
Recovery Strategies for
Parsing Extragrammatical Language 1

Jaime G. Carbonell and Philip J. Hayes

C o m p u t e r S c i e n c e D e p a r t m e n t
C a r n e g i e - M e l l o n U n i v e r s i t y

P i t t s b u r g h , P A 15213

Practical natural language interfaces must exhibit robust behaviour in the presence of
extragrammatical user input. This paper classifies different types of grammatical deviations
and related phenomena at the lexical, sentential and dialogue levels and presents recovery
strategies tailored to specific phenomena in the classification. Such strategies constitute a
tool chest of computationally tractable methods for coping with extragrammatieality in
restricted domain natural language. Some of the strategies have been tested and proven
viable in existing parsers.

1. Introduction

Any robust natural language interface must be capable
of processing input u t terances that deviate f rom its
grammat ica l and semant ic expectat ions. Many re-
searchers have made this observat ion and have taken
initial steps towards coverage of certain classes of
extragrammatical constructions. Since robust parsers
must deal primarily with input that does meet their
expectat ions, the various efforts at coping with extra-
grammatical i ty have been generally structured as ex-
tensions to existing parsing methods. P robab ly the
most popular approach has been to extend
syntact ica l ly-or iented parsing techniques employing
Augmented Transit ion Networks (ATNs) (Kwasny and
Sondheimer 1981, Weischedel and Sondheimer 1984,
Weischedel and Black 1980, Woods et al. 1976). Oth-
er researchers have a t tempted to deal with ungrammat-
ical input through ne twork -based semant ic g rammar
techniques (Hendr ix 1977), through extensions to
pa t te rn matching parsing in which partial pa t te rn
matching is al lowed (Hayes and Mourad ian 1981),
through conceptual case f rame instant ia t ion (Dejong
1979, Schank, Lebowi tz , and Bi rnbaum 1980), and
through approaches involving multiple coopera t ing
parsing strategies (Carbonel l and Hayes 1984, Carbo-
nell et al. 1983, Hayes and Carbonell 1981).

1 This research was sponsored in part by the Air Force Office
of Scientific Research under Contract AFOSR-82-0219 and in part
by Digital Equipment Corporation as part of the XCALIBUR
project.

Given the background of existing work, this paper
focuses on three major objectives:
1. to create a t axonomy of possible grammatical devi-

ations covering a broad range of extragrammatical i -
ties, including some lexical and discourse phenom-
ena (for example, novel words and dialogue level
ellipsis) that can be handled by the same mecha-
nisms that detect and process true grammat ica l
errors;

2. to outline strategies for processing many of these
deviat ions - some of these strategies have been
presented in our earlier work, some are similar to
strategies proposed by other researchers, and some
have never been analyzed before;

3. to assess how easily these strategies can be em-
ployed in conjunction with several of the existing
approaches to parsing ungrammatical input, and to
examine why mismatches arise.

The overall result should be a synthesis of different
parse- recovery strategies organized by the grammatical
phenomena they address (or violate), an evaluation of
how well the strategies integrate with existing ap-
proaches to parsing extragrammatical input, and a set
of characteristics desirable in any parsing process deal-
ing with extragrammatieal input. We hope this will aid
researchers designing robust natural language interfac-
es in two ways:
1. by providing a tool chest of computat ional ly ef-

fective approaches to cope with extragrammatical -
ity;

Copyright 1984 by the Association for Computational Linguistics. Permission to copy without fee all or part of this material is granted
provided that the copies are not made for direct commercial advantage and the Journal reference and this copyright notice are included on
the first page. To copy otherwise, or to republish, requires a fee and/or specific permission.

0 3 6 2 - 6 1 3 X / 8 3 / 0 3 0 1 2 3 - 2 4 5 0 3 . 0 0

American Journal of Computational Linguistics, Volume 9, Numbers 3-4, July-December 1983 123

Ja ime G. Carbonel l and Phil ip J. Hayes Recovery Strategies for Parsing Extrammatical Language

2. by assisting in the selection of a basic parsing
methodology in which to embed these recovery
techniques.

In assessing the degree of compat ibi l i ty be tween
recovery techniques and various approaches to parsing,
we avoid the issue of whether a given recovery tech-
nique can be used with a specific approach to parsing.
The answer to such a question is almost always affirm-
ative. Instead, we are concerned with how naturally
the recovery strategies fit with the various parsing
approaches. In particular, we consider the computa-
tional tractabil i ty of the recovery strategies and how
easily they can obtain the informat ion they need to
operate in the context of different parsing approaches.

The need for robust parsing is greatest for interac-
tive natural language interfaces that have to cope with
language produced spontaneously by their users. Such
interfaces typically operate in the context of a well-
defined, but restricted, domain in which strong seman-
tic constraints are available. In contrast , text process-
ing of ten opera tes in domains that are semantical ly
much more open-ended. However , the need to deal
with extragrammatical i ty is much less pronounced in
text processing, since texts are normally carefully pre-
pared and edited, eliminating most grammatical errors
and suppressing many dialogue phenomena that pro-
duce f ragmentary utterances. Consequent ly, we shall
emphasize recovery techniques that exploit and depend
on strong semantic constraints. In some cases, it is
unclear whether the techniques we discuss will scale
up properly to unrestr icted text or discourse, but even
where they may not, we anticipate that their use in the
restricted situation will provide insights into the more
general problem.

Before proceeding with our discussion, the term
extragrammaticality requires clarification. Extra-
grammaticalities include pa tent ly ungrammat ica l con-
structions, which may never theless be semantical ly
comprehensible , as well as lexical difficulties (for ex-
ample, misspellings), violat ions of semant ic con-
straints, ut terances that may be grammatical ly accept-
able but are beyond the syntactic coverage of the sys-
tem, ellipsed f ragments and other dialogue phenomena ,
and any other difficulties that may arise in parsing
individual u t terances . An extragrammaticality is thus
defined with respect to the capabilities of a particular
system, rather than with respect to an absolute exter-
nal competence model of the ideal speaker.

Ex t ragrammat ica l i ty may arise at various levels:
lexical, sentential, and dialogue. The following sec-
tions examine each of these levels in turn, classifying
the extragrammatical i t ies that can occur, and discuss-
ing recovery strategies. At the end of each section, we
consider how well the various recovery strategies
would fit with or be supported by various approaches
to parsing. A final section discusses some exper imen-
tal robust parsers that we have implemented . Our

experience with these parsers forms the basis for many
of the observa t ions we offer th roughout the paper .
We also discuss some more recent work on integrating
many of the recovery strategies considered earlier into
a single robust mult i -s trategy parser for restricted do-
main natural language interpretat ion.

2. Lexical Level Extragrammaticalities

One of the most f requent parsing problems is finding
an unrecognizable word in the input stream. The fol-
lowing subsections discuss the underlying reasons for
the presence of unrecognizable words and develop
applicable recovery strategies.

2.1. The unknown word problem

The word is a legi t imate lexeme but is not in the
sys tem's dictionary. There are three reasons for this:
• The word is outside the in tended coverage of the

interface (For example, there is no reason why a
natural language in ter face to an electronic mail
system should know words like "cha i r " or " sk y " ,
which cannot be defined in terms of concepts in its
semantic domain) .

• The word refers to a legitimate domain concept or
combinat ion of domain concepts , but was not in-
cluded in the dictionary. (For example, a word like
" f o r w a r d " [a message] can be defined as a com-
mand verb, its action can be clearly specified, and
the objects upon which it operates - an old mes-
sage and a new recipient - are already wel l - formed
domain concepts .)

