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A model is presented to characterize the class of languages obtained by adding reduplication to 
context-free languages. The model is a pushdown automaton augmented with the ability to check 
reduplication by using the stack in a new way. The class of languages generated is shown to lie strictly 
between the context-free languages and the indexed languages. The model appears capable of 
accommodating the sort of reduplications that have been observed to occur in natural languages, but it 
excludes many of the unnatural constructions that other formal models have permitted. 

1 INTRODUCTION 

Context-free grammars are a recurrent  theme in many, 
perhaps most,  models of  natural language syntax. It is 
close to impossible to find a textbook or journal that 
deals with natural language syntax but that does not 
include parse trees someplace in its pages. The models 
used typically augment the context-free grammar with 
some additional computational  power so that the class 
of  languages described is invariably larger, and often 
much larger, than the class of  context-free languages. 
Despite the tendency to use more powerful models, 
examples of  natural language constructions that require 
more than a context-free grammar for weak generative 
adequacy are rare. (See Pullum and Gazdar 1982, and 
Gazdar  and Pullum 1985, for surveys of  how rare 
inherently noncontext-free constructions appear to be.) 
Moreover ,  most  of  the examples of  inherently noncon- 
text-free constructions in natural languages depend on a 
single phenomenon,  namely the reduplication, or ap- 
proximate reduplication, of  some string. Reduplication 
is provably beyond the reach of  context-free grammars. 
The goal of  this paper  is to present a model that can 
accommodate  these reduplication constructions with a 
minimal extension to the context-free grammar model. 

Reduplication in its cleanest, and most sterile, form 
is represented by the formal language { w w  I w ~ E*}, 
where E is some finite alphabet. It is well known that 
this language is provably not context-free. Yet there are 
numerous constructs  in natural language that mimic this 

formal language. Indeed, most of  the known, convinc- 
ing arguments that some natural language cannot  (or 
almost cannot) be weakly generated by a context-free 
grammar depend on a reduplication similar to the one 
exhibited by this formal language. Examples  include the 
r e s p e c t i v e l y  construct  in English (Bar-Hillel and Shamir 
1964), noun-stem reduplication and incorporation in 
Mohawk (Postal 1964), noun reduplication in Bambara 
(Culy 1985), cross-serial dependency of verbs and ob- 
jects :in certain subordinate clause constructions in 
Dutch (Huybregts 1976; Bresnan et al. 1982) and in 
Swiss-German (Shieber 1985), and various reduplica- 
tion constructs in English, including the X or  no  X 

construction as in: "reduplicat ion or no reduplication, I 
want a parse t r ee"  (Manaster-Ramer 1983, 1986). The 
model presented here can generate languages with any 
of these constructions and can do so in a natural way. 
To have some concrete examples at hand, we will 
review a representative sample of  these constructions.  

The easiest example to describe is the noun redupli- 
cation found in Bambara. As described by Culy (1985), 
it is an example of the simplest sort of  reduplication in 
which a string literally occurs twice. F rom the noun w 
Bambara can form w - o - w  with the meaning "wha teve r  
w."  It is also possible to combine nouns productively in 
other ways to obtain new, longer nouns. Using these 
longer nouns in the w - o - w  construction produces redu- 
plicated strings of  arbitrary length. 

The r e s p e c t i v e l y  construction in English is one of  the 
oldest well-known examples of  reduplication (Bar-Hillel 
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and Shamir 1964). It provides an example of reduplica- 
tion other than exact identity. A sample sentence is: 

John, Sally, Mary, and Frank are a 
widower, widow, widow, and widower, respectively. 

In these cases, it has been argued that the names must 
agree with "widow" or "widower"  in gender, and 
hence the string from {widow, widower}* must be an 
approximate reduplication of the string of names. If one 
accepts the data, then this is an example of reduplica- 
tion using a notion of equivalence other than exact 
identity. In this case the equivalence would be that the 
second string is a homomorphic image of the first one. 
However, one must reject the data in this case. One can 
convincingly argue that the names need not agree with 
the corresponding occurrence of "widow" or "widow- 
er ,"  because gender is not syntactic in this case. It may 
be false, but it is not ungrammatical to say "John is a 
widow." (Perhaps it is not even false, since no syntactic 
rule prevents parents from naming a daughter "John.")  
However, such dependency is at least potentially pos- 
sible in some language with truly syntactic gender 
markings. Kac et al. (1987) discuss a version of this 
construction using subject-verb number agreement that 
yields a convincing argument that English is not a 
context-free language. 

One of the least controversial arguments claiming to 
prove that a particular natural language cannot be 
weakly generated by a context-free grammar is Shie- 
ber's (1985) argument about Swiss-German. In this 
case, the reduplication occurs in certain subordinate 
clauses such as the following: 

... mer em Hans es huus h/ilfed aastriiche 

... we Hans-DAT the house-ACC helped paint 
' . . . .we helped Hans paint the house.' 

where to obtain a complete sentence, the above should 
be preceded by some string such as "Jan s/iit das" ('Jan 
says that'). In this case, a list of nouns precedes a list of 
an equal number of verbs and each noun in the list 
serves as the object of the corresponding verb. The 
cross-serial dependency that pushes the language be- 
yond the reach of a context-free grammar is an agree- 
ment rule that says that each verb arbitrarily demands 
either accusative ordative case for its object. Thus if we 
substitute "de Hans" (Hans-ACC) for "em Hans" 
(Hans-DAT) or "em huus" (the house-DAT) for "es 
huus" (the house-ACC), then the above is ungrammat- 
ical because "h/ilfed" demands that its object be in the 
dative case and "aastri iche" requires the accusative 
case. Since the lists of nouns and verbs may be of 
unbounded length, this means that Swiss-German con- 
tains substrings of the forms 

N 1 N2"'Nn VI V2... Vn 
where n may be arbitrarily large and where each noun 
N i is in either the dative or accusative case depending 
on an arbitrary requirement of the verb V i. 

Bresnan et al. (1982) describe a similar construction 
in Dutch in which the strong agreement rule is not 
present and so the language (at least this aspect of it) 

can be weakly generated by a context-free grammar, 
even though it cannot be strongly generated by a 
context-free grammar. The context-free grammar to 
generate the strings would pair nouns and verbs in a 
mirror image manner, thereby ensuring that there are 
equal numbers of each. Since Dutch does not have the 
strong agreement rule that Swiss-German does, this 
always produces a grammatical clause, even though the 
pairing of nouns and verbs is contrary to intuition. 
However, in cases such as this, it would be desirable to 
have a model that recognizes reduplication as redupli- 
cation rather than one that must resort to some sort of 
trick to generate weakly the reduplicated strings in a 
highly unnatural manner. This is true even if one is 
seeking only weak generative capacity because, as the 
Dutch/Swiss-German pair indicates, if a minor and 
plausible addition to a construct in one natural language 
would make it demonstrably noncontext-free, then we 
can suspect that some other language may exhibit this 
or a similar inherently noncontext-free property, even 
when considered purely as a string set. 

