CASE c] --> 

[SUBCAT DET] 

[N +, V -, BAR I, PER x, PLU y, CASE c] 

[N -, V +, BAR I, PER x, PLU y, VFORM z] --> 

[N -, V +, BAR O, PER x, PLU y, VFORM z, SUBCAT INTRANS] 

IN -, V +, BAR i, PER x, PLU y, VFORM z] --> 

[N -, V +, BAR O, PER x, PLU y, VFOKM z, SUBCAT TRANS] 

[N +, V -, BAR 2, PER x, PLU y, CASE Acc] 

Figure 3 
ANLT object grammar rules. 

{S-l: 

NP-2: 

VP-3: 

DET-4: 

NI-5: 

V-6: 

V-7: 

[N -, V +, BAR 2, PER x, PLU y, VFORM z] 

[N +, V -, BAR 2, PER x, PLU y, CASE c] 

IN -, V +, BAR i, PER x, PLU y, VFORM z] 

[SUBCAT DET] 

IN +, V -, BAR i, PER x, PLU y, CASE c] 

[N -, V +, BAK O, PER x, PLU y, VFOKM z, SUBCAT INTRANS] 

[N -, V +, BAR O, PEK x, PLU y, VFOR/~ z, SUBCAT TKANS]} 

Figure 4 
Categories in disjoint-set. 

S-1 - - >  NP-2 VP-3 
NP-2 - - >  DET-4 N$-5 
VP-3 - - >  V-6 
VP-3 - - >  V-7 NP-2 

Figure 5 
Backbone grammar corresponding to object grammar. 

. For each unification g r a m m a r  rule, create a backbone g r a m m a r  rule 
containing atomic categories, each atomic category being the name  
assigned to the category in the disjoint category set that unifies wi th  the 
cor responding  category in the unification g r a m m a r  rule: 

for each rule K of form C1 -~ C2 ... Cn in unification grammar 

add a rule B of form B1 -~ B2 ... Bn to backbone grammar 

where Bi is the name assigned to the (single) category in 

disjoint-set which unifies with Ci, for i=l, n. 

For example,  for the rules in Figure 3 (corresponding loosely to S ---* NP VP, NP -~ 
Vi and VP --* Vt NP), step 1 wou ld  create the disjoint-set shown  in Figure 4. (Note 
that  the value for CASE on the NP categories in the g r a m m a r  has 'col lapsed '  d o w n  to a 
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N2 

either kin 
N2 -OR N2 -OR+ 

or lee N2-OR 

or sandy 

Figure 6 
Backbone parse tree for either kim or lee or sandy using rule N2 --> N2 [C0NJ EITHER], 
N2 [CONJ OR] +. 

variable, but that the two V categories remain distinct). Figure 5 shows the backbone 
rules that would be built in step 2. 

Algorithms for creating LR parse tables assume that the terminal vocabulary of 
the grammar is distinct from the nonterminal one, so the procedure described above 
will not deal properly with a unification grammar rule whose mother category is 
assumed elsewhere in the grammar to be a lexical category. The modification we 
make is to automatically associate two different atomic categories, one terminal and 
one nonterminal, with such categories, and to augment the backbone grammar with 
a unary rule expanding the nonterminal category to the terminal. 

Two other aspects of the ANLT grammar formalism require further minor elabora- 
tions to the basic algorithm: firstly, a rule may introduce a gap by including the feature 
specification [NULL +] on the gapped daughter--for each such daughter an extra rule 
is added to the backbone grammar expanding the gap category to the null string; 
secondly, the formalism allows Kleene star and plus operators (Gazdar et al. 1985)-- 
in the ANLT grammar these operators are utilized in rules for coordination. A rule 
containing Kleene star daughters is treated as two rules: one omitting the daughters 
concerned and one with the daughters being Kleene plus. A new nonterminal cate- 
gory is created for each distinct Kleene plus category, and two extra rules are added to 
the backbone grammar to form a right-branching binary tree structure for it; a parser 
can easily be modified to flatten this out during processing into the intended flat se- 
quence of categories. Figure 6 gives an example of what such a backbone tree looks 
like. Grammars written in other, more low-level unification grammar formalisms, such 
as PATR-I1 (Shieber 1984), commonly employ treatments of the type just described to 
deal with phenomena such as gapping, coordination, and compounding. However, 
this method both allows the grammar writer to continue to use the full facilities of the 
ANLT formalism and allows the algorithmic derivation of an appropriate backbone 
grammar to support LR parsing. 

The major task of the backbone grammar is to encode sufficient information (in 
the atomic categoried CF rules) from the unification grammar to constrain the appli- 
cation of the latter's rules at parse time. The nearly one-to-one mapping of unification 
grammar rules to backbone grammar rules described above works quite well for the 
ANLT grammar, with only a couple of exceptions that create spurious shift-reduce con- 
flicts during parsing, resulting in an unacceptable degradation in performance. The 
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phenomena concerned are coordination and unbounded dependency constructions. 
In the ANLT grammar three very general rules are used to form nominal, adjec- 

tival, and prepositional phrases following a conjunction; the categories in these rules 
lead to otherwise disjoint categories for conjuncts being merged, giving rise to a set of 
overly general backbone grammar rules. For example, the rule in the ANLT grammar 
for forming a noun phrase conjunct introduced by a conjunction is 

N2[CONJ @con] --> [SUBCAT @con, C0NJN +], H2. 

The variable value for the C0NJ feature in the mother means that all N2 categories 
specified for this feature (e.g. N2 [C0NJ EITHER], N2 [C0NJ NULL] ) are generalized to the 
same category. This results in the backbone rules, when parsing either kim or lee helps, 
being unable, after forming a N2 [C0NJ EITHER] for either kim, to discriminate between 
the alternatives of preparing to iterate this constituent (as in the phrase kim, lee, or sandy 
helps where kim would be N2 [C0NJ NULL]), or shifting the next word or to start a new 
constituent. We solve this problem by declaring C0NJ to be a feature that may not have 
a variable value in an element of the disjoint category set. This directs the system to 
expand out each unification grammar rule that has a category containing this feature 
with a variable value into a number of rules fully specified for the feature, and to 
create backbone rules for each of these. There are eight possible values for C0NJ in the 
grammar, so the general rule for forming a nominal conjunct given above, for example, 
ends up being represented by a set of eight specialized backbone grammar rules. 

In the grammar, unbounded dependency constructions (UBCs) are analyzed by 
propagating the preposed constituent through the parse tree as the value of the SLASH 
feature, to link it with the 'gap' that appears in the constituent's normal position. All 
nonlexical major categories contain the feature, rules in the grammar propagating it 
between mother and a single daughter; other daughters are marked [SLASH [NOSLASH 
+] ] indicating that the daughter is not 'gapped." Backbone grammar construction 
would normally lose the information in the unification grammar about where gaps 
are allowed to occur, significantly degrading the performance of a parser. To carry 
the information over into the backbone we declare that wherever SLASH occurs with a 
variable value, the value should be expanded out into two values: [NOSLASH +], and 
a notional value unifying with anything except [NOSLASH +]. We have also experi- 
mented with a smaller grammar employing 'gap threading' (e.g. Pereira and Shieber 
1987), an alternative treatment of UBCs. We were able to use the same techniques for 
expanding out and inference on the values of the (in this case atomic) features used 
for threading the gaps to produce a backbone grammar (and parse table) that had the 
same constraining power with respect to gaps as the original grammar. 