• The word is a proper name or a unique identifier,
such as a catalogue part n a m e / n u m b e r , not hereto-
fore encountered by the system, but recognizable
by a combina t ion of contextual expec ta t ions and
morphological or or thographic features (for exam-
ple, capitalization).
In the first si tuation, there is no meaningful re-

covery s t rategy other than focused interact ion (Hayes
1981) to inform the user of the precise difficulty. In
the third, little action is required beyond recognizing
the p roper name and recording it appropr ia te ly for
future reference. The second situation is more compli-
cated; three basic recovery strategies are possible:
1. Follow the KLAUS (Haas and Hendr ix 1983) ap-

proach, where the system temporar i ly wrests initia-
tive f rom the user and plays a well designed
" twen ty quest ions" game, classifying the unknown
term syntactical ly, and relat ing it semant ica l ly to
existing concepts encoded in an inher i tance hier-
archy. This method has proven successful for verbs,
nouns and adjectives, but only when they turn out
to be instances of predef ined general classes of
objects and actions in the domain model.

2. Apply the project and integrate method (Carbonel l
1979) to infer the meaning and syntact ic category
of the word f rom context. This method has proven

124 Amer ican Journal of Computa t iona l Linguist ics, Vo lume 9, Numbers 3-4, Ju ly -December 1983

Jaime G. Carbonel| and Philip J. Hayes Recovery Strategies for Parsing Extrammatical Language

useful for nouns and adjectives whose meaning can
be viewed as a recombinat ion of features present
elsewhere in the input. Unlike the KLAUS method,
it opera tes in the background, placing no major
run-t ime burden on the user. However , it remains
highly exper imenta l and may not prove practical
without user confirmation.

3. Interact with the user in a focused manner to pro-
vide a paraphrase of the segment of input contain-
ing the unknown word. If this paraphrase results in
the desired action, it is s tored and becomes the
meaning of the new word in the immediate context
in which it appeared. The L I F E R system (Hendrix
1977) had a rudimentary capacity for defining syn-
onymous phrases. A more general method would
generalize synonyms to classify the new word or
phrase in different semantic contexts.

2.2 .2 M i s s p e l l i n g s

Misspellings arise when an otherwise recognizable
lexeme has letters omitted, substituted, t ransposed, or
spuriously inserted. Misspellings are the most common
form of ex t ragrammat ica l i ty encountered by natural
language interfaces. Usually, a word is misspelt into
an unrecognizable character string. But, occasionally a
word is misspelt into another word in the dictionary
that violates semantic or syntactic expectations. For
instance:

" C o p y the flies f rom the accounts directory to
my di rec tory"

Although "f l ies" may be a legitimate word in the do-
main of a particular interface (for example, the files
could consist of statistics on med-f ly infesta t ion in
California) , it is obvious to the human reader that
there is a misspelling in the sentence above.

There are wel l -known algori thms for matching a
misspelt word against a set of possible correct ions
(Durham, Lamb, and Saxe 1983), and the simplest
recovery strategy is to match unknown words against
the set of all words in an interface 's dictionary. How-
ever, this obviously produces incorrect results when a
word is misspelt into a word already in the dictionary,
and can produce unnecessary ambiguities in other cas-
es.

Superior results are obta ined by making the spelling
correct ion sensitive to the parser ' s syntact ic and se-
mantic expectations. In the following example:

Add two fixed haed dual prot disks to the order

" h a e d " can be corrected to: "had" , "head" , "h and" ,
"heed" , and "ha ted" . Syntactic expectat ions rule two
of these out, and domain semantics rule out two oth-
ers, leaving "fixed head disk" as the appropriate cor-
rection. Computat ional ly , there are two ways to or-
ganize this. One can either match parser expectat ions
against all possible corrections in the parser 's current

vocabulary, and rule out spurious corrections, or one
can use the parse expecta t ions to genera te a set of
possible words that can be recognized at the present
point and use this as input to the spelling correct ion
algorithm. The latter, when it can be done, is clearly
the preferable choice on efficiency criteria. Genera t ing
all possible correct ions with a 10,000 word dictionary,
only to rule out all but one or two, is a
computa t ional ly- in tens ive process, whereas exploit ing
ful ly- indexed parser expecta t ions is far more con-
strained and less likely to generate ambiguity. For the
example above, " p r o t " has 16 possible corrections in a
small on-line dictionary. However , domain semantics
allow only one word in the same position as "p ro t " , so
correct ion is most effective if the list of possible words
is generated first.

2.3. I n t e r a c t i o n of m o r p h o l o g y and m i s s p e l l i n g

Troub lesome s ide-effects of spelling correct ion can
arise with parsers that have an initial morphologica l
analysis phase to reduce words to their root form. For
instance, a parser might just s tore the root fo rm of
'd i rectory ' and reduce 'd irector ies ' to 'd i rectory ' plus a
plural marker as part of its initial morphological phase.
This process is normally driven by first failing to rec-
ognize the inflected form as a word that is present in
the dictionary, and then applying standard morphologi-
cal rules (for example, - i es =) +y) to derive a root
f rom the inflected form. If any root thus derived is in
the dictionary, the input word is assumed to be the
appropriate inflected form.

There are several ways in which this procedure can
interact with spelling correction:
1. The same test, viz. not finding the word in the

dict ionary, is used to tr igger bo th morphological
analysis and spelling correction, so there is a ques-
tion of which to do first.

2. The root of the word may be misspelt (e.g. dircto-
ties), even though the inflexion is correct, so that
af ter the inflexion is removed, there is still no
matching dictionary entry.

3. The inflexion itself may be misspelt (e.g. director-
ise), so that the s tandard morphological t ransfor-
mations do not apply.
The first kind of interact ion is not usually a major

problem. On the assumption that inflexion is more
common than misspelling, the most s t ra ight forward
and probably best s t rategy is to try inflexion first on
unknown words and then if that does not produce a
word in the dictionary, try spelling correction. Match-
ing only against contextually appropr ia te words should
avoid cases in which a misspelling produces an inflect-
ed form of a different word.

If the root of an inflected word is misspelt, it will
be necessary to spelling correc t all of the (possibly
several) uninflected forms, which might be inefficient.
Again, contextual sensitivity can help.

American Journal of Computational Linguistics, Volume 9, Numbers 3-4, July-December 1983 125

Jaime G. Carbonell and Philip J. Hayes Recovery Strategies for Parsing Extrammatical Language

The third kind of interaction is most t roublesome.
Most inflexions are too short for spelling correction to
be effective - letter substitution or omission on two
letter sequences is hard to identify. Moreover , inflex-
ion processing does not normally use an explicit list of
inflexions, but instead is organized as a discrimination
net, containing the inflexions implicitly. One solution
may be to have a list of all misspellings of inflected
forms, but even utilizing hash coding schemes, search-
ing this set would be inefficient.

A simpler solution to the entire problem of interac-
t ion be tween spelling correc t ion and morphologica l
analysis is to eliminate the morphological analysis, and
just store all inflected forms in the dictionary. This
has the disadvantages of being unaesthet ic and being
unable to deal with novel inflexions, but nei ther of
these are major problems for restricted domain natural
language interfaces. There is also a second order
problem in that more than one inflected form of the
same word could be found as candidate correct ions
through spelling correction, but this can be overcome
by explicitly grouping the various inflexions of a given
root together in the lexicon.

2.4. Incorrect segmentation

Input typed to a natural language interface is segment-
ed into words by spaces and punctuat ion marks. Both
kinds of segment ing markers , especial ly the second,
can be omit ted or inserted speciously. Incorrect seg-
menta t ion at the lexical level results in two or more
words being run together , as in " r u n t o g e t h e r " , or a
single word being split up into two or more segments,
as in " tog e ther" or (inconveniently) " to get her" , or
combinat ions of these effects as in " run to geth er" .