Some of these arguments are widely accepted. Oth- 
ers are often disputed. We will not pass judgment here 
except to note that, whether or not the details of the 
data are sharp enough to support a rigorous proof of 
noncontext-freeness, it is nonetheless clearly true that, 
in all these cases, something like reduplication is occur- 
ring. A model that could economically capture these 
constructions as well as any reasonable variant on these 
examples would go a long way toward the goal of 
precisely describing the class of string sets that corre- 
spond to actual and potential human languages. 

We do not contend that the model to be presented 
here will weakly describe all natural languages without 
even the smallest exception. Any such claim for any 
model, short of ridiculously powerful models, is 
doomed to failure. Human beings taken in their entirety 
are general-purpose computers capable of performing 
any task that a Turing machine or other general-purpose 
computer model can perform, and so humans can 
potentially recognize any language describable by any 
algorithmic process whatsoever (although sometimes 
too slowly to be of any practical concern). The human 
language facility appears to be restricted to a much less 
powerful computational mechanism. However, since 
the additional power is there for purposes other than 
language processing, some of this power inevitably will 
find its way into language processing in some small 
measure. Indeed, we discuss one Dutch construction 
that our model cannot handle. We claim that our model 
captures most of the known constructions that make 
natural language provably not context-free as string 
sets, and that it does so with a small addition to the 
context-free grammar model. No more grandiose claims 
are made. 

It is easy to add power to a model, and there are 
numerous models that can weakly generate languages 
representing all of these noncontext-free constructions. 
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However, they all appear to be much too powerful for 
the simple problems that extend natural language be- 
yond the capacity of context-free grammar. One of the 
less powerful of the well-known models is indexed 
grammar, as introduced by Aho (1968) and more re- 
cently summarized in the context of natural language by 
Gazdar (1985). However, even the indexed languages 
appear to be much more powerful than is needed for 
natural language syntax. We present a model that is 
weaker than the indexed grammar model, simpler than 
the indexed grammar model, and yet capable of han- 
dling all context-free constructs plus reduplication. 

A number of other models extend the context-free 
grammar model in a limited way. Four models that are 
known to be weakly equivalent and to be strictly weaker 
than indexed grammars are: the Tree Adjoining Gram- 
mars (TAGs) of Joshi (1985, 1987), the Head Grammars 
of Pollard (1984), the Linear Indexed Grammars of 
Gazdar (1985), and the Combinatory Categorial Gram- 
mars of Steedman (1987, 1988). For a discussion of this 
equivalence see Joshi et al. (1989). The oldest of these 
four models is the TAG grammar of Joshi, and we shall 
refer to the class of languages generated by any of these 
equivalent grammar formalisms as TAG languages. 
However, the reader should keep in mind that this class 
of languages could be represented by any of the four 
equivalent grammar formalisms. As we will see later in 
this paper, there are TAG languages that cannot be 
weakly generated by our model. Our model seems to 
exclude more unnatural strings sets than these models 
do. Of course, our model may also miss some natural 
string sets that are TAG languages. Recent work of 
Joshi (1989) appears to support our conjecture that the 
class of language described by our model is a subset, 
and hence a strict subset, of the TAG languages. 
However, all the details of the proof have not yet been 
worked out, and so any more detailed comparisons to 
TAG languages will be left for another paper. 

This paper assumes some familarity with the notation 
and results of formal language theory. Any reader who 
has worked with context-free grammars, who knows 
what a pushdown automaton (PDA) is, and who knows 
what it means to say that PDAs accept exactly the 
context-free languages should have sufficient back- 
ground to read this paper. Any needed background can 
be found in almost any text on formal language theory, 
such as Harrison (1978) or Hopcroft and Ullman (1979). 

2 THE R P D A  MODEL 

The model we propose here is an automata-based model 
similar to the pushdown automaton that characterizes 
the context-free languages. A formal definition will 
follow shortly, but the informal description given now 
should be understandable to anybody who has worked 
in this area. The model is called a Reduplication PDA, or 
more simply an RPDA. It consists of an ordinary PDA 
augmented with a special stack symbol, which is de- 

noted ~, and a special type of instruction to check for 
reduplication. The symbol $ is inserted in the stack just 
like any other stack symbol, and the stack grows above 
this symbol just as in an ordinary PDA. To check for an 
occurrence of a simple reduplication w w ,  the RPDA 
pushe,; $ onto the stack and then pushes the first w onto 
the stack symbol by symbol. At that point the stack 
contains + with w on top of it, but while the stack 
symbols are ordered so that it would be easy to compare 
the w in the stack with w n (i.e., w reversed), they are in 
the wrong order to compare them with w. To overcome 
this; problem an RPDA is allowed, in one step, to 
corapare the entire string above the $ to an initial 
segment of the remaining input and to do so in the order 
starting at the special symbol ~ rather than at the top of 
the stack. (The comparison consumes both the stack 
contents above the marker ~ and the input with which it 
is compared.) One way to view this is to say that the 
RPDA can decide to treat the stack above the symbol 

like a queue, but once it decides to do so, all that it 
can do is empty the queue. The RPDA cannot add to the 
queue once it starts to empty it. If the RPDA decides to 
check x y  to see if x = y, and x does not in fact equal y 
(or any initial segment of y), then the computation 
block,;. While placing symbols on top of the symbol $ ,  
the stack may grow or shrink just like the stack on an 
ordinary PDA. The model allows more than one marker 
$ to be placed in the stack, and hence, it can check for 

redup!lications nested within reduplications. 
Because an RPDA is free to push something on the 

stack other than w when processing some input w x ,  the 
model can check not only whether w = x, but also can 
check the more general question of whether some 
specific finite-state transduction maps w onto x. A 
finJite-state transduction is any relation that can be 
computed using only a finite-state machine. The finite- 
state transductions include all of the simple word-to- 
word equivalences used in known reduplication 
constructions. For example, for the Swiss-German sub- 
ordinate clauses described by Shieber, w is a string of 
nouns, marked for either dative or accusative case, and 
x is a string of verbs that each select one and only one 
of the: cases for their corresponding, cross-serially lo- 
cated object noun. The finite-state transduction would 
map each noun in the accusative case onto a verb 
nondeterministically chosen from the finite set of verbs 
that take the accusative case, and would do a similar 
thing with nouns in the dative case and their corre- 
sponding class of verbs. Without this, or some similar 
generality, the only reduplication allowed would be 
exact symbols by symbol identity. 

The formal details of the definitions are now routine, 
but to avoid any misunderstanding, we present them in 
some detail. 