To date, we have not attempted to compute CF backbones for grammars written 
in formalisms with minimal phrase structure components and (almost) completely 
general categories, such as HPSG (Pollard and Sag 1987) and UCG (Zeevat, Calder, 
and Klein 1987); more extensive inference on patterns of possible unification within 
nested categories and appropriate expanding-out of the categories concerned would 
be necessary for an LR parser to work effectively. This and other areas of complexity 
in unification-based formalisms need further investigation before we can claim to have 
developed a system capable of producing a useful LR parse table for any unification- 
based grammar. In particular, declaring certain category-valued features so that they 
cannot take variable values may lead to nontermination in the backbone construction 
for some grammars. However, it should be possible to restrict the set of features that 
are considered in category-valued features in an analogous way to Shieber's (1985) 
restrictors for Earley's (1970) algorithm, so that a parse table can still be constructed. 
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4. Building LR Parse Tables for Large NL Grammars 

The backbone grammar generated from the ANLT grammar is large: it contains al- 
most 500 distinct categories and more than 1600 productions. When we construct 
the LALR(1) parse table, we therefore require an algorithm with practical time and 
space requirements. In the LR parsing literature there are essentially two approaches 
to constructing LALR(1) parse tables. One approach is graph-based (DeRemer and 
Pennello 1982), transforming the parse table construction problem to a set of well- 
known directed graph problems, which in turn are solvable by efficient algorithms. 
Unfortunately this approach does not work for grammars that are not LR(k) for any 
k (DeRemer and Pennello 1982:633), for example, ambiguous grammars. We therefore 
broadly follow the alternative approach of Aho, Sethi, and Ullman (1986), but with a 
number of optimizations: 

. 

. 

. 

Constructing the LR(0) sets of items: we compute LR(0) states containing 
only kernel items (the item IS' --> S], where S' is the start symbol, 
and all items that have a symbol to the left of the dot), since nonkernel 
items can be cached in a table and retrieved only if needed. Being able to 
partition the items in this way is especially useful with the ANLT 
grammar, since the mean number of kernel items in each LR(0) set is 
about 9, whereas the mean number of nonkernel items per state is more 
than 400. 

Computing the LALR(1) lookaheads for each item: the conventional 
approach is to compute the LR(1) closure of each kernel item in order to 
determine the lookaheads that are generated spontaneously and those that 
propagate from other items. However, in an initial implementation we 
found that the LR(1) closure operation as described by Aho et al. was 
too expensive to be practicable for the number and size of LR(0) states 
we deal with, even with schemes for caching the closures of nonkernel 
items once they had been computed. Instead, we have moved to an 
algorithm devised by Kristensen and Madsen (1981), which avoids 
performing the LR(1) closure operation. The crucial advantage of this 
algorithm is the ability, at any stage in the computation, to tell whether 
the calculation of the lookahead set for a particular item has been 
completed, is underway, or has not yet started. This means that even 
partially computed lookahead sets can be cached (with the computation 
yet to be done explicitly marked), and that items whose lookahead sets 
are found to subsume those of others are able to just copy the results 
from the subsumed sets. 

Constructing the parse table: the LALR(1) parse table is derived 
straightforwardly from the lookahead sets, although to keep the size of 
the parse table within reasonable bounds we chose appropriate data 
structures to represent the goto entries and shift and reduce actions. For 
the ANLT backbone grammar there are approximately 150,000 goto 
entries (nonterminal--state pairs), 440,000 shift actions (terminal--state 
pairs), and 670,000 reduce actions (terminal--rule-number pairs); 
however, of the goto entries only 2,600 are distinct and of the shift 
actions only 1,100 are distinct; most states contain just reduce or just 
shift actions, and in any one state very few different rules are involved 
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in reduce actions. 1 The majority of states contain just reduce or just shift 
actions, and in any one state very  few different rules are involved in 
reduce actions. Taking advantage of the characteristics of this 
distribution, in each state we represent (in Co m m o n  Lisp) 

(a) a set of goto entries as a list of (nonterminal--state)  conses 
sorted into a canonical order, list elements and tails of lists 
shared where  possible be tween states, 

(b) a set of shift actions as a list containing a single (large) integer 
(the list shared when  possible be tween states), where  if the state 
shifts to state s on lookahead t, the element indexed by t in an 
auxiliary array will contain s together with a number  n, and bit 
n in the binary representat ion of the integer will be 1, 

(c) a set of reduce actions as, for each rule involved, a cons whose 
second element  is the rule number  and whose  first is a bit-vector 
(shared when  possible be tween states) whose  nth bit is 1 if the 
reduce should occur with the nth terminal as lookahead, 

(d) an accept action as a cons with the first e lement  being the 
lookahead symbol. 

For the grammars  we have investigated, this representat ion achieves a similar 
order  of space saving to the comb vector representat ion suggested by Aho, Sethi, and 
Ullman (1986:244ff) for unambiguous  grammars  (see Klein and Martin [1989] for a 
survey of representat ion techniques). The parse table for the ANLT grammar  occupies 
approximately  360 Kbytes of memory,  and so represents each action (shift, reduce, or 
goto) in an average of less than 2.3 bits. In contrast to conventional  techniques, though,  
we maintain a faithful representat ion of the parse table, not replacing error entries with 
more convenient  nonerror  ones in order  to save extra space. Our  parsers are thus able 
to detect failures as soon as theoretically possible, an impor tant  efficiency feature when  
parsing nondeterminist ically with ambiguous  grammars,  and a t ime-saving feature 
when  parsing interactively with them (see next section). 

Table 1 compares  the size of the LALR(1) parse table for the ANLT grammar  
with others reported in the literature. From these figures, the ANLT grammar  is more  
than twice the size of Tomita's (combined morphological  and syntactic) g rammar  for 
Japanese (Tomita 1987:45). The grammar  itself is about  one order  of magni tude  bigger 
than that of a typical p rogramming  language, but  the LALR(1) parse table, in terms 
of number  of actions, is two orders of magni tude  bigger. Al though Tomita (1984:357) 
anticipates LR parsing techniques being applied to large NL grammars  writ ten in 
formalisms such as GPSG, the sizes of parse tables for such grammars  grow more 
rapidly than he predicts. However ,  for large real-world NL grammars  such as the 
ANLT, the table size is still quite manageable  despite Johnson's  (1989) worst-case 
complexity result of the number  of LR(0) states being exponential  on g rammar  size 
(leading to a parser with exponential ly bad time performance).  We have, therefore, 
not found it necessary to use Schabes' (1991a) LR-like tables (with number  of states 
guaranteed to be polynomial  even in the worst  case). 

1 of the 3,710 states, 2,200 contain at least 1 action conflict, with a median of 34 conflicts per state. There 
are a total of 230,000 shift-reduce conflicts and 220,000 reduce-reduce conflicts, fairly uniformly 
distributed across the terminal lookahead symbols. In half of the latter conflicts, the rules involved 
have an identical number of daughters. One implication of this finding is that an approach to conflict 
resolution such as that of Shieber (1983) where reduce-reduce conflicts are resolved in favor of the 
longer reduction may not suffice to select a unique analysis for realistic NL grammars. 
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Table 1 
Sizes of grammar and LALR(1) parse tables. 

Grammar Number of CFG Number of Number of Total number 
rules/categories LR(0) states kernel items of actions 

Pascal 2 158 / 124 275 ? 2883 
Modula-23 227 / 194 373 420 3238 
Tomita, Japanese 800 / ? ? ? ? 
ANLT (689 PS rules) 1641 / 496 3710 34836 1258451 

Table 2 
Timings for LALR(1) parse table construction (in seconds of CPU time on 
a Sparc-Server 390 running Sun Common Lisp). 

Grammar Backbone LR(0) state lookahead parse table 
computation construction computation construction 

ANLT 150 710 4200 780 

As might be expected, and Table 2 illustrates, parse table construction for large 
grammars is CPU-intensive. As a rough guide, Grosch (1990) quotes LALR(1) table 
construction for a grammar for Modula-2 taking from about 5 to 50 seconds, so scaling 
up two orders of magnitude, our timings for the ANLT grammar fall in the expected 
region. 