In all these cases, it is possible to deal with such
errors by extending the spelling correct ion mechanism
to be able to recognize target words as initial segments
of unknown words, and vice-versa. For instance, by
spelling correcting "por td i sks" against what is accepta-
ble in the position it occupies in:

Add two dual portdisks to the order

it should be possible to recognize the initial segment
" p o r t " as the intended word, with "d i sks" as a left
over segment to be inserted into the input string after
the corrected word for fur ther parsing, resulting in this
case in the correct parse. Again, in:

Add two dual port disks to the o r d e r

an unrecognized (and uncor rec tab le) word " e r " fol-
lowing a word " o r d " which has been recognized as an
initial segment abbreviat ion should trigger an a t tempt
to at tach the unknown word to the end of the abbrevi-
ation to see if it completes it. Correct ion of

Add two du alport disks to the order

would be somewhat harder. Af ter failing in the above
recovery methods, one letter at a t ime would be strip-
ped off the beginning of the second unrecognizable
word ("a lpor t ") and added at the end of the first un-
recognizable word ("du") . This process succeeds only
if at some step both words are recognizable and enable
the parse to continue. Migrating the delimiter (the
space) backwards as well as forwards should also be
a t t empted be tween a pair of unknown words, s topping
if both words become recognizable. Of course, the
compounding of multiple lexical deviations (for exam-
ple, misspellings, run-on words and split words in the
same segment) requires combinator ia l ly ineff icient
recovery strategies. Strong parser expectat ions amelio-
rate this p rob lem partial ly, but t r ade-of f s must be
made be tween resilience and efficiency for compound
error recovery.

2.5. Support for recovery strategies by various
parsing approaches

In general, lexical level recovery strategies opera te in a
sufficiently localized manner that the var ia t ions in
global behaviour of different approaches to parsing do
not come into play. However , most of the strategies
are capable of using contextual restr ic t ions on what
incorrect lexical i tem might be, and therefore are most
effect ive when the constraints on the unknown word
are strongest. This suggests that they will be most
successful when used with an approach to parsing in
which it is easy to bring semantic constraints to bear.
So, for instance, such techniques are likely to be more
effect ive using a semant ic g r ammar (Hendr ix 1977,
Brown and Burton 1975) or case f rame instantiat ion
(Dejong 1979, Hayes and Carbonel l 1981) approach,
than in an approach using a syntact ic ATN (Woods,
Kaplan and Nash -Webbe r 1972), where the expecta-
tions are never more specific than membersh ip in one
or more general syntactic categories.

3. Sentential Level Extragrammaticalities

Recovery f rom ex t ragrammat ica l i ty at the sentent ial
level is much more dependent on the particular kind of
parsing techniques that are employed. Some tech-
niques lend themselves to s t ra ight forward recovery
methods , while others make recovery difficult. An
initial examina t ion of the requi rements for recovery
f rom various kinds of sentential level ungrammatical i ty
will allow us to draw some general conclusions about
the most suitable basic parsing approaches to build on.
We examine ungrammat ica l i t ies in five categories:
missing words, spurious words or phrases, out of order
consti tuents, agreement violations, and semantic con-
straint violations.

3.1. Missing constituents

It is not uncommon for the user of a natural language
interface to omit words f rom his input, ei ther by mis-

126 American Journal of Computational Linguistics, Volume 9, Numbers 3-4, July-December 1983

Jaime G. Carbonell and Philip J. Hayes Recovery Strategies for Parsing Extrammatical Language

take or in an a t tempt to be cryptic. The degree of
recovery possible f rom such ungrammaticali t ies is, of
course, dependent on which words were left out. For
instance in:

Add two fixed head dual ported disks to my
order

omitting "dua l " would be unrecoverable since all disks
are por ted and the discriminating informat ion about
the number of ports would not be there. On the other
hand, if "po r t ed" is omitted, all vital information is
still there (the only thing dual about disks is the num-
ber of ports) and it should be possible to recover .
Also the omission of function words like preposit ions
or determiners is usually (though not always) recover-
able. In practice, most omissions are of words whose
contr ibut ion to the sentence is redundant , and are
done consciously in an a t tempt to be cryptic or
" c o m p u t e r - l i k e " (as in " C o p y new files my
directory") . This suggests that techniques that fill in
the gaps on semantic grounds are more likely to be
successful than strategies that do not facil i tate the
application of domain semantics.

In general, coping with missing words requires a
parsing process to determine the parse structure that
would have been obta ined if those words had been
there. If the informat ion provided by the missing
words is not redundant (as in the case of " d u a l "
above) , then this s t ructure will have gaps, but the
structure will convey the broad sense of the user ' s
intention, and the gaps can be filled in by inference or
(more practically and safely) by interaction with the
user, focusing on the precise gaps in the context of the
global parse structure (see Section 4.2 for fur ther dis-
cussion of focused interaction techniques.)

A parsing process postulates a missing word error
when its expectat ions (syntactic or semantic) of what
should go at a certain place in the input ut terance are
violated. To discover that the problem is in fact a
missing word, and to find the parse structure corre-
sponding to the user 's intention, the parsing process
must " s tep b a c k " and examine the context of the
parse as a whole. It needs to ignore temporar i ly the
unfulfilled expectat ions and their contr ibution to the
overall structure while it tries to fulfil some of its oth-
er expectat ions through parsing other parts of the in-
put and integrating them with already parsed consti tu-
ents. In terms of a lef t- to-r ight parse of the above
example (minus "dua l") , this would mean that when
the parser encountered "po r t ed" , it should note that
even though it was expecting the start of a modifier
suitable for a computer componen t (assuming its ex-
pectat ions are semantic) , it had in fact found the latter
part of a modifier for a disk and so could proceed as
though the whole of the modifier was there. A parser
with greater direct ional f r eedom might find "d i sk"
first and then look more specifically for qualifiers suit-

able for disks. Again, the existence of a complete disk
qualifier in the user 's intended ut terance could be as-
sumed f rom finding par t of the qualifier in a place
where a whole one should go.

Another way of looking at this is as an a t tempt to
delimit the gap in the input ut terance, correlate it with
a gap in the parse structure (filling in that gap if it is
uniquely determined) , and realign the parsing mecha-
nism as though the gap did not exist. Such a realign-
ment can be done top-down by hypothesizing the oth-
er expected const i tuents f rom the parse structure al-
ready obta ined and a t tempt ing to find them in the
input stream. Alternatively, real ignment can be done
bo t tom-up by recognizing as yet unparsed elements of
the input, and either fitting them into an existing parse
structure, or finding a larger structure to subsume both
them and the existing structure. This latter approach
is essential when the structuring words are missing or
garbled.

Whether a top-down or a bo t tom-up method is best
in any given instance will depend on how much struc-
ture the parser can recognize before having to deal
with the missing word. If the parser is lef t- to-r ight
and the gap appears early in the input, there is likely
to be little structure already built up, so a bo t tom-up
approach will probably produce bet ter results. Similar-
ly, if the missing word itself provides the highest level
of s t ructure (for example , " a d d " in the example
above) , a bo t tom-up approach is essential. On the
other hand, if the missing word corresponds to a spot
low-down in the parse structure, and the gap is late in
the utterance, or the parser is not b~und to a strict
lef t - to-r ight directionali ty, a t op -down approach is
likely to be much more efficient. In general , bo th
methods should be available.

3.2. Spurious constituents

Words in an input u t te rance that are spurious to a
parse can arise f rom a variety of sources:

legitimate phrases that the parser cannot deal with: It
is not uncommon for the user of a restricted do-
main interface to say things that the interface can-
not unders tand because of e i ther conceptual or
grammatical limitations. Sometimes, spurious ver-
bosity or politeness is involved:

Add if you would be so kind two fixed head
and if possible dual ported disks to my order.