1. A Reduplication PDA (abbreviated RPDA) consists 
of the following items: 

(i) A finite set of states S, an element qo in S to serve 
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as the start state, and a finite subset F of S to serve as 
the accepting states; 

(ii) A finite input alphabet E; 
(iii) A finite pushdown store alphabet Fsuch that E C 

F, a distinguished symbol Z o in F to serve as the start 
pushdown symbol, and a distinguished stack marker  ~,  
which is an element of  F - E ;  

(iv) A transition function 8 that maps triples (q, a, Z )  
consisting of  a state q, an input symbol a, and a 
pushdown store symbol Z, onto a finite set of  instruc- 
tions, where each instruction is in one of  the following 
two forms: 

(1) An ordinary PDA move: (p, p u s h  a,  A), where p is a 
state, a is a string of  pushdown symbols, and A is 
one of  the two instructions + 1 and 0 standing for 
"advance  the input head"  and " d o  not advance the 
input head , "  respectively. (The word " p u s h "  
serves no function in the mathematics,  but it does 
help make the notation more readable.) 

(2) A check-copy move: These instructions consist only 
of a state p. (As explained in the next two defini- 
tions, this is the state of  the finite control after a 
successful move. A successful move matches that 
portion of  the stack contents between the highest 
marker  $ and the top of  the stack against an initial 
segment of  the remaining input and does so in the 
right order  for checking reduplication.) 

2. An instantaneous description (ID) of  an RPDA M is a 
triple (q, w, 3"), where q is a state, w is the portion of  
input left to be processed,  and 3' is the string of  symbols 
on the pushdown store. (The top symbol is at the left 
end of  3", which is the same convention as that normally 
used for ordinary PDA's.)  
3. The next ID relation F is defined as follows: 

(t7, aw,  Z a )  F (q,  w,  floO, provided (q,  p u s h / 3 ,  + l) 
?:ffp, a, Z) ;  

(p, aw ,  Z a )  F (q, aw ,  /3a), provided (q, p u s h / 3 ,  O) 
8(p, a, Z )  ; 

(p, a x w ,  Z3" ~ a) F (q,  w ,  a) ,  provided q E 8 (p, a, Z) 
and a x  = (Z3,) R, where (Z3') R denotes Z3" written 
backwards (so the a matches the symbol just  above 
the stack marker  $ .  Note that Z3' cannot contain the 
symbol $ ,  because $ is not in the input alphabet). 

As usual, F* denotes the reflexive-transitive closure of  
F. Notice that the relation F is not a function. A given ID 
may have more than one next  ID, and so these machines 
are nondeterministic.  

4. An RPDA is said to be deterministic provided that 
(p, a, Z) contains at most one element for each triple 

(p, a, Z). 
5. The language accepted by the RPDA M by final 

state is defined and denoted as follows: L(M) = { w I (qo, 
w, Z) F* (/9, A, 3") for some p E F, 3" E F*}, where q0 is 
the start state and F is the set of  accepting states. (A is 
used to denote the empty string.) I f  a language is 
accepted by some RPDA by final state it is called an 
RPDA language. If  a language is accepted by some 

deterministic RPDA by final state, then it is called a 
deterministic RPDA language. 

6. The language accepted by the RPDA M by empty 
store is defined and denoted as follows: N(M) = { w I (qo, 
w, Z ) F* (p, A, A) for some p ~ S}. 

As in the case of  ordinary PDAs, it turns out that for 
RPDAs acceptance by empty store is equivalent to 
acceptance by final state. The proof  is essentially the 
same as it is for PDAs and so we will not repeat it here. 
The formal statement of  the result is our first theorem. 

Theorem 1. A language L is accepted by some RPDA 
by final state if and only if it is accepted by some 
(typically different) RPDA by empty store. 

As with ordinary PDAs, and for the same reasons, 
Theorem 1 does not hold for deterministic RPDAs. 

3 EXAMPLES AND COMPARISON TO OTHER CLASSES 

We next explain how RPDAs can be constructed to 
accept each of the following sample languages. 

Examples of RPDA languages. 
L o = { w w l w E { a , b } * }  
L 1 = { w c w l  w E {a, b} *} 
L 2 = {wh(w) l  w E {a, b} *} 
where h is the homomorphism h(a)  = c and h(b)  = 
dde .  

L 3 = { w x w  I w ~ {a, b} * and x E {c, d} *} 

L4 = {al Wl Wl a2 w2 w2""an w n w n a n a n an_ I .-.a I I a l e  
{a, b}, w i g  {c, d} *} 
L5 = {XlCX2 c . . .cx n ca  n a , _ j  ...a I I a i ~ {a, b} , x i E {a, 
b}*, x i is of  the form w w  if and only if ai = b} 

L 6 = {x! c x  2 c . . .cx n ca  I a 2 ...an I ai ~ {a, b}, x i E {a, 
b}*, xi  is of the form w w  if and only if a i = b} 

L 0 is the simplest possible reduplication language. To 
accept this language, all that an RPDA need do is to 
insert the marker $ into the stack, copy symbols into 
the stack, guess when it has reached the midpoint, and 
then perform a check-copy move. If  the center  of  the 
string is marked with a punctuation symbol, then the 
RPDA can be deterministic, so L~ is a deterministic 
RPDA language. 

The language L2 illustrates the fact that reduplication 
need not be symbol-by-symbol identity. The RPDA to 
accept L 2 is similar to the one .that accepts Lo, except  
that on reading an a it pushes a c into the stack instead 
of  an a, and on reading a b it pushes e d d  on the stack 
instead of  b. 

L 3 illustrates the fact that reduplication may be 
checked despite the intervention of  an arbitrarily long 
string. The construction of  the RPDA is easy. 

The language L 4 illustrates the facts that reduplica- 
tion can be checked any number of  times and that these 
checks may be embedded in a context  free-like con- 
struction. To accept L 4 an RPDA would push a~ and 
then $ onto the stack and proceed to check for a 
reduplication w~ w~ as described for L o. If  such a w~ w~ 
is found, that will leave just  a~ on the stack. The RPDA 
next pushes $ a 2 on the stack (the $ is on top of  the a2) 
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and checks for w 2 w 2. After processing an initial input 
string of  the form 

a 1 w t w I a2 w2 w2 ""an Wn Wn 

the stack will contain a~ an_ I ...at with a,, on top of the 
stack. It can then easily che~k for the occurrence of  a 
matching ending a~ an_ l ...al. (It is also easy to check 
for an ending in the reduplicating order  al a2 ""an using 
the techniques discussed below for L6.) 