5. Interactive Incremental Deterministic Parsing 

5.1 Constructing a Disambiguated Training Corpus 
The major problem with attempting to employ a disambiguated training corpus is to 
find a way of constructing this corpus in an error-free and resource-efficient fashion. 
Even manual assignment of lexical categories is slow, labor-intensive, and error-prone. 
The greater complexity of constructing a complete parse makes the totally manual ap- 
proach very unattractive, if not impractical, Sampson (1987:83) reports that it took 2 
person-years to produce the 'LOB tree bank' of 50,000 words. Furthermore, in that 
project, no attempt was made to ensure that the analyses were well formed with re- 
spect to a generative grammar. Attempting to manually construct analyses consistent 
with a grammar of any size and sophistication would place an enormous additional 
load on the analyst. Leech and Garside (1991) discuss the problems that arise in manual 
parsing of corpora concerning accuracy and consistency of analyses across time and 
analyst, the labor-intensive nature of producing detailed analyses, and so forth. They 
advocate an approach in which simple 'skeleton' parses are produced by hand from 
previously tagged material, with checking for consistency between analysts. These 
skeleton analyses can then be augmented automatically with further information im- 
plicit in the lexical tags. While this approach may well be the best that can be achieved 

2 Figures given by Klein and Martin (1989). 
3 Grammar from Spector (1983) with optionality expanded out; statistics taken from a parse table 

constructed by the second author. 
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with fully manual techniques, it is still unsatisfactory in several respects. Firstly, the 
analyses are crude, while we would like to automatically parse with a grammar capa- 
ble of assigning sophisticated semantically interpretable ones; but it is not clear how 
to train an existing grammar with such unrelated analyses. Secondly, the quality of 
any grammar obtained automatically from the parsed corpus is likely to be poor be- 
cause of the lack of any rigorous checks on the form of the skeleton parses. Such a 
grammar might, in principle, be trained from the parsed corpus, but there are still 
likely to be small mismatches between the actual analysis assigned manually and any 
assigned automatically. For these reasons, we decided to attempt to produce a training 
corpus using the grammar that we wished ultimately to train. As long as the method 
employed ensured that any analysis assigned was a member of the set defined by the 
grammar, these problems during training should not arise. 

Following our experience of constructing a substantial lexicon for the ANLT gram- 
mar from unreliable and indeterminate data (Carroll and Grover 1989), we decided 
to construct the disambiguated training corpus semi-automatically, restricting manual 
interaction to selection between alternatives defined by the ANLT grammar. One obvi- 
ous technique would be to generate all possible parses with a conventional parser and 
to have the analyst select the correct parse from the set returned (or reject them all). 
However, this approach places a great load on the analyst, who will routinely need to 
examine large numbers of parses for given sentences. In addition, computation of all 
possible analyses is likely to be expensive and, in the limit, intractable. 

Briscoe (1987) demonstrates that the structure of the search space in parse deriva- 
tions makes a left-to-right, incremental mode of parse selection most efficient. For 
example, in noun compounds analyzed using a recursive binary-branching rule (N 
--* N N) the number of analyses correlates with the Catalan series (Church and Patil, 
1982), 4 so a 3-word compound has 2 analyses, 4 has 5, 5 has 14, 9 has 1430, and so 
forth. However, Briscoe (1987:154f) shows that with a simple bounded context parser 
(with one word lookahead) set up to request help whenever a parse indeterminacy 
arises, it is possible to select any of the 14 analyses of a 5-word compound with a 
maximum of 5 interactions and any of the 1430 analyses of a 9-word compound with 
around 13 interactions. In general, resolution of the first indeterminacy in the input 
will rule out approximately half the potential analyses, resolution of the next, half 
of the remaining ones, and so on. For 'worst case' CF ambiguities (with O(n 3) com- 
plexity) this approach to parse selection appears empirically to involve numbers of 
interactions that increase at little more than linear rate with respect to the length of 
the input. It is possible to exploit this insight in two ways. One method would be to 
compute all possible analyses represented as a (packed) parse forest and ask the user 
to select between competing subanalyses that have been incorporated into a success- 
ful analysis of the input. In this way, only genuine global syntactic ambiguities would 
need to be considered by the user. However, the disadvantage of this approach is that 
it relies on a prior (and perhaps CPU-intensive) on-line computation of the full set of 
analyses. The second method involves incremental interaction with the parser during 
the parse to guide it through the search space of possibilities. This has the advantage 
of being guaranteed to be computationally tractable but the potential disadvantage 
of requiring the user to resolve many local syntactic ambiguities that will not be 

4 The nth Catalan number  is given by 

Cn=(2n) 1 
n n + l "  
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incorporated into a successful analysis. Nevertheless, using LR techniques this prob- 
lem can be minimized and, because we do not wish to develop a system that must 
be able to compute all possible analyses (at some stage) in order to return the most 
plausible one, we have chosen the latter incremental method. 

5.2 The Interactive LR Parsing System 
The interactive incremental parsing system that we implemented asks the user for a 
decision at each choice point during the parse. However, to be usable in practice, such 
a system must avoid, as far as possible, presenting the user with spurious choices 
that could be ruled out either by using more of the left context or by looking at 
words yet to be parsed. Our approach goes some way to addressing these points, 
since the parser is as predictive as the backbone grammar and LR technique allow, 
and the LALR(1) parse table allows one word lookahead to resolve some ambiguities 
(although, of course, the resolution of a local ambiguity may potentially involve an 
unlimited amount of lookahead; e.g. Briscoe 1987:125ff). In fact, LR parsing is the most 
effectively predictive parsing technique for which an automatic compilation procedure 
is known, but this is somewhat undermined by our use of features, which will block 
some derivations so that the valid prefix property will no longer hold (e.g. Schabes 
1991b). Extensions to the LR technique, for example those using LR-regular grammars 
(Culic and Cohen 1973; Bermudez 1991), might be used to further cut down on inter- 
actions; however, computation of the parse tables to drive such extended LR parsers 
may prove intractable for large NL grammars (Hektoen 1991). 

An LR parser faces an indeterminacy when it enters a state in which there is more 
than one possible action, given the current lookahead. In a particular state there cannot 
be more than one shift or accept action, but there can be several reduce actions, each 
specifying a reduction with a different rule. When parsing, each shift or reduce choice 
must lead to a different final structure, and so the indeterminacy represents a point of 
syntactic ambiguity (although it may not correspond to a genuinely global syntactic 
ambiguity in the input, on account of the limited amount of lookahead). 

In the ANLT grammar and lexicon, lexical ambiguity is at least as pervasive as 
structural ambiguity. A naive implementation of an interactive LR parser would ask the 
user the correct category for each ambiguous word as it was shifted; many open-class 
words are assigned upwards of twenty lexical categories by the ANLT lexicon with 
comparatively fine distinctions between them, so this strategy would be completely 
impracticable. To avoid asking the user about lexical ambiguity, we use the technique 
of preterminal delaying (Shieber 1983), in which the assignment of an atomic preterminal 
category to a lexical item is not made until the choice is forced by the use of a particular 
production in a later reduce action. After shifting an ambiguous lexical item, the parser 
enters a state corresponding to the union of states that would be entered on shifting 
the individual lexical categories. (Each union of states will in practice be small, since 
it being otherwise would imply that the current context was completely failing to 
constrain the following input). Since, in general, several unification grammar categories 
for a single word may be subsumed by a single atomic preterminal category, we extend 
Shieber's technique so that it deals with a grammar containing complex categories by 
associating a set of alternative analyses with each state (not just one), and letting the 
choice between them be forced by later reduce actions, just as with atomic preterminal 
categories. 