Or the user may offer i r relevant (to the sys tem)
explanations or justifications, as observed in pre-
para tory experiments for the GUS system (Bobrow
et al. 1977), for example,

I think I need more storage capacity, so add
two fixed head dual por ted disks to my or-
der.

American Journal of Computational Linguistics, Volume 9, Numbers 3-4, July-December 1983 127

Jaime G. Carbonell and Philip J. Hayes Recovery Strategies for Parsing Extrammatical Language

Some common phrases of politeness can be recog-
nized explicitly, but in most cases, the only reason-
able response is to ignore the unknown phrases,
realign the parse on the recognizable input, and if a
semantical ly and syntact ical ly comple te s tructure
results, postulate that the ignored segment was in-
deed redundant . In most such cases, the user
should be informed that part of the input was ig-
nored.

• b r o k e n - o f f and restarted ut terances: These occur
when people start to say one thing, change their
mind, and say another:

Add I mean remove a disk f rom my order

Ut terances in this form are more likely to occur in
spoken input, but a similar effect can arise in typed
input when a user forgets to hit the erase line or
erase character key:

Add remove a disk f rom my order
Add a single ported dual por ted disk f rom
my order

Again the best tactic is to discard the b roken-of f
fragment , but identifying and delineating the super-
seded f ragment requires strategies such as the one
discussed below.

• unknown words filling a known grammatical role:
Sometimes the user will generate an incomprehensi-
ble phrase synonymous with a const i tuent the sys-
tem is perfect ly capable of understanding:

Add a dual por ted rotat ing mass storage de-
vice to my order

Here the sys tem might not know that " ro ta t ing
mass storage device" is synonymous with "d isk" .
This phenomenon will result in missing words as
well as spurious words. If the system has a unique
expectat ion for what should go in the gap, it should
(with appropr ia te confirmat ion f rom the user) re-
cord the unknown words as synonymous with what
it expected. If the system has a limited set of ex-
pectat ions for what might go in the gap, it could
ask the user which one (if any) he meant and again
record the synonym for future reference. In cases
where there are no strong expectat ions, the system
would ask for a paraphrase of the incomprehensible
fragment. If this proved comprehensible , it would
then postulate the synonymy relation, ask the user
for conf i rmat ion, and again store the results for
future reference.
The kind of recovery strategies required here are

surprisingly similar to those required for missing
words. Essentially, the parser must recognize that the
input contains recognizable segments as well as unex-
pec ted and unrecognizable words and phrases inter-
spersed among them. The way that a parser (at least a
le f t - to- r ight parser) would encounte r the p rob lem is

identical to the way that missing words are manifested,
viz. the next word in sequence does not fulfil the
parser ' s expecta t ions . Overcoming this p rob lem in-
volves the same notion of "s tepping back" and seeing
how subsequent e lements of the input fit with the
parsing structure built up so far. A major difference is
that the word that violated the expectat ions, and pos-
sibly other subsequent words, may not be incorpora ted
into the resulting structure. Moreover , in the case of
purely spurious phrases, that s tructure may not have
any gaps. For a parser with more directional f reedom,
the process of finding spurious phrases may be simpler
in that it could parse all the words that fit into the
s t ructure before concluding that the unrecognizable
words and phrases were indeed spurious. When gaps
in the parse structure remain af ter parsing all the rec-
ognizable input, the unrecognizable segment may not
be spurious after all. It can be aligned with the gap in
the parse and the possible s y n o n y m y relat ions dis-
cussed above can be presented to the user for approv-
al.

In the case of b r o k e n - o f f u t te rances , there are
some more specific methods that allow the spurious
part of the input to be detected:
• If a sequence of two const i tuents of identical syn-

tactic and semantic type is found where only one is
permissible, simply ignore the first const i tuent .
Two main command verbs in sequence (for exam-
ple, as in "Add remove ..." above) , instantiate the
identical sentential case header role in a case f rame
parser, enabling the fo rmer to be ignored. Similar-
ly, two instantiations of the same prenominal case
for the "d i sk" case f rame would be recognized as
mutual ly incompat ib le and the fo rmer again ig-
nored. Other parsing strategies can be extended to
recognize equivalent const i tuent repeti t ion, but case
f rame instantiat ion seems uniquely well suited to it.

• Recognize explicit correct ive phrases and if the
const i tuent to the right is of equivalent syntact ic
and semant ic type as the cons t i tuent to the left,
substitute the right const i tuent for the left const i tu-
ent and continue the parse. This s trategy recovers
f rom ut terances such as "Add I mean remove ...",
if " I mean" is recognized as a correct ive phrase.

• Select the minimal const i tuent for all substitutions.
For instance in

Add a high speed tape drive, that ' s disk
drive, to the order

one desires "d isk dr ive" to subst i tute for " t a p e
drive", not for the larger phrase "high speed tape
dr ive", which also forms a legitimate const i tuent of
like semantic and syntactic type. This preference is
based solely on pragmat ic grounds and empirical
evidence.
In addit ion to identifying and ignoring spurious

input, a robust interface must tell the user what it has

128 American Journal of Computational Linguistics, Volume 9, Numbers 3-4, July-December 1983

Jaime G. Carbonell and Philip J. Hayes Recovery Strategies for Parsing Extrammatical Language

ignored and should paraphrase the part of the input
that it did recognize. The unrecognized input may
express vital information, and if that information is not
captured by the paraphrase , the user may wish to try
again. Except ions to this rule arise when the spurious
input can be recognized explicitly as such. Expres-
sions of politeness, for instance, might be t reated this
way. The ability to recognize such "no i se" phrases
makes them in some sense part of the expectat ions of
the parser, and thus not truly spurious. However ,
isolating them in the same way as spurious input pro-
vides the advantage that they can then be recognized
at any point in the input without having to clutter the
parser ' s normal processing with expecta t ions about
where they might occur.

3.3. Out of order cons t i tuen ts and f r a g m e n t a r y
input

Sometimes, a user will use non-s tandard word order.
There are a variety of reasons why users violate ex-
pected consti tuent ordering relations, including unwill-
ingness to change what has already been typed, espe-
cially when extensive retyping would be required.

Two fixed head dual por ted disk drives add to
the order

or a belief that a computer will unders tand a clipped
pseudo-mil i tary style more easily than standard usage:

two disk drives fixed head dual por ted to my
order add

Similar myths about what computers understand best
can lead to a very f ragmented and cryptic style in
which all function words are eliminated:

Add disk drive order

instead of "add a disk drive to my order" .
These two phenomena , out of order const i tuents

and f ragmentary input, are grouped together because
they are similar f rom the parsing point of view. The
parser ' s p rob lem in each case is to put together a
group of recognizable sentence f ragments without the
normal syntact ic glue of funct ion words or posit ion
cues to indicate how the f ragments should be com-
bined. Since this syntactic information is not present,
semantic considerations have to shoulder the burden
alone. Hence, parsers that make it easy for semantic
information to be brought to bear are at a considera-
ble advantage.

Both bo t tom-up and top-down recovery strategies
are possible for detecting and recovering f rom missing
and spurious constituents. In the bo t tom-up approach,
all the f ragments are recognized independent ly , and
purely semantic constraints are used to assemble them
into a single f r amework meaningful in te rms of the
domain of discourse. When the domain is restricted
enough, the semantic constraints can be such that they

always produce a unique result. This character is t ic
was exploi ted to good ef fec t in the PLANES sys tem
(Waltz 1978) in which an input ut terance was recog-
nized as a sequence of f ragments which were then
assembled into a meaningful whole on the basis of
semantic considerat ions alone. A top-down approach
to f ragment recognit ion requires that the top-level or
organizing concept in the u t te rance (" a d d " in the
above examples) be located first and the predictions
obtainable f rom it about what else might appear in the
ut terance be used to guide and constrain the recogni-
tion of the other fragments.