L 5 and L 6 illustrate the fact that reduplication can be 
used as a distinguishable feature to carry some syntactic 
or semantic information. For  example,  the reduplicated 
strings might be nouns and the reduplication might be 
used to indicate a plural. The string of  ais might be 
agreeing adjectives or verbs or whatever.  L 5 using the 
mirror image construction is not meant to be typical of  
natural language but merely to illustrate that the redu- 
plication might be embedded in some sort of  phrase 
structure. L 6 shows that the RPDA model can obtain the 
same language with cross-serial dependency instead of  
mirror imaging. 

To accept  L 6 the RPDA needs to have two marker 
symbols $ in the stack at one time. To accept L 6 a n  

RPDA would push the marker  ~ on the stack. This first 
marker  will eventually produce the stack contents 

(1) a~ a n - i  ""al ~ (the top is on the left) 
which it then compares  to the ending string a~ a 2 ...a~. 
To construct  this string in the stack, it guesses the a~ 
and uses a second marker  to check its guesses. For  
example,  if the RPDA guesses that a~ = b then it pushes 
a~ = b onto the stack and proceeds to check that Xl is a 
reduplication string. To do this it pushes another  marker 

onto the stack and checks x I in the way described for 
L o and other  languages. If  x~ does not check out, then 
the computat ion aborts.  If  x t does check out, the stack 
contains a 1 ~, (the top is on the left) and the RPDA then 
guesses a 2. Say it guesses that a 2 ----- a and hence must 
check that a 2 is no t  of  the form w w .  The RPDA then 
pushes a 2 onto the stack and performs the check. One 
straightforward way to perform the check is to push a 
marker  ~ on the stack and then read the first half of x2 
guessing at where it differs from the second half. The 
RPDA pushes its guess of  the second half on the stack. 
If  the RPDA correct ly guesses the second half and if it 
ensures that it guesses at least one difference from the 
first half, then x2 checks out. If  x2 checks out, then the 
stack will contain a 2 a l $ after all this. Proceeding in 
this way,  the RPDA obtains the stack contents shown in 
(1) and then performs a final check-copy move to see if 
it matches the rest of  the input string. 

By examining these examples it is easy to see how an 
RPDA could deal with the reduplication constructions 
from natural language that were mentioned in the intro- 
duction. For  example,  in the Swiss-German subordinate 
clause construction,  an RPDA would first push the 
stack marker  ~ onto the stack, then it would read the 
list of  nouns, then for each noun it would nondetermin- 
istically choose a verb that requires the case of that 
noun. It would then push the chosen verb onto the 

stack, and when it reaches the list of  verbs it would 
perform a check-copy move. Hence  RPDAs seem ca- 
pable of weakly generating languages that exhibit the 
properties that keep many natural languages from being 
context-free. As the next result indicates, their power is 
strictly between the context-free grammars and the 
indexed grammars. Most of  the theorem is easy to 
prove, given known results. However ,  a proof  that 
there is an indexed language that is not an RPDA 
language will have to wait until later in this paper when 
we will prove that the indexed language {anbnc n I n >- 0 } 
is not an RPDA language. 

Theorem 2. Context-Free Languages C RPDA Lan- 
guages C Indexed Languages (and the inclusions are 
proper) 

Partial proof. The first inclusion follows from the 
definitions. To see that the inclusion is proper  recall that 
{ ww I w E {a, b} *}, which is well known to not be 
context-free,  is an RPDA language. The second inclu- 
sion follows from the fact that an RPDA can be simu- 
lated by a one-way stack automaton,  and all languages 
accepted by one-way stack automata are indexed lan- 
guages, as shown in Aho (1969). The proof  that there is 
an indexed language that is not an RPDA language will 
be proven in a later section of  this paper.V1 

4 VARIATIONS ON THE R P D A  MODEL 

There are a number of  variations on the RPDA model 
that one might try. One tempting variant is to replace 
the check-copy move with a stack-flipping move. This 
variant would allow the entire stack contents above the 
marker ~ to be flipped so that, in one move,  the 
pushdown-store contents a ~ T would change to c~ $ T. 
(The " t o p "  is always the left end.) This would allow the 
machine to check for reduplication. However ,  it also 
allows the machine to check for everything else. This 
flipping stack variant is equivalent to a Turing machine 
because it can simulate a Turing machine tape by 
continuaUy flipping the stack and using its finite control 
to " r o t a t e "  to any desired stack position. For  example,  
af'~ ~, 'y can be transformed into f la  $ T by moving one 
symbol at a time from the top of  the stack to just  above 
the n~tarker $ .  The top symbol is moved by remember-  
ing the symbol in the finite-control, flipping the stack, 
placing the remembered symbol on the stack, and 
flipping again. 

One way to avoid the "Tur ing tar pi t"  in this flipping 
stack variant would be to deprive the machine of its 
stack marker $ after a flip. This would appear  to limit 
the number of flips and so prevent  the Turing machine 
simulation outlined. However ,  a nondeterministic ma- 
chine; could simply place a large supply of  markers in 
the stack so that when one was taken away another  
would be at hand. To foil this trick, one might limit that 
machine to one stack marker,  but this would restrict the 
machine so that it cannot naturally handle reduplica- 
tions nested inside of  reduplications. In Section 8, 
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RPDAs with only a single marker (and possessing one 
other restriction at the same time) are studied. That 
section concludes with a discussion of why some natu- 
ral language constructs appear to require multiple mark- 
ers. 

When using a copy-check move, an RPDA can read 
an arbitrarily long piece of input in one move. This 
definition was made for mathematical convenience. A 
realistic model would have to read input one symbol per 
unit time. However, the formal model does not seri- 
ously misrepresent realistic run times. If the model were 
changed to read the input one symbols at a time while 
emptying the stack contents above the marker, then the 
run time would at most double. 

5 CLOSURE PROPERTIES 

The next two theorems illustrate the fact that RPDA 
languages behave very much like context-free lan- 
guages. The proofs are straightforward generalizations 
of well-known proofs of the same results for context- 
free languages. Using the PDA characterization of con- 
text-free languages and the proofs in that framework, 
one need do little more than replace the term "PDA" by 
"RPDA" to obtain the corresponding results for RPDA 
languages. 

Theorem 3. The class of RPDA languages is closed 
under the following operations: intersection with a 
finite-state language, union, star closer, and finite-state 
transduction (including the special cases of homomor- 
phism and inverse homomorphism). 

Theorem 4. The class of deterministic RPDA lan- 
guages is closed under the operations of intersection 
with a finite-state language and complement. 