In order not to overload the user with spurious choices concerning local ambi- 
guities, the parser does not request help immediately after it reaches a parse action 
conflict. Instead the parser pursues each option in a limited breadth-first fashion and 
only requests help with analysis paths that remain active. In our current system this 
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Table 3 
Amount of user interaction parsing the act of putting an end to 
something with the ANLT grammar using different amounts of 
action conflict lookahead. 

action conflict number of 
lookahead choices 

mean number of options 
in each choice 

none 6 2.3 
1 choice 5 2.2 
2 choices 3 2.0 
3 choices 2 2.0 
4 choices 1 2.0 

type of lookahead is limited to up to four indeterminacies ahead. Such checking is 
cheap in terms of machine resources and very effective in cutting down both the 
number of choice points the user is forced to consider and also the average num- 
ber of options in each one. Table 3 shows the reduction in user interaction achieved 
by increasing the amount of lookahead in our system. Computation of the backbone 
grammar generates extra rules (as previously described to deal with lexical categories 
used as rule mothers and daughters specified to be repeatable an indefinite number of 
times) that do not correspond directly to single unification grammar rules. At choice 
points, reductions involving these rules are not presented to the user; instead the 
system applies the reductions automatically, proceeding until the next shift action or 
choice point is reached, including these options in those presented to the user. 

The final set of measures taken to reduce the amount of interaction required with 
the user is to ask if the phrase being parsed contains one or more gaps or instances of 
coordination before presenting choices involving either of these phenomena, blocking 
consideration of rules on the basis of the presence of particular feature-value pairs. 
Figure 7 shows the system parsing a phrase with a four-choice lookahead. The result- 
ing parse tree is displayed with category aliases substituted for the actual complex 
categories. 

The requests for manual selection of the analysis path are displayed to the ana- 
lyst in as terse a manner as possible, and require knowledge of the ANLT grammar 
and lexicon to be resolved effectively. Figure 8 summarizes the amount of interaction 
required in the experiment reported below for parsing a set of 150 LDOCE noun def- 
initions with the ANLT grammar. To date, the largest number of interactions we have 
observed for a single phrase is 55 for the (30-word) LDOCE definition for youth hostel: 

a hostel for usu young people walking around country areas on holiday for 
which they pay small amounts of money to the youth hostels association or the 
international yha. 

Achieving the correct analysis interactively took the first author about 40 minutes 
(including the addition of two lexical entries). Definitions of this length will often 
have many hundreds or even thousands of parses; computing just the parse forest 
for this definition takes of the order of two hours of CPU time (on a DEC 3100 Unix 
workstation). Since in a more general corpus of written material the average sentence 
length is likely to be 30--40 words, this example illustrates clearly the problems with 
any approach based on post hoc on-line selection of the correct parse. However, using 
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Parse>> the act of putting an end to something 

Are there any gaps in this phrase? n 

Ambiguity in state 27/193 with (of putting an end to 

something $) remaining in buffer. Analysis so far is the, act. 

I: Shift word 'of' onto stack. 

2: Reduce end I analyses with rule NI/N (giving category NI-9). 

Which choice (i - 2 / abort / finish)? 2 

2384 msec CPU 

2700 unifications, 2025 failures, i parse 

(N2 the 

(N2 (NI act 

(P2 (PI of 

(VP (V putting) (N2 an (N2 (NI end))) 

(P2 (PI to (N2 something))))))))) 

Figure 7 
An interactive parse. 
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Figure 8 
Numbers of definitions requiring particular amounts of interaction. 
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the incremental approach to semi-automatic parsing we have been able to demonstrate 
that the correct analysis is among this set. Furthermore, a probabilistic parser such as 
the one described later may well be able to compute this analysis in a tractable fashion 
by extracting it from the parse forest. (To date, the largest example for which we have 
been able to compute all analyses had approximately 2500). 

The parse histories resulting from semi-automatic parsing are automatically stored 
and can be used to derive the probabilistic information that will guide the parser after 
training. We return to a discussion of the manner in which this information is utilized 
in Section 7. 

6. Non-Deterministic LR Parsing with Unification Grammars 

As well as building an interactive parsing system incorporating the ANLT grammar 
(described above), we have implemented a breadth-first, nondeterministic LR parser 
for unification grammars. This parser is integrated with the Grammar Development 
Environment (GDE; Carroll et al. 1988) in the ANLT system, and provided as an 
alternative parser for use with stable grammars for batch parsing of large bodies of 
text. The existing chart parser, although slower, has been retained since it is more 
suited to grammar development, because of the speed with which modifications to 
the grammar can be compiled and its better debugging facilities (Boguraev et al. 1988). 

Our nondeterministic LR parser is based on Kipps' (1989) reformulation of Tomi- 
ta's (1987) parsing algorithm and uses a graph-structured stack in the same way. Our 
parser is driven by the LALR(1) state table computed from the backbone grammar, 
but in addition on each reduction the parser performs the unifications appropriate to 
the unification grammar version of the backbone rule involved. The analysis being 
pursued fails if one of the unifications fails. The parser performs sub-analysis sharing 
(where if two or more trees have a common sub-analysis, that sub-analysis is repre- 
sented only once), and local ambiguity packing (in which sub-analyses that have the 
same top node and cover the same input have their top nodes merged, being treated 
by higher level structures as a single sub-analysis). However, we generalize the tech- 
nique of atomic category packing described by Tomita, driven by atomic category 
names, to complex feature-based categories following Alshawi (1992): the packing of 
sub-analyses is driven by the subsumption relationship between the feature values in 
their top nodes. An analysis is only packed into one that has already been found if 
its top node is subsumed by, or is equal to that of the one already found. An analy- 
sis, once packed, will thus never need to be unpacked during parsing (as in Tomita's 
system) since the value of each feature will always be uniquely determined. 

Our use of local ambiguity packing does not in practice seem to result in exponen- 
tially bad performance with respect to sentence length (cf. Johnson 1989) since we have 
been able to generate packed parse forests for sentences of over 30 words having many 
thousands of parses. We have implemented a unification version of Schabes' (1991a) 
chart-based LR-like parser (which is polynomial in sentence length for CF grammars), 
but experiments with the ANLT grammar suggest that it offers no practical advan- 
tages over our Tomita-style parser, and Schabes' table construction algorithm yields 
less fine-grained and, therefore, less predictive parse tables. Nevertheless, searching 
the parse forest exhaustively to recover each distinct analysis proved computationally 
intractable for sentences over about 22 words in length. Wright, Wrigley, and Shar- 
man (1991) describe a Viterbi-like algorithm for unpacking parse forests containing 
probabilities of (sub-)analyses to find the n-best analyses, but this approach does not 
generalize (except in a heuristic way) to our approach in which unification failure 
on the different extensions of packed nodes (resulting from differing super- or sub- 
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Table 4 
Chart and LR parse times for the LDOCE definition the state of being 
away or of not being present with the ANLT grammar (in CPU seconds 
on a DEC 3100). 

Parser Parse time 

GDE (bottom-up) chart parser 7.9 
LR semi-automatic (with 4-choice lookahead) 6.0 
LR nondeterministic 5.8 

analyses) cannot be computed 'locally.' In subsequent work (Carroll and Briscoe 1992) 
we have developed such a heuristic technique for best-first search of the parse for- 
est which, in practice, makes the recovery of the most probable analyses much more 
efficient (allowing analysis of sentences containing over 30 words). 

We noticed during preliminary experiments with our unification LR parser that it 
was often the case that the same unifications were being performed repeatedly, even 
during the course of a single reduce action. The duplication was happening in cases 
where two or more pairs of states in the graph-structured stack had identical complex 
categories between them (for example due to backbone grammar ambiguity). During a 
reduction with a given rule, the categories between each pair of states in a backwards 
traversal of the stack are collected and unified with the appropriate daughters of the 
rule. Identical categories appearing here between traversed pairs of states leads to 
duplication of unifications. By caching unification results we eliminated this wasted 
effort and improved the initially poor performance of the parser by a factor of about 
three. 