As a final point, note that in the case of out of
order consti tuents, a parser relying on a strict lef t - to-
right scan will have much greater difficulty than one
with more directional freedom. In out of order input,
there may be no meaningful set of lef t- to-r ight expec-
tations, even allowing for gaps or extra consti tuents,
that will fit the input. For instance, a case f rame
parser that scans for the head of a case frame, and
subsequent ly a t tempts to instant iate the individual
cases f rom surrounding input, is far more amenable to
this type of recovery than one dependent upon rigid
word order constraints.

3.4. S y n t a c t i c and s e m a n t i c const ra in t
v io la t ions

Input to a natural language system can violate both
syntactic and semantic constraints. The most common
form of syntact ic constra int violat ion is ag reement
failure be tween subject and verb or de te rminer and
head noun:

Do the order include a disk drives?

Semantic constraint violations can occur because the
user has conceptual problems:

Add a floating head tape drive to the order

or because he is imprecise in his language, using a
related object in place of the object he really means.
For instance, if he is trying to decide on the amount of
memory to include in an order he might say

Can you connect a video disk drive to the two
megabytes .

when what he really means is "... to the computer with
two megabytes of memory" .

These different kinds of constraint violation require
quite di f ferent kinds of t rea tment . In general, the
syntactic agreement violations can be ignored; cases in
which agreement or lack of it distinguishes b e t w e e n
two otherwise valid readings of an input are rare.
However , one problem that sometimes arises is know-
ing whether a noun phrase is singular or plural when
the determiner or quantifier disagrees with the head
noun. It is typically best to let quantifiers dominate
when they are used; for example , " t w o disk" really

American Journal of Computational Linguistics, Volume 9, Numbers 3-4, July-December 1983 129

Jaime G. Carbonell and Philip J. Hayes Recovery Strategies for Parsing Extrammatical Language

means " two disks". And with determiner disagree-
ment, it is of ten unimpor tant which reading is taken.
In the example of d i sagreement above, it does not
mat ter whether the user meant "a disk dr ive" or " any
disk drives". The answer will be the same in either
case, viz. a listing of all the disk drives that the order
contains. In cases where the action of the sys tem
would be different depending on whether the noun
phrase was singular or plural (e.g. "dele te a disks f rom
the o rder") , the system should interact with the user in
a focused way to determine what he really meant .

Semantic constraint violations due to a user 's con-
ceptual problems are harder to deal with. Once de-
tected, the only solution is to inform the user of his
misconcept ion and let him take it f rom there. The
actual detect ion of the problem, however, can cause
some difficulty for a parser relying heavily on semantic
constraints to guide its parse. The constraint violation
might cause it to assume there was some other prob-
lem such as out of order or spurious consti tuents, and
look for (and perhaps even find) some alternative and
unintended way of put t ing all the pieces together .
This is one case where syntactic considerat ions should
come to the fore.

Semantic constraint violations based on the men-
tion of a related object instead of the enti ty actually
intended by the user will manifest themselves in the
same way as the semantic constraint violations based
on misconcept ions , but their processing needs to be
quite different. The violation can be resolved if the
system can look at objects related to the one the user
ment ioned and find one that satisfies the constraints.
In the example above, this means going f rom the mem-
ory size to the machine that has that amount of memo-
ry. Clearly, the dis tance of the relat ionship over
which this kind of substitution is allowed needs to be
control led fairly careful ly - in a res t r ic ted domain
everything is eventual ly related to everything else.
But there may well be rules that control the kind of
substi tutions that are allowed. In the above example,
it suffices to allow a par t to subst i tute for a whole
(metonymy) , especially if, as we assumed, it had been
used earlier in the dialogue to distinguish be tween
different instances of the whole.

3.5. Support for recovery strategies by various
parsing approaches

We now turn the question of incorporat ing the senten-
tial level recovery strategies we have been discussing
into the various approaches to parsing ment ioned in
the introduction. As we shall see, there are considera-
ble differences in the underlying suitability of the vari-
ous approaches as bases for the recovery strategies.
To address this issue, we classify parsing approaches
into three general groups: t ransi t ion ne twork ap-
proaches (including syntact ic ATNs and ne twork-
based semant ic g rammars) , pa t te rn matching ap-

proaches, and approaches based on case f rame instan-
tiation.

3.5.1. Recovery strategies using a transition
network approach

Although a t t empts have been made to incorpora te
sentential level recovery strategies into ne twork-based
parsers including bo th syntac t ica l ly-based ATNs
(Kwasny and Sondheimer 1981, Weischedel and Son-
dheimer 1984, Weischedel and Black 1980, Woods et
al. 1976) and semant ic g r ammar ne tworks (Hendr ix
1977), the network paradigm itself is not well suited
to the kinds of recovery strategies discussed in the
preceding sections. These strategies generally require
an interpretive ability to "s tep back" and take a broad
view of the situation when a parser ' s expectat ions are
violated, and this is very hard to do when using net-
works. The underlying problem is that a significant
amount of state information during the parse is implic-
itly encoded by the posi t ion in the ne twork; in the
case of ATNs, other aspects of the state are contained
in the settings of scat tered registers. As demons t ra ted
by the meta-rule approach to diagnosing parse failures
described by Weischedel and Sondheimer (1983) else-
where in this journal issue, these and other difficulties
e laborated below do not preclude recovery f rom extra-
grammatical input. However , they do make it difficult
and of ten impractical, since much of the procedural ly
encoded state must be made declarat ive and explicit to
the recovery strategies.

Of ten an ATN parse will continue beyond the point
where the grammatical deviation, say an omit ted word,
occurred, and reach a node in the ne twork f rom which
it can make no fur ther progress (that is, no arcs can be
traversed). At this point, the parser cannot ascertain
the source of the error by examining its internal state
even if the state is accessible - the parser may have
popped f rom embedded subnets, or fol lowed a totally
spurious sequence of arcs before realizing it was get-
ting in trouble. If these problems can be overcome
and the source of the error de te rmined precisely, a
major problem remains: in order to recover, and parse
input that does not accord with the g rammar , while
remaining true to the ne twork formalism, the parser
must modify the ne twork dynamical ly and temporar i ly ,
using the modif ied ne twork to p roceed through the
present difficulties. Needless to say, this is at best a
very complex process, one whose computa t ional t ract-
ability is open to question. I t is perhaps not surprising
that in one of the most effect ive recovery mechanisms
deve loped for ne twork -based parsing, the LIFER
sys tem's ellipsis handling routine (Hendr ix 1977), the
key step opera tes complete ly outside the ne twork for-
malism.

As we have seen, semant ic cons t ra in ts are very
important in recovering f rom many types of ungram-
matical input, and these are by definit ion unavailable

130 American Journal of Computat ional Linguistics, Volume 9, Numbers 3-4, Ju ly-December 1983

Jaime G. Carbonell and Philip J. Hayes Recovery Strategies for Parsing Extrammatical Language

in a purely syntactic ATN parser. However , semantic
information can be brought to bear on network based
parsing, either through the semantic g rammar approach
in which joint semant ic and syntact ic categories are
used directly in the ATN, or by allowing the tests on
ATN arcs to depend on semant ic criteria (Bobrow
1978, Bobrow and Webber 1980). In the former tech-
nique, the appropr ia te semant ic informat ion for re-
covery can be applied only if the correct network node
can be located - a sometimes difficult task as we have
seen. In the lat ter technique, somet imes known as
cascaded ATNs (Woods 1980), the syntactic and se-
mantic parts of the grammar are kept separate, thus
giving the potential for a higher degree of interpret ive-
ness in using the semantic information. However , the
natural way to use this technique is to employ the
semant ic informat ion only to conf i rm or disconfirm
parses arrived at on syntactic grounds. So the rigidity
of the ne twork formal ism makes it very difficult to
bring the available semantic information to bear effec-
tively on extragrammatical input.