One detail of the proof of Theorem 3 does merit some 
mention. It may not, at first glance, seem obvious that 
the class of RPDA languages is closed under intersec- 
tion with a regular set, since the proof that is usually 
used for ordinary PDAs does not carry over without 
change. In the ordinary PDA case, all that is needed is 
to have a finite-state machine compute in parallel with 
the PDA. In the case of an RPDA this is a bit more 
complicated, since the RPDA does not read its input 
symbol by symbol. In a check-copy move, an RPDA 
can read an arbitrarily long string in one move. How- 
ever, the finite-state control can easily keep a table 
showing the state transitions produced by the entire 
string above the marker $. When a second ~ is inserted 
into the stack, the old transition table is stored on the 
stack and a new transition table is started. The other 
details of the proof are standard. 

Theorem 3 implies that the class of RPDA languages 
is a full AFL (Abstract Family of Languages), which in 
some circles invests the class with a certain respectabil- 
ity. This is because such closure properties determine 
much of the character of well-known language classes, 
such as context-free languages and finite-state lan- 

guages. (A Full AFL is any class of languages that 
contains at least one nonempty language and that is 
closed under union, A-free concatenation of two lan- 
guages, homomorphism, inverse homomorphism, and 
intersection with any finite-state language. See Salomaa 
1973, for more details.) 

The notion of a finite-state transduction is important 
when analyzing pushdown machines. If a finite-state 
control reads a string of input while pushing some string 
onto the stack (without any popping), then the string in 
the stack is a finite-state transduction of the input string. 
Unfortunately, the concept of a finite-state transduction 
is fading out of the popular textbooks. We will therefore 
give a brief informal definition of the concept. 

Definition. A finite-state transducer is a nondetermin- 
istic finite-state machine with output. That is, it is a 
finite-state machine that reads its input in a single 
left-to-right pass. In one move it does all of the follow- 
ing: either read a symbol or move without consuming 
any input (called moving on the empty input) and then, 
on the basis of this symbol or the empty input, as well 
as the state of the finite-state machine, it changes state 
and outputs a string of symbols. (If, on first reading, you 
ignore moving on the empty string, the definition is very 
easy to understand. Moving on the empty string simply 
allows the transducer to produce output without reading 
any input.) There is a designated start state and a set of 
designated accepting states. 

In a computation of a finite-state transducer there is 
an output string consisting of the concatenation of the 
individual strings output, but not all output strings are 
considered valid. The computation begins in the start 
state and is considered valid if and only if the compu- 
tation ends in one of a designated set of accepting 
states. A string y is said to be a finite-state transduction 
of the string x via the finite-state transducer T provided 
that there is a valid computation of T with input x and 
output y. 

To motivate the following definition, consider chang- 
ing a language so that plurals are marked by reduplica- 
tion. For example, in English "papers" would change 
to "paperpaper." A sentence such as "Writers need 
pens to survive" would change to "Writerwriter need 
penpen to survive." This change of English can be 
obtained by first replacing all plural nouns with a special 
symbol (a in the definition) and then performing a 
reduplication substitution as described in the definition. 
If the change were other than an exact copy, it would 
still satisfy the definition provided that a finite-state 
machine could compute the approximate copy. This 
operation allows us to take a language and introduce 
reduplication in place of any suitably easily recognized 
class of words and so obtain a language that uses 
reduplication to mark that class. The following theorem 
says that RPDA languages are closed under these sorts 
of operations. 

Definition. Let L be a language, a a symbol, and T a 
finite-state transduction. Define the language L' to 
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consist of  all strings w that can be written in the form 
Xo Yo xl  Yl ""Xn -1 Yn - I  Xn where 

(i) each xi contains no a, s 
(ii) Xo ax l  a ""Xn - I  a x ,  E L ,  and 
(iii) each Yi is of  the form vv '  where v' is a finite-state 
transduction of  v via T. 

A language L ' ,  obtained in this way, is called a redupli- 
cation substitution of  the language L via T by substituting 
reduplication strings for a. More simply, L '  is called a 
reduplication substitution of  L provided there is some 
symbol a and some such finite-state transduction T such 
that L '  can be obtained from L in this way. 

Theorem 5. I f  L '  is a reduplication substitution of  a 
context-free language, then L '  is an RPDA language. 

Among other  things, Theorem 5 says that if you add 
reduplication to a context-free language in a very simple 
way, then you always obtain an RPDA language. In 
Section 8, we will prove a result that is stronger than 
Theorem 5 and so we will not present a proof  here. 

6 NoNRPDA LANGUAGES 

To prove that certain languages cannot be accepted by 
any RPDA, we will need a technical lemma. Despite the 
messy notation, it is very  intuitive and fairly straight- 
forward to prove.  It says that if the stack marker ~ is 
used to check arbitrarily long reduplications, then these 
reduplications can be pumped up (and down). For  
example,  suppose an RPDA accepts a string of  the form 
u s s t  and does so by pushing $ ,  then s onto the stack, 
and then matching the second s by a check-copy move. 
It must then be true that, if s is long enough, then s can 
be written in the form s I s 2 s 3 and for all i > 0, the RPDA 
can do a similar pushing and checking of  sls2gs3 to 
accept U S I S 2  i S 3 S 1 S2 i s3t. 

Pumping Lemma 1. For  every  RPDA M, there is a 
constant  k such that the following holds. If l ength(s )  > 

k and 
(Pl,  rst ,  ~ [3) F* (P2, st ,  s n $ fl ) F (P3, t, ~), 

where the indicated string $/3 is never  disturbed, then 
r and s may be decomposed into r = r~ rE r3 and s = 
s~ s2 s3, such that s2 is nonempty and for all i - O, (pl, 
r I rE i r 3 s I Sz i S 3 t, $ /3) F* (P2, S1 Sz i S3 t, (S I $2 i S3) R ~¢ /3) 
I- (P3, t, /3). 

Proof. Without loss of  generality, we will assume that 
M pushes at most  one symbol onto the stack during 
each move.  Let  k be the product  of  the number of  states 
in M and the number  of  stack symbols of  M. Consider 
the subcomputat ion 

(191, rs t ,  $/3) F* (P2, st ,  s R ~ /3) 
Let  s = a~a 2 ... a m where the a i are single symbols and 
m > k. Let  q~, q2 . . . . .  qm be the state of  M after it places 
this occurrence of  ai onto the stack so that, after this 
point, ag is never  removed from the stack until after this 
subcomputation.  Since m > k, there must be i < j such 
that a i = aj and qg = qj . Set 

$2 : a i  + 1 a i  + 2 . . .  a j  

and then define s 1 and s 3 by the equation s = sl s,2 s3. 
Define r z to be the portion of input consumed while 
pushing s2 onto the stack, and then define r~ and r 3 by 
the equation r = r 1 r z r 3. It is then straightforward to 
show that the conclusion of  the lemma holds.[]  

Our second pumping lemma for RPDAs draws the 
same conclusion as a weak form of the pumping lemma 
for context-free languages. Since the pumping lemma 
for context-free languages will be used in the proof  of 
the second pumping lemma for RPDAs, we reproduce 
the context-free version for reference.  