As for actual parse times, Table 4 compares those for the GDE chart parser, the 
semi-automatic, user-directed LR parser, and the nondeterministic LR parser. Our gen- 
eral experience is that although the nondeterministic LR parser is only around 30-50% 
faster than the chart parser, it often generates as little as a third the amount of garbage. 
(The relatively modest speed advantage compared with the substantial space saving 
appears to be due to the larger overheads involved in LR parsing). Efficient use of 
space is obviously an important factor for practical parsing of long and ambiguous 
texts. 

7. LR Parsing with Probabilistic Disambiguation 

Several researchers (Wright and Wrigley 1989; Wright 1990; Ng and Tomita 1991; 
Wright, Wrigley, and Sharman 1991) have proposed using LR parsers as a practi- 
cal method of parsing with a probabilistic context-free grammar. This approach as- 
sumes that probabilities are already associated with a CFG and describes techniques 
for distributing those probabilities around the LR parse table in such a way that a 
probabilistic ranking of alternative analyses can be computed quickly at parse time, 
and probabilities assigned to analyses will be identical to those defined by the original 
probabilistic CFG. However, our method of constructing the training corpus allows 
us to associate probabilities with an LR parse table directly, rather than simply with 
rules of the grammar. An LR parse state encodes information about the left and right 
context of the current parse. Deriving probabilities relative to the parse context will 
allow the probabilistic parser to distinguish situations in which identical rules reapply 
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in different ways across different derivations or apply with differing probabilities in 
different contexts. 

Semi-automatic parsing of the training corpus yields a set of LR parse histories that 
are used to construct the probabilistic version of the LALR(1) parse table. The parse 
table is a nondeterministic finite-state automaton so it is possible to apply Markov 
modeling techniques to the parse table (in a way analogous to their application to 
lexical tagging or CFGs). Each row of the parse table corresponds to the possible 
transitions out of the state represented by that row, and each transition is associated 
with a particular lookahead item and a parse action. Nondeterminism arises when 
more than one action, and hence transition, is possible given a particular lookahead 
item. The most straightforward technique for associating probabilities with the parse 
table is to assign a probability to each action in the action part of the table (e.g. Wright 
1990). 5 If probabilities are associated directly with the parse table rather than derived 
from a probabilistic CFG or equivalent global pairing of probabilities to rules, then 
the resulting probabilistic model will be more sensitive to parse context. For example, 
in a derivation for the sentence he loves her using Grammar 1, the distinction between 
reducing the first pronoun and second pronoun to NP--using rule 5 (NP --> ProNP)-- 
can be maintained in terms of the different lookahead items paired with the reduce 
actions relating to this rule (in state 5 of the parse table in Figure 2); in the first case, the 
lookahead item will be Vi, and in the second $ (the end of sentence marker). However, 
this approach does not make maximal use of the context encoded into a transition 
in the parse table, and it is possible to devise situations in which the reduction of 
a pronoun in subject position and elsewhere would be indistinguishable in terms of 
lookahead alone; for example, if we added appropriate rules for adverbs to Grammar 1, 
then this reduction would be possible with lookahead Adv in sentences such as he 
passionately loves her and he loves her passionately. 

A slightly less obvious approach is to further subdivide reduce actions according 
to the state reached after the reduce action has applied. This state is used together 
with the resultant nonterminal to define the state transition in the goto part of the 
parse table. Thus, this move corresponds to associating probabilities with transitions 
in the automaton rather than with actions in the action part of the table. For example, 
a reduction of pronoun to NP in subject position in the parse table for Grammar 1 in 
Figure 2 always results in the parser returning to state 0 (from which the goto table 
deterministically prescribes a transition to state 7 with nonterminal RP). Reduction to 
NP of a pronoun in object position always results in the parser returning to state 11. 
Thus training on a corpus with more subject than nonsubject pronominal NPs will now 
result in a probabilistic preference for reductions that return to 'pre-subject' states with 
'post-subject' lookaheads. Of course, this does not mean that it will be impossible to 
devise grammars in which reductions cannot be kept distinct that might, in principle, 
have different frequencies of occurrence. However, this approach appears to be the 
natural stochastic, probabilistic model that emerges when using a LALR(1) table. Any 
further sensitivity to context would require sensitivity to patterns in larger sections of 
a parse derivation than can be defined in terms of such a table. 

The probabilities required to create the probabilistic version of the parse table can 
be derived from the set of parse histories resulting from the training phase described 
in Section 5, by computing the frequency with which each transition from a particular 
state has been taken and converting these to probabilities such that the probabilities 

5 In our implementation,  the probabilities are actually stored separately from the parse table to ensure 
that otherwise-sharable transitions in the table can still be represented compactly even if their 
probabilities differ. 
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State $ Det N@ p ProNP Vi Vt 
............................................................................ 

0 s3 s2 

(.50) (.50) 
............................................................................ 

1 rl 

(0 .83) 
............................................................................ 

2 r5 r5 r5 r5 
(8 .33) (0 .50) 

............................................................................ 

3 s4 

(i. 00) 
............................................................................ 

4 rl0 rl0 rl0 rl0 rl0 

(3 .Ii 6 .ii) (3 .17 5 .22) (3 .ii) (3 .ii 5 .ii) 
............................................................................ 

5 r6 84 r6 r6 r6 

(8 .13 Ii .13) (.33) (ii .13) (0 .20) 
............................................................................ 

6 r8 r8 r8 r8 r8 

(3 .17 5 .17) (3 .25) (3 .17) 

s4 

(.17) 
............................................................................ 

7 88 s13 sll 

(.43) (.43) 
............................................................................ 

8 83 s2 

(.50) (.50) 
............................................................................ 

9 r9 r9 r9 r9 

(12 .40) (12 .40) 

88 
............................................................................ 

i0 r7 r7 r7 r7 

(11 .40) (11 .40) 
............................................................................ 

ii 83 82 

(.75) 
............................................................................ 

12 r3 88 

(7 .43) (.43) 
............................................................................ 

13 r4 

(7 .75) 
............................................................................ 

14 r2 

(0 .84) 
............................................................................ 

15 acc 

(l.00) 

Figure 9 
A probabilistic version of the parse table for Grammar 1. 

assigned to each transition from a given state sum to one. In Figure 9 we show a 
probabilistic LALR(1) parse table for Grammar  1 der ived from a simple, partial (and 
artificial) training phase. In this version of the table a probability is associated with each 
shift action in the s tandard way, but  separate probabilities are associated with reduce 
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o) o 

i) 0 Det 3 

2) 0 Det 3 N@ 4 

3) 0 Det 3 N 

4) 0 Det 3 N 5 

5) 0 Det 3 N 5 N@ 4 

6) 0 Det 3 N 5 N 

7) 0 Det 3 N 5 N 6 

(Det) 

(N@I) .50 

(N@2) 1.00 

(N@2) 

(N@2) .17 

(N@3) .33 

(N@3) 

(N@3) .22 

8a) 0 Det 3 N 5 N 6 N@ 4 (Vi) .17 

9a) 0 Det 3 N 5 N 6 N (Vi) 

10a) 0 Det 3 N 5 N 6 N 6 (Vi) .06 

lla) 0 Det 3 N 5 N (Vi) 

12a) 0 Det 3 N 5 N 6 (Vi) .08 

13a) 0 Det 3 N (Vi) 

8b) 0 Det 3 N (N@3) 

9b) 0 Det 3 N 5 (N@3) .25 

10b) 0 Det 3 N 5 N@ 4 (Vi) .33 

llb) 0 Det 3 N 5 N (Vi) 

12b) 0 Det 3 N 5 N 6 (Vi) .ii 

13b) 0 Det 3 N (Vi) 

14) 0 Det 3 N 5 (Vi) .17 

15) 0 NP (Vi) 

16) 0 NP 7 (Vi) .20 

17) 0 NP 7 Vi 13 ($) .43 
18) 0 NP 7 VP ($) 

19) 0 NP 7 VP 14 ($) .75 

2o) o s ($) 

21) 0 S 1 ($) .83 

22) 0 S' ($) 

23) 0 S' 15 ($) 1.00 

Figure 10 
Parse derivations for the winter holiday camp closed. 

actions, depending on the state reached after the action; for example, in state 4 with 
lookahead N~ the probability of reducing with rule 10 is 0.17 if the state reached is 3 and 
0.22 if the state reached is 5. The actions that have no associated probabilities are ones 
that have not been utilized during the training phase; each is assigned a smoothed 
probability that is the reciprocal of the result of adding one to the total number  of 
observations of actions actually taken in that state. Differential probabilities are thus 
assigned to unseen events in a manner  analogous to the Good-Turing technique. For 
this reason, the explicit probabilities for each row add up to less than one. The goto 
part of the table is not shown because it is always deterministic and, therefore, we do 
not associate probabilities with goto transitions. 