A further disadvantage of the network approach for
implementing flexible recovery strategies is that net-
works natural ly opera te in a t op -down lef t - to-r ight
mode. As we have seen, a bo t tom-up capabili ty is
essential for many recovery strategies, and directional
flexibility of ten enables easier and more efficient oper-
ation of the strategies. Of course, the top-down left-
to-right mode of operat ion is a characterist ic of the
ne twork interpreter , not of the ne twork formal ism
itself, and an a t tempt (Woods et al. 1976) has been
made to operate an ATN in an " i s land" mode, that is,
bo t tom-up , center-out . This exper iment was done in
the context of a speech parser where the low-level
recognition of many of the input words was uncertain,
though the input as a whole was assumed to be gram-
matical. In that situation, there were clear advantages
to starting with islands of relative lexical certainty, and
working out f rom there. Problems, however , arise
during leftward expansion f rom an island when it is
necessary to run the network backwards. The admissi-
bility of ATN transitions can depend on tests that ac-
cess the values of registers which would have been set
earlier when t ravers ing the ne twork forwards, but
which cannot have been set when t ravers ing back-
wards. This leads at best to an increase in non-
determinism, and at worse to blocking the t raversal
completely.

3.5.2. Recovery s t ra teg ies using a pat tern
match ing approach

A pat te rn matching approach to parsing provides a
be t te r f r amework to recover f rom some sentential-
level deviations than a ne twork-based approach. In
particular, the definition of what consti tutes a pat tern
match can be relaxed to allow for missing or spurious
constituents. For missing consti tuents, pat terns which

match some, but not all, of their components can be
counted temporar i ly as complete matches, and spurious
const i tuents can be ignored so long as they are embed-
ded in a pat tern whose other components do match.
In these cases, the pat terns taken as a whole provide a
basis on which to per form the kind of "s tepping back"
discussed above as being vital for flexible recovery. In
addition, when pat tern elements are defined semanti-
cally instead of lexically, as with Wilks's (1975) ma-
chine t ranslat ion system, semant ic constraints can
easily be brought to bear on the recognition. H o w ev -
er, dealing with out of order consti tuents is not so easy
for a pa t te rn-based approach since const i tuent order is
built into a pat tern in a rigid way, similarly to a net-
work. It is possible to accept any permuta t ion of ele-
ments of a pat tern as a match, but this provides so
much flexibility that many spurious recogni t ions are
likely to be obtained as well as the correct ones (see
Hayes and Mouradian 1981).

An underlying problem here is that there is no nat-
ural way to make the distinctions about the relative
impor tance or di f ference in role be tween one word
and another. For instance, parsing many of the exam-
ples we have used might involve use of a pa t tern like:

(<determiner> <disk-drive-attribute>* <disk-drive>)

which specifies a pa t tern of a determiner, followed by
zero or more attr ibutes of a disk drive, followed by a
phrase synonymous with "disk drive". So this pat tern
would recognize phrases like "a dual por ted disk" or
" the disk drive". Using the method of dealing with
missing const i tuents ment ioned above, " t h e " would
consti tute just as good a partial match for this pat tern
as "disk dr ive" , a clearly undesirable result. The
p rob lem is that there is no way to tell the flexible
matcher which components of the pat tern are discrimi-
nating f rom the point of view of recognit ion and which
are not. Another manifes ta t ion of the same problem is
that different words and const i tuents may be easier or
harder to recognize (for example , preposi t ions are
easier to recognize than the noun phrases they intro-
duce), and thus may be more or less worthwhile to
look for in an a t tempt to recover f rom a grammatical
deviation.

The underlying problem then is the uniformity of
the grammar representa t ion and the method of apply-
ing it to the input. Any uniformly represented gram-
mar, whether based on pat terns or networks, will have
trouble representing and using the kinds of distinctions
just outlined, and thus will be less well equipped to
deal with many grammatical deviations in an efficient
and discriminating manner . See Hayes and Carbonel l
(1981) for a fuller discussion of this point.

3.5.3. R e c o v e r y s t ra teg ies in a case f r a m e
parad igm

Recursive case f rame instantiat ion appears to provide

American Journal of Computational Linguistics, Volume 9, Numbers 3-4, July-December 1983 131

Jaime G. Carbonell and Phil ip J. Hayes Recovery Strategies for Parsing Extrammatical Language

a bet ter f ramework for recovery f rom missing words
than approaches based on either ne twork traversal or
pat tern matching. There are several reasons:
• Case f rame instantiation is inherently a highly inter-

pretive process. Case f rames provide a high-level
set of syntactic and semantic expectat ions that can
be applied to the input in a variety of ways. They
also provide an overall f r amework that can be used
to realize the notion of "s tepping back" to obtain a
broad view of a parser ' s expectat ions. As we have
emphasised, this ability to "s tep back" is important
when input deviates f rom the s tandard expec ta -
tions.

• Case f rame instantiat ion is a good vehicle for bring-
ing semantic and pragmat ic information to bear in
order to help determine the appropr ia te parse in the
absence of expec ted syntact ic const i tuents . If a
preposi t ion is omit ted (as commonly happens when
dealing with cryptic input f rom hunt -and-peck typ-
ists), the resulting sentence is syntactically anoma-
lous. However , semantic case constraints can be
sufficiently s t rong to a t tach each noun phrase to
the correct structure. Consider, for instance, the
following sentence typed to an electronic mail sys-
tem natural language interface:

"Send message John Smith"

The missing determiner presents few problems, but
the missing preposi t ion can be more serious. Do we
mean to send a message " to John Smith", " a b o u t
John Smith" , "wi th John Smith" , " f o r John
Smith", " f r o m John Smith", " in John Smith", "o f
John Smith", etc.? The domain semantics of the
case f rame rule out the latter three possibilities and
others like them as nonsensical. However , prag-
mat ic knowledge is required to select " to John
Smith" as the preferred reading (possibly subject to
user conf i rmat ion) - the dest inat ion case of the
verb is required for the command to be effective,
whereas the o ther cases, if present , are optional.
This knowledge of the underlying action must be
brought to bear at parse t ime to disambiguate the
cryptic command. In the XCALIBUR system case
f rame encoding (Carbonel l , Boggs, Mauldin, and
Anick 1983), we apply precisely such pragmat ic
knowledge represen ted as p re fe rence constra ints
(cf. Wilks 1975) on case fillers at parse time.
Thus, problems created by the absence of expected
case markers can be overcome by the application of
domain knowledge.

• The propagat ion of semantic knowledge through a
case f rame (via a t tached procedures such as those
of KRL (Bobrow and Winograd 1977) or SRL
(Wright and Fox 1983)) can fill in parser defaults
and allow the internal complet ion of phrases such
as "dual disks" to mean "dual ported disks". This
process is also responsible for noticing when infor-

mation is either missing or ambiguously determined,
thereby initiating a focused clarificational dialogue
(Hayes 1981).

• The represen ta t ion of case f rames is inherent ly
non-uniform. Case fillers, case markers , and case
headers are all represented separately, and this dis-
t inct ion can be used by the parser in terpre t ive ly
instantiating the case frame. For instance, if a case
f rame accounts for the non-spur ious par t of an
input containing spurious const i tuents , a recovery
s trategy can skip over the unrecognizable words by
scanning for case markers as opposed to case fillers
which typically are much harder to find and parse.
This ability to exploit non-uni formi ty goes a long
way to overcoming the problems with uniform pars-
ing methods out l ined in the previous sect ion on
pat tern matching.