Weak Pumping Lemma for CFLs. If  L is a context-  
free language, then there is a constant k, depending on 
L, :such that the following holds: If z E L and l eng th  (z) 

> k, then z can be written in the form z = u v w x y  where 
either v or x is nonempty and uv  g w x  i y E L for all i -> 0. 

The following version of the pumping lemma for 
RPDAs makes the i den t i ca l  conclusion as the above 
pumping lemma for context-free languages. 

]Pumping Lemma 2. If L is an RPDA language, then 
there is a constant k, depending on L, such that the 
following holds: If  z E L and l eng th  (z) > k,  then z can 
be written in the form z = u v w x y ,  where either v or x is 
nonempty and lgV i W X  i y E L for all i -> 0. 

Proof. Let  M be an RPDA accepting L and let k be as 
in the Pumping Lemma 1. We decompose  L into two 
languages so that L = L 1 U L 2. Define L 1 to be the set 
of all strings z in L such that the Pumping L emma  1 
applies to at least one accepting computat ion on z. In 
other words, z is in LI if and only if there is a 
computation of  M of  the form 

(qo', Z, Zo) F* (Pl, rst ,  $ fl) F* (P2, s t ,  s n $ [3) F 

(P3., t, /3) F* (pf, A, T) 
where qo is the start state, pf  is an accepting state, and 
l ength(s )  > k. By Pumping Lem m a  1, it follows that the 
conclusion of  Pumping Lemma 2 applies to all strings in 
L 1. (In this case we can even conclude that x-is always 
nonempty.  However ,  we will not be able to make such 
a conclusion for strings in L2.) 

L 2 is defined as the set of all strings accepted by a 
particular ordinary PDA M 2 that simulates many of  the 
computations of  the RPDA M. Define M2 to mimic the 
computation of M but to buffer the top k + 1 symbols of 
the stack in its finite-state control,  and make the follow- 
ing modifications to ensure that it is an ordinary PDA: if 
M2 has to mimic a check-copy move that matches k or 
fewer symbols above the marker  $ ,  it does so using the 
stack buffer in its finite-state control.  If M2 ever  needs 
to mimic a check-copy move that matches more than k 
stack symbols above the $ ,  it aborts the computat ion in 
a nonaccepting state. M 2 can tell if it needs to abort a 
computation by checking the finite stack buffer in its 
finite-state control.  If  the buffer contains k + 1 symbols 
but no marker  $ ,  and if M would do a check-copy 
move,  then ME aborts its computation.  

By definition, L = L~ U L 2 . (The sets L~ and L 2 need 
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not be disjoint, since M may be nondeterministic, and 
hence, a given string may have two different accepting 
computations. However, this does not affect the argu- 
ment.) Because it is accepted by an ordinary PDA, L 2 is 
a context-free language, and the Pumping Lemma for 
context-free languages holds for it and some different k. 
Hence, by redefining k to be the maximum of the ks for 
LI and L2, we can conclude that the Pumping Lemma 2 
holds for L = L~ U L2 and this redefined k.[~ 

The next theorem and its proof using the pumping 
lemma illustrates the fact that RPDAs, like context-free 
grammars, can, in some sense, check only "two things 
at a time." 

Theorem 6. L = {a nb n c n l n _ > 0 } i s n o t a n R P D A  
language. 

Proof. Suppose L is an RPDA language. We will 
derive a contradiction. By Pumping Lemma 2, there is a 
value of n and strings u, v, w, x, and y such that a n b n c n 
= u v w x y  with either v or x nonempty and such that uv  i 

w x  i y E L for all i > 0. A straightforward analysis of the 
possible cases leads to the conclusion that uv  2 w x  2 y is 
not in L, which is the desired contradiction.if] 

Since it is known that the language L in Theorem 6 is 
a TAG language, and since the TAG languages are 
included in the indexed languages, we obtain the follow- 
ing corollaries. The second corollary is the promised 
completion of the proof of Theorem 2. 

Corollary. There is a TAG language that is not an 
RPDA language. 

Corollary. There is an indexed language that is not an 
RPDA language. 

There are many versions of the pumping lemma for 
context-free languages. (See Ogden 1968; Harrison 
1978; Hopcroft and Ullman 1979.) Most versions make 
the additional conclusion that l e n g t h ( v w x )  <- k. Often 
one can prove that a language is not context-free 
without using this additional conclusion about the 
length of vwx .  In other words, we can often prove that 
a language is not context-free by using only the weak 
form of the pumping lemma given above. One such 
language is the one given in Theorem 6. If you review 
the proof of Theorem 6, then you will see that all we 
needed was the Pumping Lemma 2. Moreover, that 
pumping lemma has the identical conclusion as that of 
the Weak Pumping Lemma for context-free languages. 
This leads us to the following informal metatheorem: 

Metatheorem. If L can be proven to not be context- 
free via the Weak Pumping Lemma for CFLs, then L is 
not an RPDA language. 

This is not an official theorem since the phrase "via 
the Weak Pumping Lemma" is not mathematically 
precise. However, the metatheorem is quite clear and 
quite clearly valid in an informal sense. It can be made 
precise, but that excursion into formal logic is beyond 
the scope of this paper. 

To see the limits of this metatheorem, note that the 
language { w w  I w ~ {a, b} *} is an RPDA language, and 
so to prove that it is not a context-free language, we 
should need more than the Weak Pumping Lemma. 
Indeed, one cannot get a contradiction by assuming 
only that the Weak Pumping Lemma applies to this 
language. A proof that this language is not context-free 
must use some additional fact about context-free lan- 
guages, such as the fact that we can assume that 
l eng th ( vw x )  <_ k, where v w x  is as described in the 
pumping lemma. 

The metatheorem is another indication that the 
RPDA languages are only a small extension of the 
context-free languages. If it is easy to prove that a 
language is not context-free (i.e., if the language is 
"very noncontext-free"), then the language is not an 
RPDA language either. 