The difference between our approach and one based on probabilistic CFG can be 
brought out by considering various probabilistic derivations using the probabilistic 
parse table for Grammar  1. Assuming that we are using probabilities simply to rank 
parses, we can compute the total probability of an analysis by mult iplying together 
the probabilities of each transition we take during its derivation. In Figure 10, we give 
the two possible complete derivations for a sentence such as the winter holiday camp 
closed consisting of a determiner, three nouns, and an intransitive verb. The ambiguity 
concerns whether  the noun compound is left- or right-branching, and, as we saw in 
Section 2, a probabilistic CFG cannot distinguish these two derivations. The probability 
of each step can be read off the action table and is shown after the lookahead item in 
the figure. 

In step 8 a shift-reduce conflict occurs so the stack 'splits' while the left- and right- 
branching analyses of the noun compound are constructed. The a) branch corresponds 
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to the right-branching derivation and the product of the probabilities is 4.6 x 10 -8, 
while the product for the left-branching b) derivation is 5.1 x 10 -7. Since the table 
was constructed from parse histories with a preponderance of left-branching struc- 
tures this is the desired result. In practice, this technique is able to distinguish and 
train accurately on 3 of the 5 possible structures for a 4-word noun-noun compound; 
but it inaccurately prefers a completely left-branching analysis over structures of the 
form ((n n)(n n)) and ((n (nn)) n). Once we move to 5-word noun-noun compounds, 
performance degrades further. However, this level of performance on such structural 
configurations is likely to be adequate, because correct resolution of most ambiguity 
in such constructions is likely to be dominated by the actual lexical items that occur 
in individual texts. Nevertheless, if there are systematic structural tendencies evident 
in corpora (for example, Frazier's [1988] parsing strategies predict a preference for 
left-branching analyses of such compounds), then the probabilistic model is sensitive 
enough to discriminate them. 6 

In practice, we take the geometric mean of the probabilities rather than their prod- 
uct to rank parse derivations. Otherwise, it would be difficult to prevent the system 
from always developing a bias in favor of analyses involving fewer rules or equiva- 
lently 'smaller' trees, almost regardless of the training material. Of course, the need 
for this step reflects the fact that, although the model is more context-dependent than 
probabilistic CFG, it is by no means a perfect probabilistic model of NL. 7 For exam- 
ple, the stochastic nature of the model and the fact that the entire left context of a 
parse derivation is not encoded in LR state information means that the probabilistic 
model cannot take account of, say, the pattern of resolution of earlier conflicts in the 
current derivation. Another respect in which the model is approximate is that we are 
associating probabilities with the context-free backbone of the unification grammar. 
Successful unification of features at parse time does not affect the probability of a 
(partial) analysis, while unification failure, in effect, sets the probability of any such 
analysis to zero. As long as we only use the probabilistic model to rank successful 
analyses, this is not particularly problematic. However, parser control regimes that 
attempt some form of best-first search using probabilistic information associated with 
transitions might not yield the desired result given this property. For example, it is not 
possible to use Viterbi-style optimization of search for the maximally probable parse 
because this derivation may contain a sub-analysis that will be pruned locally before a 
subsequent unification failure renders the current most probable analysis impossible. 

In general, the current breadth-first probabilistic parser is more efficient than its 
nonprobabilistic counterpart described in the previous section. In contrast to the parser 
described by Ng and Tomita (1991), our probabilistic parser is able to merge (state and 
stack) configurations and in all cases still maintain a full record of all the probabilities 
computed up to that point, since it associates probabilities with partial analyses of the 
input so far rather than with nodes in the graph-structured stack. We are currently 

6 Although we define our probabilistic model relative to the LR parsing technique, it is likely that there 
is an equivalent encoding in purely grammatical terms. In general our approach corresponds to 
making the probability of rule application conditional on other rules having applied during the parse 
derivation (e.g. Magerman and Marcus 1991) and the lexical category of the next word; for example, it 
would be possible to create a grammatical representation of the probabilistic model that emerges from 
a LR(0) table by assigning a set of probabilities associated with rule numbers to each right-hand side 
category in each rule of a CFG that would encode the probability of a rule being used to expand that 
category in that context. 

7 Magerrnan and Marcus (1991) argue that it is reasonable to use the geometric mean when computing 
the probability of two or more sub-analyses because the independence assumptions that motivate using 
products do not hold for such an approximate model. In Carroll and Briscoe (1992) we present a more 
motivated technique for normalizing the probability of competing sub-analyses in the parse forest. 
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experimenting with techniques for probabilistically unpacking the packed parse forest 
to recover the first few most probable derivations without the need for exhaustive 
search or full expansion. 

8. Parsing LDOCE Noun Definitions 

In order to test the techniques and ideas described in previous sections, we undertook 
a preliminary experiment using a subset of LDOCE noun definitions as our test corpus. 
(The reasons for choosing this corpus are discussed in the introduction.) A corpus of 
approximately 32,000 noun definitions was created from LDOCE by extracting the 
definition fields and normalizing the definitions to remove punctuation, font control 
information, and so forth, s A lexicon was created for this corpus by extracting the 
appropriate lemmas and matching these against entries in the ANLT lexicon. The 
10,600 resultant entries were loaded into the ANLT morphological system (Ritchie et 
al. 1987) and this sublexicon and the full ANLT grammar formed the starting point 
for the training process. 

A total of 246 definitions, selected without regard for their syntactic form, were 
parsed semi-automatically using the parser described in Section 5. During this process, 
further rules and lexical entries were created for some definitions that failed to parse. 
Of the total number, 150 were successfully parsed and 63 lexical entries and 14 rules 
were added. Some of the rules required reflected general inadequacies in the ANLT 
grammar; for example, we added rules to deal with new partitives and prepositional 
phrase and verb complementation. However, 7 of these rules cover relatively idiosyn- 
cratic properties of the definition sublanguage; for example, the postmodification of 
pronouns by relative clause and prepositional phrase in definitions beginning some- 
thing that . . . .  that o f . . . ,  parenthetical phrases headed by adverbs, such as the period.. .  
esp the period, and coordinations without explicit conjunctions ending with etc., and 
so forth. Further special rules will be required to deal with brackets in definitions to 
cover conventions such as a man (monk) or woman (nun) who lives in a monastery, which 
we ignored for this test. Nevertheless, the number of new rules required is not great 
and the need for most was identified very early in the training process. Lexical entries 
are more problematic, since there is little sign that the number of new entries required 
will tail off. However, many of the entries required reflect systematic inadequacies in 
the ANLT lexicon rather than idiosyncrasies of the corpus. It took approximately one 
person-month to produce this training corpus. As a rough guide, it takes an average 
of 15 seconds to resolve a single interaction with the parser. However, the time a parse 
takes can often be lengthened by incorrect choices (and the consequent need to back 
up manually) and by the process of adding lexical entries and occasional rules. 