4. Dialogue Level Extragrammaticality

The underlying causes of many extragrammatical i t ies
detected at the sentential level are rooted in dialogue
phenomena. For instance, ellipses and other f ragmen-
tary inputs are patent ly ungrammatical at the senten-
tial level, but can be unders tood in the context of a
dialogue. Viewed at this more global level, ellipsis is
not an "ung rammat i ca l i t y " . Never theless , the same
computa t iona l mechan isms required to recover f rom
lexical and (especially) sentential problems are neces-
sary to detect ellipsis and parse the f ragments correct-
ly for incorpora t ion into a larger s tructure. In the
same way, many dialogue p h e n o m e n a are classified
pragmatical ly as extragrammatical i t ies .

In addition to addressing dialogue level ex t ragram-
maticali t ies, any robust parsing sys tem must engage
the user in dialogue for cooperat ive resolution of pars-
ing problems too difficult for automat ic recovery. In-
teract ion with the user is also necessary for a coopera-
tive parser to conf i rm any assumpt ions it makes in
interpreting ext ragrammat ica l input and to resolve any
ambiguities it cannot overcome on its own. We have
referred several times in our discussions to the princi-
ple of focused interact ion, and s ta ted that pract ical
recovery dialogues should be focused as t ightly as
possible on the specific problem at hand. Section 4.2
discusses some considerat ions for structuring focused
interaction dialogues - in particular, why they need to
be so tightly focused, and what mechanisms are need-
ed to achieve tight focusing in a natural manner .

4.1. Ellipsis

Ellipsis is a many- face ted phenomenon . Its manifes ta-
tions are varied and wide ranging, and recovery strate-
gies for many types of ellipsis remain to be discovered.
Nevertheless, it is also a very common phenomenon
and must be addressed by any interface intended for
serious use by real users. Empirical observat ions have
shown that users of natural language interfaces employ

132 Amer ican Journal of Computational Linguistics, Volume 9, Numbers 3-4, Ju ly -December 1983

Jaime G. Carbonell and Philip J. Hayes Recovery Strategies for Parsing Extrammatical Language

ellipsis and other abbrevia t ing devices (for example,
anaphora , short definite noun phrases, cryptic lan-
guage omit t ing semantical ly superf luous words, and
lexical abbrevia t ions) with alarming f requency
(Carbonel l 1983). The results of our empirical obser-
vations can be summarized as follows:

Terseness principle: Users of natural language
interfaces insist on being as terse as possible,
independent of task, communicat ion media, typ-
ing ability, or instructions to the contrary, with-
out sacrificing the flexibility of expression inher-
ent in natural language communicat ion.

Broadly speaking, one can classify ellipsis into in-
trasentential and intersentential ellipsis, with the latter
category being far more prevalent in practical natural
language interfaces. In t rasentent ia l ellipsis occurs
most frequently in coordinate clauses such as:

John likes oranges and Mary apples.

Often, this type of ellipsis is detectable only on se-
mant ic grounds (there is no meaningful noun-noun
unit called " M a r y app les") . The following sentence
with identical syntax has a preferred reading that con-
tains no ellipsis:

John likes oranges and Macin tosh apples.

We know of no proven general strategies for interpret-
ing this class of intrasentential ellipsis. An interesting,
but untried, approach might be an application of the
strategies described below with each coordinate clause
in an intrasentential ellipsis being considered as a sep-
arate ut terance and with extensions to exploit the syn-
tactic and semantic parallelism between corresponding
consti tuents of coordinate clauses.

There are several forms of intersentential ellipsis:
• Elaboration - An ellipsed f ragment by either speak-

er can be an elaborat ion of a previous utterance.
Either speaker can make the elaborat ion, but the
second speaker usually does so, as in the following
example:

User: Give me a large capacity disk.
System: With dual ports?
User: Yes, and a universal f requency adap-

ter.

• Echo - A f ragment of the first speaker ' s ut terance is
echoed by the second speaker. As described more
fully in Hayes and Reddy (1983), this allows the
second speaker to confirm his understanding of the
first speaker ' s u t te rance without requiring an ex-
plicit confirmation.

User: Add a dual disk to the order.
System: A dual por ted disk. What storage ca-

pacity?

If, on the other hand, the sys tem had explicitly
asked " D o you mean a dual ported disk?", the user
would have been conversat ional ly obliged to reply.
However , in either case, the user is free to correct
any misapprehension the system displays. Some-
times, as in the example in the next bullet below,
an echo may also be an express ion of bewilder-
ment. In general, this form of ellipsis is far more
prevalent in spoken interactions than in typed com-
munication, but the need for a robust parsing sys-
tem to conf i rm assumpt ions it is making without
being too disruptive of the f low of conversa t ion
makes it very useful for natural language interfaces
in general (see Section 4.2).

• Correction - An ellipsed f ragment substitutes for a
port ion of an earlier ut terance that was in error.
The correct ion occurs in three typical modes:
• The first speaker can correct himself immediate-

ly (much like the repeated segment problem dis-
cussed in Section 3.2).

• The second speaker can offer a correct ion
(marked as such, or simply an ellipsed f ragment
in the interrogative).

• Or, the first speaker can correct himself in re-
sponse to a clarificational query f rom the second
speaker . The fo rm of the clarif icational query
can be a direct question, a s ta tement of confu-
sion, or echoing the t roublesome f ragment of
the input, thereby combining two forms of ellip-
sis as illustrated below.

User: Give me a dual port tape drive.
System: A dual port tape drive?
User: Sorry, a dual port disk drive.

• Reformulation - Part of an old ut terance is reformu-
lated and meant to be interpreted in place Of the
corresponding old constituent. This is perhaps the
most common form of ellipsis and the only one for
which tractable computat ional strategies have been
implemented. All the examples below are of this
type.
The LIFER/LADDER system (Hendrix 1977, Sacer-

doti 1977) handled a restricted form of reformulat ion
ellipsis. LIFER's ellipsis algori thm accepted a frag-
mentary input if it matched a partial parse tree derived
f rom the previous complete parse tree by (a) selecting
a subtree that accounted for a contiguous segment of
the previous input, and (b) possibly pruning back one
or more of its branches. If a f r agmen ta ry input
matched such a partial parse tree, it was assumed to be
a reformulat ion ellipsis and the missing parts of the
partial parse tree were filled out f rom the previous
complete parse tree. In particular, if a single g rammar
category accounted for the entire f ragment , and this
category was present in the last query parsed by the
system, the ellipsis algorithm substi tuted the f ragment

American Journal of Computational Linguistics, Volume 9, Numbers 3-4, Ju ly-December 1983 133

Jaime G. Carbonell and Philip J. Hayes Recovery Strategies for Parsing Extrammatical Language

directly for wha tever filled the ca tegory in the last
parse. An example of this is:

User: What is the length of the Kennedy?
System: 200 meters
User: The fastest aircraft carrier?

Since both " the K ennedy" and the " the fastest aircraft
carr ier" match the semantic category < s h i p > , the lat-
ter phrase is allowed to substitute for the former. Note
that a purely syntactic parse would not be sufficiently
selective to make the proper substitution. "The fastest
aircraft carr ier" is a noun phrase, and there are three
noun phrases in the original sentence: " the length",
" the length of the Kennedy" and " the Kennedy" .

However , the rigid structure of semantic grammars
proves insufficient to handle some common forms of
reformulat ion ellipsis. The semantic g rammar formal-
ism is too restrictive for a simple substi tution s trategy
to apply effectively if there is more than one fragment ,
if there is a bridging f ragment (such as " the smallest
with two po r t s " in the example be low that bridges
over " d i s k ") , or if the f ragment does not preserve
linear ordering. In contrast , case f rame substi tution
provides the f r eedom to handle such ellipsed frag-
ments.