7 A CONSTRUCTION MISSED BY THE MODEL 

As we have already noted, both Dutch and Swiss- 
German contain constructions consisting of a string of 
nouns followed by an equal (or approximately equal) 
number of verbs. Hence these languages contain sub- 
strings of the form 

N l N 2 . . .N  n V ,  V 2 ...V,, 
In the case of Swiss-German, additional agreement 
rules suffice to show that these constructions are be- 
yond the reach of context-free grammar, although not 
beyond the reach of RPDAs. (See the discussion of 
Shieber 1985 earlier in this paper.) Because Dutch lacks 
the strong agreement rule present in Swiss German, the 
same proof does not apply to Dutch. Manaster-Ramer 
(1987) describes an extension of this construction within 
Dutch and argues that this extension takes Dutch be- 
yond the weak generative capacity of context-free 
grammar. Although we are admittedly oversimplifying 
the data, the heart of his formal argument is that two 
such strings of verbs may be conjoined. Hence, Dutch 
contains substrings that approximate the form 

N l  N2 ...Nn VI V2 ...Vn en ( ' and ' )  V i V2 ""Vo 
The Dutch data support only the slightly weaker claim 
that the number of nouns is less than or equal to the 
number of verbs. Hence, Manaster-Ramer's argument 
is, in essence, that Dutch contains a construction simi- 
lar to the following formal language: 

g = { a i l ~ c J l i ~ j }  

He uses this observation to argue, via the Pumping 
Lemma for Context-Free Languages, that Dutch is not 
a context-free language. A careful reading of his argu- 
ment reveals that, with minor alterations, the argument 
can be made to work using only the Weak Pumping 
Lemma. Hence by the metatheorem presented here (or 
a careful review of his proof), it follows that his argu- 
ment generalizes to show that the language L is not an 
RPDA language. Hence, if one accepts his data, the 
same argument shows that Dutch is not an RPDA 
language. 
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The RPDA model could be extended to take account 
of this and similar natural language constructions 
missed by the model. One possibility is simply to allow 
the RPDA to check an arbitrary number of input strings 
to see if they are finite-state transductions of the string 
above the marker $.  There are a number of ways to do 
this. However, it seems preferable to keep the model 
clean until we have a clearer idea of what constructions, 
other than reduplication, place natural language beyond 
the reach of context-free grammar. The RPDA model, 
as it stands, captures the notion of context-free gram- 
mar plus reduplication, and that constitutes one good 
approximation to natural language string sets. 

8 REDUPLICATION GRAMMARS 

Although we do not have a grammar characterization of 
RPDA languages, we do have a grammar class that is an 
extension of context-free grammar and that is adequate 
for a large subclass of the RPDA languages. The model 
consists of a context-free grammar, with the addition 
that the right-hand side of rewrite rules may contain a 
location for an unboundedly long reduplication string of 
terminal symbols (as well as the usual terminal and 
nonterminal symbols). 

Definition. A reduplication context-free grammar 
(RCFG) is a grammar consisting of terminal, nontermi- 
nal, and start symbols as in an ordinary context-free 
grammar, but instead of a finite set of productions, it 
has a finite set of rule schemata of the following form: 
(A --~ ct, T) where A is a nonterminal symbol, a is a 
string of terminal and/or nonterminal symbols, and 
where T is a finite-state transducer. (Thus, A ~ a is an 
ordinary context-free rule, but it will be interpreted 
differently than normal.) 

The production set associated with the schema (A --~ 
a, T) is the set of all context-free rules of the form: A --* 
ww'ct, where w is a string of terminal symbols, and w' is 
obtained from w by applying the finite-state transduc- 
tion T to the string w. 

The next step relation f f  for derivations is defined as 
follows: 

a ~ /3 if there is some context-free rule in some 
production set of some rule schema of the grammar 
such that a ~ /3 via this rule in the usual manner for 
context-free rewrite rules. As usual, ~ is the reflexive- 
transitive closure of ~ .  

The language generated by an RCFG, G, is defined 
and denoted in the usual way: L(G) = { w L w a string of 
terminal symbols and S ~ w}, where S is the start 
symbol. 

Notice that an RCFG is a special form of infinite 
context-free grammar. It consists of a context-free 
grammar with a possibly infinite set of rewrite rules, 
namely the union of the finitely many production sets 
associated with the schemata. However, there are very 
severe restrictions on which infinite sets of productions 
are allowed. Also notice that RCFGs generalize con- 

text-free grammars. If we take T to be the transduction 
that accepts only the empty string as input and output, 
then the set of productions associated with the schema 
(A -~ ct, I) consists of the single context-free production 
A -~ a. In particular, every context-free grammar is 
(except for notational detail) an RCFG. 

Recall that a context-free grammar in Greibach Nor- 
mal Form is one in which each production is of the form 

A --~ act 
where a is a terminal symbol and ct is a string consisting 
entirely of nonterminals. It is well known that every 
context-free language can be (weakly) generated by a 
context-free grammar in Greibach Normal Form. The 
schemata described in the definition of RCFGs have 
some similarity to context-free rules in Greibach Nor- 
mal Form, except that they start with a reduplication 
string, rather than a single terminal symbol, and the 
remaining string may contain terminal symbols. Also 
the leading reduplication string may turn out to be the 
empty string. Thus, these are very far from being in 
Greibach Normal Form. Yet, as the proof of the next 
result shows, the analogy to Greibach Normal Form can 
sometimes be productive. 

Theorem 7. If L is a reduplication substitution of a 
context-free language, then there is an RCFG G such 
that L = L(G). 

Proof. Let G' be a context-free grammar, T a finite- 
state transduction and a a symbol such that L is 
obtained from L(G') via T by substituting reduplication 
strings for a. Without loss of generality, we can assume 
that G' is in Greibach Normal Form. The RCFG G 
promised in the theorem will be obtained by modifying 
G'. To obtain G from G' we replace each G' rule of the 
form 

A --~ aA 1 A 2 ...A n, 
where a is the symbol used for the reduplication substi- 
tution, by the schema 

(A --~ Al  A2 ""An, T) 
The remaining rules of G' are left unchanged except for 
the technicality of adding a finite-state transduction that 
accepts only the empty string as input and output, and 
so leaves the rule unchanged for purposes of generation. 
A routine induction then shows that the resulting RCFG 
G is such that L(G) = L.[3 

Parsing with an RCFG does not require the full 
power of an RPDA, but only requires the restricted type 
of R]PDA that is described next. 

Definition. A simple RPDA is an RPDA such that, in 
any computation: 

(i) there is at most one occurrence of the marker $ in 
the stack at any one time, and 

(ii) as long as the marker symbol $ is in the stack, the 
RPDA never removes a symbol from the stack. 

More formally, an RPDA M is a simple R P D A  
provided that the following condition holds: if the 
instruction (p, push a, A) E 8(q, a, Z) can ever be used 
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when $ is in the stack, then a = /3 Z for some/3  and 
does not occur  in a. 
Like Theorem 1, the following equivalence for simple 

RPDAs is trivial to prove by adapting the proof  of  the 
same result for ordinary PDAs. 

Theorem 8. A language L is accepted by some simple 
RPDA by final state if and only if it is accepted by some 
(typically different) simple RPDA by empty store. 

The next  theorem says that RCFGs are equivalent to 
simple RPDAs. 

Theorem 9. For  any language L, L is generated by 
some RCFG if and only if L is accepted by some simple 
RPDA. 