The resultant parse histories were used to construct the probabilistic parser (as 
described in the previous section). This parser was then used to reparse the training 
corpus, and the most highly ranked analyses were automatically compared with the 
original parse histories. We have been able to reparse in a breadth-first fashion all 
but 3 of the 150 definitions that were parsed manually. 9 (These three are each over 

8 The corpus contains about 17,000 unique headwords and 13,500 distinct word forms in the definitions. 
Its perplexity (PP) measures based on bigram and trigram word models and an estimate of an infinite 
model were PP(2) = 104, PP(3) = 41, and PP(inf) = 8 (Sharman 1991). 

9 The results we report here are from using the latest versions of the ANLT grammar and LR parsing 
system. Briscoe and Carroll (1991) report an earlier version of this experiment using different versions 
of the grammar and parser in which results differed in minor ways. Carroll and Briscoe (1992) report a 
third version of the experiment in which results were improved slightly through the use of a better 
normalization and parse forest unpacking technique. 
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Figure 11 

h 
i0 20 

Definition length 

I-1 

1st ranked analysis correct 

2nd ranked analysis correct 

3rd ranked analysis correct 

correct analysis not ranked 
either 1st, 2nd or 3rd 

Correctness of results for reparsed definitions with respect to length. 

I 

30 

25 words  in length.) There are 22 definitions one word  in length: all of these trivially 
receive correct analyses. There are 89 definitions between two and ten words  in length 
inclusive (mean length 6.2). Of these, in 68 cases the correct analysis (as defined by 
the training corpus) is also the most  highly ranked. In 13 of the 21 remaining cases the 
correct analysis is the second or third most highly ranked analysis. Looking at these 
21 cases in more detail, in 8 there is an inappropriate  structural preference for ' low' or 
'local' a t tachment (see Kimball 1973), in 4, an inappropriate  preference for compounds ,  
and in 6 of the remaining 9 cases, the highest ranked result contains a misanalysis of a 
single constituent two or three words in length. If these results are interpreted in terms 
of a goodness of fit measure such as that of Sampson, Haigh, and Atwell (1989), the 
measure would  be better ttian 96%. If we take correct parse / sen tence  as our  measure 
then the result is 76%. For definitions longer than 10 words this latter figure tails off, 
mainly due to misapplication of such statistically induced,  but  nevertheless structural, 
a t tachment  preferences. Figure 11 summarizes  these results. 

We also parsed a further  55 LDOCE noun definitions not d rawn from the training 
corpus, each containing up  to 10 words (mean length 5.7). Of these, in 41 cases the 
correct parse is the most  highly ranked, in 6 cases it is the second or third most  highly 
ranked, and in the remaining 8 cases it is not in the first three analyses. This yields a 
correct parse /sentence  measure of 75%. Examination of the failures again reveals that 
a preference for local at tachment of postmodifiers accounts for 5 cases, a preference 
for compounds  for 1, and the misanalysis of a single constituent for 2. The others 
are most ly caused by the lack of lexical entries with appropriate  SUBCAT features. In 
Figure 12 we show the analysis for the unseen definition of affectation, which has 20 
parses of which the most  highly ranked is correct. 
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Figure 12 
Parse tree for afeelingormanner that is pretended. 
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S 
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VP CONJVP 

support~ E or VP 

helps E 

Figure 13 
Parse tree for a person or thing that supports or helps. 

Figure 13 shows the highest-ranked analysis assigned to one definition of aid. This 
is an example of a false positive which, in this case, is caused by the lack of a lexical 
entry for support as an intransitive verb. Consequently, the parser finds, and ranks 
highest, an analysis in which supports and helps are treated as transitive verbs forming 
verb phrases with object NP gaps, and that supports or helps as a zero relative clause 
with that analyzed as a prenominal subject--compare a person or thing that that supports 
or helps. It is difficult to fault this analysis and the same is true for the other false 
positives we have looked at. Such false positives present the biggest challenge to the 
type of system we are attempting to develop. One hopeful sign is that the analyses 
assigned such examples appear to have low probabilities relative to most probable 
correct analyses of other examples. However, considerably more data will be required 
before we can decide whether this trend is robust enough to provide the basis for 
automatic identification of false positives. 
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Using a manually disambiguated training corpus and manually tuned grammar 
appears feasible with the definitions sublanguage. Results comparable to those ob- 
tained by Fujisaki et al. (1989) and Sharman, Jelinek, and Mercer (1990) are possible 
on the basis of a quite modest amount of manual effort and a very much smaller 
training corpus, because the parse histories contain little 'noise' and usefully reflect 
the semantically and pragmatically appropriate analysis in the training corpus, and 
because the number of failures of coverage were reduced to some extent by adding the 
rules specifically motivated by the training corpus. Unlike Fujisaki et al. or Sharman, 
Jelinek, and Mercer, we did not integrate information about lexemes into the rule prob- 
abilities or make use of lexical syntactic probability. It seems likely that the structural 
preference for local attachment might be overruled in appropriate contexts if lexeme 
(or better, word sense) information were taken into account. The slightly worse results 
(relative to mean definition length) obtained for the unseen data appear to be caused 
more by the nonexistence of a correct analysis in a number of cases, rather than by 
a marked decline in the usefulness of the rule probabilities. This again highlights the 
need to deal effectively with examples outside the coverage of the grammar. 

9. Conclusions and Further Work 

The system that we have developed offers partial and practical solutions to two of 
the three problems of corpus analysis we identified in the introduction. The problem 
of tuning an existing grammar to a particular corpus or sublanguage is addressed 
partly by manual extensions to the grammar and lexicon during the semi-automatic 
training phase and partly by use of statistical information regarding frequency of rule 
use gathered during this phase. The results of the experiment reported in the last 
section suggest that syntactic peculiarities of a sublanguage or corpus surface quite 
rapidly, so that manual additions to the grammar during the training phase are prac- 
tical. However, lexical idiosyncrasies are far less likely to be exhausted during the 
training phase, suggesting that it will be necessary to develop an automatic method of 
dealing with them. In addition, the current system does not take account of differing 
frequencies of occurrence of lexical entries; for example, in the LOB corpus the verb 
believe occurs with a finite sentential complement in 90% of citations, although it is 
grammatical with at least five further patterns of complementation. This type of lexical 
information, which will very likely vary between sublanguages, should be integrated 
into the probabilistic model. This will be straightforward in terms of the model, since 
it merely involves associating probabilities with each distinct lexical entry for a lex- 
eme and carrying these forward in the computation of the likelihood of each parse. 
However, the acquisition of the statistical information from which these probabilities 
can be derived is more problematic. Existing lexical taggers are unable to assign tags 
that reliably encode subcategorization information. It seems likely that automatic ac- 
quisition of such information must await successful techniques for robust parsing of, 
at least, phrases in corpora (though Brent [1991] claims to be able to recognize some 
subcategorization patterns using large quantities of untagged text). 

The task of selecting the correct analysis from the set licensed by the grammar 
is also partially solved by the system. It is clear from the results of the preliminary 
experiment reported in the previous section that it is possible to make the semanti- 
cally and pragmatically correct analysis highly ranked, and even most highly ranked 
in many cases, just by exploiting the frequency of occurrence of the syntactic rules in 
the training data. However, it is also clear that this approach will not succeed in all 
cases; for example, in the experiment the system appears to have developed a prefer- 
ence for local attachment of prepositional phrases (PPs), which is inappropriate in a 
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significant number of cases. It is not surprising that probabilities based solely on the 
frequency of syntactic rules are not capable of resolving this type of ambiguity; in an 
example such as John saw the man on Monday again it is the temporal interpretation of 
Monday that favors the adverbial interpretation (and thus nonlocal attachment). Such 
examples are syntactically identical to ones such as John saw the man on the bus again, 
in which the possibility of a locative interpretation creates a mild preference for the 
adjectival reading and local attachment. To select the correct analysis in such cases it 
will be necessary to integrate information concerning word sense collocations into the 
probabilistic analysis. In this case, we are interested in collocations between the head 
of a PP complement, a preposition and the head of the phrase being postmodified. In 
general, these words will not be adjacent in the text, so it will not be possible to use 
existing approaches unmodified (e.g. Church and Hanks 1989), because these apply 
to adjacent words in unanalyzed text. Hindle and Rooth (1991) report good results 
using a mutual information measure of collocation applied within such a structurally 
defined context, and their approach should carry over to our framework straightfor- 
wardly. 

One way of integrating 'structural' collocational information into the system pre- 
sented above would be to make use of the semantic component of the (ANLT) gram- 
mar. This component pairs logical forms with each distinct syntactic analysis that 
represent, among other things, the predicate-argument structure of the input. In the 
resolution of PP attachment and similar ambiguities, it is 'collocation' at this level of 
representation that appears to be most relevant. Integrating a probabilistic ranking 
of the resultant logical forms with the probabilistic ranking of the distinct syntactic 
analyses presents no problems, in principle. However, once again, the acquisition of 
the relevant statistical information will be difficult, because it will require considerable 
quantities of analyzed text as training material. One way to ameliorate the problem 
might be to reduce the size of the 'vocabulary' for which statistics need to be gathered 
by replacing lexical items with their superordinate terms (or a disjunction of such 
terms in the case of ambiguity). Copestake (1990, 1992) describes a program capable 
of extracting the genus term of a definition from an LDOCE definition, resolving the 
sense of such terms, and constructing hierarchical taxonomies of the resulting word 
senses. Taxonomies of this form might be used to replace PP complement heads and 
postmodified heads in corpus data with a smaller number of superordinate concepts. 
This would make the statistical data concerning trigrams of head-preposition-head 
less sparse (cf. Gale and Church 1990) and easier to gather from a corpus. Never- 
theless, it will only be possible to gather such data from determinately syntactically 
analyzed material. 

The third problem of dealing usefully with examples outside the coverage of the 
grammar even after training is not addressed by the system we have developed. Nev- 
ertheless, the results of the preliminary experiment for unseen examples indicate that it 
is a significant problem, at least with respect to lexical entries. A large part of the prob- 
lem with such examples is identifying them automatically. Some such examples will 
not receive any parse and will, therefore, be easy to spot. Many, though, will receive 
incorrect parses (one of which will be automatically ranked as the most probable) and 
can, therefore, only be identified manually (or perhaps on the basis of relative improb- 
ability). Jensen et al. (1983) describe an approach to parsing such examples based on 
parse 'fitting' or rule 'relaxation' to deal with 'ill-formed' input. An approach of this 
type might work with input that receives no parse, but cannot help with the identifica- 
tion of those that only receive an incorrect one. In addition, it involves annotating each 
grammar rule about what should be relaxed and requires that semantic interpretation 
can be extended to 'fitted' or partial parses (e.g. Pollack and Pereira 1988). 
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Sampson, Haigh, and Atwell (1989) propose a more thorough-going probabilistic 
approach in which the parser uses a statistically defined measure of 'closest fit' to 
the set of analyses contained in a 'tree bank' of training data to assign an analysis. 
This approach attempts to ensure that analyses of new data will conform as closely as 
possible to existing ones, but does not require that analyses assigned are well formed 
with respect to any given generative grammar implicit in the tree bank analyses. 
Sampson, Haigh, and Atwell report some preliminary results for a parser of this type 
that uses the technique of simulated annealing to assign the closest fitting analysis 
on the basis of initial training on the LOB treebank and automatic updating of its 
statistical data on the basis of further parsed examples. Sampson, Haigh, and Atwell 
give their results in terms of a similarity measure with respect to correct analyses 
assigned by hand. For a 13-sentence sample the mean similarity measure was 80%, 
and only one example received a fully correct analysis. These results suggest that the 
technique is not reliable enough for practical corpus analysis, to date. In addition, 
the analyses assigned, on the basis of the LOB treebank scheme, are not syntactically 
determinate (for example, syntactic relations in unbounded dependency constructions 
are not represented). 

A more promising approach with similar potential robustness would be to infer 
a probabilistic grammar using Baum-Welch re-estimation from a given training cor- 
pus and predefined category set, following Lari and Young (1990) and Pereira and 
Schabes (1992). This approach has the advantage that the resulting grammar defines 
a well-defined set of analyses for which rules of compositional interpretation might 
be developed. However, the technique is limited in several ways; firstly, such gram- 
mars are restricted to small (maximum about 15 nonterminal) CNF CFGs because 
of the computational cost of iterative re-estimation with an algorithm polynomial in 
sentence length and nonterminal category size; and secondly, because some form of 
supervised training will be essential if the analyses assigned by the grammar are to 
be linguistically motivated. Immediate prospects for applying such techniques to real- 
istic NL grammars do not seem promising--the ANLT backbone grammar discussed 
in Section 4 contains almost 500 categories. However, Briscoe and Waegner (1992) 
describe an experiment in which, firstly, Baum-Welch re-estimation was used in con- 
junction with other more linguistically motivated constraints on the class of grammars 
that could be inferred, such as 'headedness'; and secondly, initial probabilities were 
heavily biased in favor of manually coded, linguistically highly plausible rules. This 
approach resulted in a simple tag sequence grammar often able to assign coherent and 
semantically/pragmatically plausible analyses to tag sequences drawn from the Spo- 
ken English Corpus. By combining such techniques and relaxing the CNF constraint, 
for example, by adopting the trellis algorithm version of Baum-Welch re-estimation 
(Kupiec 1991), it might be possible to create a computationally tractable system oper- 
ating with a realistic NL grammar that would only infer a new rule from a finite space 
of linguistically motivated possibilities in the face of parse failure or improbability. In 
the shorter term, such techniques combined with simple tag sequence grammars might 
yield robust phrase-level 'skeleton' parsers that could be used as corpus analysis tools. 

The utility of the system reported here would be considerably improved by a more 
tractable approach to probabilistically unpacking the packed parse forest than exhaus- 
tive search. Finding the n-best analyses would allow us to recover analyses for longer 
sentences where a parse forest is constructed and would make the approach generally 
more efficient. Carroll and Briscoe (1992) present a heuristic algorithm for parse for- 
est unpacking that interleaves normalization of competing sub-analyses with best-first 
extraction of the n most probable analyses. Normalization of competing sub-analyses 
with respect to the longest derivation both allows us to prune the search probabilisti- 
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cally and to treat the probability of analyses as the product of the probability of their 
sub-analyses, without  biasing the system in favor of shorter derivations. This modi- 
fied version of the system presented here is able to return analyses for sentences over 
31 words in length, yields slightly better results on a replication of the experiment 
reported in Section 8, and the resultant parser is approximately three times faster at 
returning the three highest-ranked parsers than that presented here. 

In conclusion, the main positive points of the paper are that 1) LR parse tables can 
be used to define a more context-dependent and adequate probabilistic model of NL, 
2) predictive LR parse tables can be constructed automatically from unification-based 
grammars in standard notation, 3) effective parse table construction and representation 
techniques can be defined for realistically sized ambiguous NL grammars,  4) semi- 
automatic LR based parse techniques can be used to efficiently construct training 
corpora, and 5) the LR parser and ANLT grammar jointly define a useful probabilistic 
model into which probabilities concerning lexical subcategorization and structurally 
defined word sense collocations could be integrated. 
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