Proof. Suppose that G is an RCFG such that L = 
L(G).  We can construct  a simple RPDA that accepts 
L(G).  All we need do is adapt the standard nondeter- 
ministic top-down algorithm for accepting a context- 
free language by empty store on an ordinary PDA. We 
then obtain a simple RPDA that accepts L(G)  by empty 
store. The details follow. 

The RPDA starts with the start nonterminal in the 
stack and proceeds to construct  a leftmost derivation in 
the stack. If  a nonterminal A is on the top of  the stack, 
then it nondeterministically chooses a schema ( A ---> a, 
T) and does all of  the following: 

1. Pops A and pushes a. (As usual, the symbols of a go 
in so the leftmost one is on the top of  the stack.) 

2. Pushes the marker  symbol $ onto the stack. 
3. Nondeterministically advances the input head past 

some string w while simultaneously computing a 
string w' such that w' is a finite-state transduction of  
w via T. The string w' is pushed onto the stack as it 
is produced.  

4. Executes  a check-copy move to verify that w' is an 
initial segment of  the remaining input, thereby also 
using up the input w'. 

If  the top symbol is a terminal and there is no ~ in the 
stack, then it simply matches the stack symbol to the 
input symbol, consuming both the stack symbol and the 
input symbol. 

A routine induction shows that the RPDA accepts 
exactly the language L = L(G).  

Conversely,  suppose that M is a simple RPDA such 
that L(M) = L. Without loss of  generality, we will 
assume that M always pushes at least one symbol on the 
stack after pushing the marker  symbols $ ,  that every 
marker  symbol $ on the stack is eventually used in a 
copy-check move,  and that the marker  symbol ~ is not 
left in the stack at the end of  any accepting computa- 
tion. We reprogram M to obtain an ordinary PDA M' 
that accepts a different but related language L' .  M '  is 
defined as follows: M' has all the input symbols of  M 
plus one new symbol, denoted <q,  p > ,  for each pair of 
M states (q, p). Intuitively, a new symbol <q,  p >  is 
used to stand in for a reduplication string that M would 
process starting in state q and ending up in state p after 

a successful check-copy move. M'  mimics M step by 
step as long as M would not have the marker  $ in the 
stack and as long as the input is not one of  the new 
symbols <q,  p > .  I f M '  reads a new symbol <q,  p > ,  and 
M' is simulating M in the state q, then M' guesses an 
input symbol a of  M and simulates M on input a. If  M 
would consume the input symbol a without pushing the 
marker ~ on the stack, then M' aborts its computation. 
If  M would eventually push the marker  $ on the stack 
while scanning (and possibly consuming) a, then M' 
continues to simulate M, guessing additional input sym- 
bols for M until it needs to simulate M performing a 
check-copy move. At this point it assumes that the 
check-copy move succeeds. If that simulated check- 
copy move leaves the simulated M in the simulated state 
p, then M' consumes <q,  p >  and continues the simu- 
lation of  M. If  any of  these conditions are not met, then 
M' simply aborts its computation.  

Remember  that, intuitively, a new symbol <q,  p >  is 
used to stand in for a reduplication string that M would 
process starting in state q and ending up in state p after 
a successful check-copy move. For  any state q in which 
M would push ~ on the stack, M will go on to push a 
finite-state transduction of  the input onto the stack until 
it wants to execute a check-copy move. Let  T(q, p)  be 
that finite-state transducer with start state q and the 
single accepting state p such that T simulates M starting 
in state q and pushing symbols on the stack and such 
that M accepts if and only if it ends the simulation in a 
state that allows a check-copy move that will leave M in 
state p. (Aside from start and accepting state, all the 
T(q, p)  are essentially the same transducer.)  Now, M' 
accepts some context-free language L '  with the follow- 
ing property: 

(A) Suppose x o < ql, Pl > Xl < q2, P2 > X2 "'" 
< q.,  q.  > X. is such that each x; contains no new 
symbols and suppose that the strings u i and 
v; (i <-- n) are such that each vi is a finite-state 
transduction of  ui by T (qi, Pi). Under  these as- 
sumptions, x 0 < q~, p~ > x~ < q2, P2 > X2""< q,,, qn 
> x.  E L'  = L (M') if and only i f x  0 ul vl xl u2 v2 
• ..u, v, x~ E L(M) 

Finally let G' be a context-free grammar in Greibach 
Normal Form for the context-free language L ' .  Con- 
struct an RCFG, G, as follows: 

(i) For  each rule of  G' of  the form A ~ < q, p > A l 
A 2 ... A n add the following schema to G: 

(A ~ A l A 2 ... An, T(q, p))  
(ii) For  all other rules of  G' simply add the rule to G 

unchanged (except for cosmetic changes in notation to 
make them look like schemata). 

By (A) and a routine induction it follows that L(G)  = 
L(M).O 

Theorem 9 makes simple RPDAs sound better  be- 
haved than regular RPDAs and if there were no evi- 
dence to the contrary,  the weaker  model would be 
preferred. However ,  the fact that natural languages can 
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have complicated phrase structures embedded within a 
reduplication construction indicates that simple RPDAs 
may not be adequate for natural language syntax. If one 
assumes a language like English but with syntactic 
gender, strong agreement rules, and a well-behaved use 
of respectively, then one can easily see why one might 
want more power than that provided by a simple RPDA. 
An example of a kind of sentence that seems beyond the 
reach of simple RPDAs is the following: 

Tom, who has had three wives, Sally, who has had 
seven husbands, Mary, who lost John, Hank, and 
Sammy to cancer, heart disease, and stroke, respec- 
tively, and Frank, who had only one wife and lost her 
last January, are a widower, widow, widow, and 
widower, respectively. 

The natural way to handle these sorts of sentences with 
an RPDA is to have two markers + in the stack at once, 
and we conjecture that a single marker will not suffice. 

English does not have the syntactic gender and 
strong agreement rules that would allow us to prove, via 
this construction, that English is not context-free. We 
merely put it forth as an example of a potential natural 
language situation. 

9 SUMMARY 

We have seen that the RPDA model is very similar to 
the PDA characterization of context-free languages. 
Thus from an automata theoretic point of view, RPDA 
languages are very much like context-free languages. 
We have seen that both classes have similar closure 
properties, and so they are similar from an algebraic 
point of view as well. Moreover, the context-free lan- 
guages and the RPDA languages have similar pumping 
lemmas that exclude many of the same unnatural lan- 
guage sets and even exclude them for the same reasons. 
Hence, the class of RPDAs are only mildly stronger 
than context-free grammars. However, the model is 
sufficiently strong to handle the many reduplication 
constructions that are found in natural language and that 
seem to place natural language outside of the class of 
context-free languages. The RPDA languages do not, as 
yet, have a grammar characterization similar to that of 
context-free grammar, but the RCFG grammars are 
context-free like grammars that do capture at least a 
large subclass of the RPDA languages. 
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