The following examples are illustrative of the kind
of sentence f ragments the case f rame method handles.
We assume that each sentence f ragment occurs imme-
diately following the initial query below. Note also
that we are using case f rame here to refer to nominal
as well as sentential case f rames - the case f rame be-
ing instantiated in these examples is the one for a disk
with cases such as storage capacity, number of ports,
etc..

INITIAL QUERY:
"Wha t is the price of the three largest single
port fixed media disks?"

SUBSEQUENT QUERIES:
"Speed?"
" T w o smalles t?"
" H o w about the price of the two smallest?"
"Also the smallest with dual po r t s ? "
"Speed with two por t s?"
"Disk with two p o r t s ? "

In these representat ive examples, punctuat ion is of no
help, and pure syntax is of very limited utility. For
instance, the last three phrases are syntactically similar
(indeed, the last two are indistinguishable), but each
requires that a different substi tution be made on the
preceding query.

The DYPAR-II sys tem (discussed in Sect ion 5.2)
handles ellipsis at the case f rame level. Here we pre-
sent the basic case f rame ellipsis resolution method it
employs. Its coverage appears to be a superset of the
LIFER/LADDER sys tem (Hendr ix 1977, Sacerdoti

1977) and the PLANES ellipsis module (Waltz and
G o o d m a n 1977). Al though it handles most of the
reformulat ion ellipsis we encountered, it is not meant
to be a general linguistic solution to the ellipsis phe-
nomenon.

Consider the following example:

> W h a t is the size of the 3 largest single port fixed
media disks?

>disks with two ports?

Note that it is impossible to resolve this kind of ellipsis
in a general manner if the previous query is s tored
verba t im or as a semantic g rammar parse tree. "Disks
with two po r t s " would at best co r respond to some
<disk-descriptor> non-terminal , and hence, according
to the LIFER algori thm, would replace the entire
phrase "single por t fixed media d isks" that corre-
sponded to <disk-descr ip tor> in the parse of the origi-
nal query. However , an informal poll of potent ia l
users suggests that the preferred interpreta t ion of the
ellipsis retains the MEDIA specif ier of the original
query. The ellipsis resolution process, therefore , re-
quires a finer grain subst i tut ion me thod than simply
inserting the highest level non- terminals in the ellipsed
input in place of the matching non- te rmina ls in the
parse tree of the previous ut terance.

Taking advan tage of the fact that a case f rame
analysis of a sentence or object description captures
the relevant semantic relations among its const i tuents
in a canonical manner , a partially instant iated nominal
case f rame can be merged with the previous case
f rame as follows:
• If a case is instantiated both in the original query

and in the ellipsis, use the filler f rom the ellipsis.
For instance "wi th two po r t s " overr ides "s ingle
por t " in our example, as both entail different val-
ues of the same case descriptor, regardless of their
d i f ferent syntact ic roles. ("Single p o r t " in the
original query is an adjectival construct ion, whereas
"wi th two por t s " is a pos t -nominal modif ier in the
ellipsed f ragment .)

• Retain any cases in the original parse that are not
explicitly cont rad ic ted by new informat ion in the
ellipsed fragment . For instance, " f ixed med ia" is
retained as part of the disk description, as are all
the sentential- level cases in the original query, such
as the quanti ty specifier and the project ion attri-
bute of the query ("s ize") .
If a case is specified in the ellipsed fragment , but
not in the original query, use the filler f rom the
ellipsis. For instance, the "f ixed head" descriptor is
added as the media case of the disk nominal case
f rame in resolving the ellipsed f ragment in the fol-
lowing example:

>Which disks are configurable on a VAX
11-7807

134 American Journal of Computational Linguistics, Volume 9, Numbers 3-4, Ju ly -December 1983

Ja ime G. Carbonel l and Phi l ip J. Hayes Recovery Strategies for Parsing Extrammatical Language

> A n y configurable fixed head disks? 4.2. Focused interaction

• In the event that a new case f rame is ment ioned in
the ellipsed fragment , wholesale substitution occurs,
much as in the semantic grammar approach. For
instance, if af ter the last example one were to ask
" H o w about tape drives?", the substitution would
replace "f ixed head disks" with " t ape drives", rath-
er than replacing only "d isks" and producing the
phrase "f ixed head tape drives", which is semanti-
cally anomalous. In these instances, the semantic
relat ions captured in a case f rame represen ta t ion
and not in a semant ic g rammar parse tree prove
critical.
The key advantage case f rame instant ia t ion pro-

vides for ellipsis resolution is the ability to match cor-
responding cases, rather than surface strings, syntactic
structures, or non-canonical representat ions. Imple-
ment ing an ellipsis resolut ion mechan ism of equal
power for a semantic g rammar approach would, there-
fore, be very difficult. The essential problem is that
semantic grammars inextr icably combine syntax with
semantics in a manner that requires multiple represen-
tations for the same semantic entity. For instance, the
ordering of marked cases in the input does not reflect
any difference in meaning, 2 while the surface ordering
of unmarked cases does. With a semantic grammar,
the parse trees produced by dif ferent marked case
orderings can differ, so the knowledge that surface
positioning of unmarked cases is meaningful, but posi-
tioning of marked ones is not, must be contained with-
in the ellipsis resolution process. This is a very unnat-
ural reposi tory for such basic information. Moreover ,
in order to attain the functionali ty described above for
case frames, an ellipsis resolution based on semantic
grammar parse trees would also have to keep track of
semantical ly equivalent adjectival and post nominal
forms (corresponding to different non- terminals and
different relative positions in the parse trees). This is
necessary to allow ellipsed structures such as "a disk
with 1 po r t " to replace the " d u a l - p o r t " par t of the
phrase " . . .dual-port f ixed-media disk ..." in an earlier
utterance. One way to achieve this effect would be to
collect together specific nonterminals that can substi-
tute for each other in certain contexts , in essence
grouping non-canonica l representa t ions into context -
sensitive semantic equivalence classes. However , this
process would require hand-craf t ing large associative
tables or similar data structures, a high price to pay for
each domain-specif ic semantic grammar. In brief, the
encoding of domain semantics and canonical structure
for multiple surface manifestat ions makes case f rame
instant ia t ion a much be t te r basis for robust ellipsis
resolution than semantic grammars.

2 leaving aside the differential emphasis and other pragmatic
considerations reflected in surface ordering

In addit ion to dealing with ellipsis and o ther extra-
grammat ica l p h e n o m e n a that arise natural ly for an
interact ive interface, a truly robust parsing sys tem
must initiate subdialogues of its own. Such dialogues
are needed
• when a robust parser makes assumptions that may

not be justified and needs conf i rmat ion f rom the
user that it has guessed correctly;

• when a parser comes up against ambiguities that it
cannot resolve on its own, either because of extra-
grammatical i ty on the part of the user or because
of some essential ambiguity in perfect ly grammati -
cal input;

• when the more au tomated strategies may prove too
costly or uncer ta in (e.g., when recover ing f rom
compound lexical errors);

• or when the required information is simply not pres-
ent.
When an interactive system moves f rom the passive

role of answering questions or awaiting individual user
commands to a more active informat ion-seeking role in
clarificational dialogues, it must address the question
of how to organize its communicat ion so that it will
behave in a way that fits with the conversat ional ex-
pectat ions and convent ions of its human user. Issues
of when explicit replies are required, how to convey
information in such a way as to require the minimal
response f rom the user, how to keep the conversat ion
within the domain of discourse of the system, etc.,
must all be addressed by a natural language interface
capable of mixed-ini t ia t ive dialogue. Examining all
these topics here would take us too far afield f rom the
issue of robust parsing, so we will confine ourselves to
issues specific to the kind of recovery interact ion de-
scribed above. See Carbonel l (1982) and Hayes and
Reddy (1983) for a fuller discussion of the issues in-
volved in organizing the dialogue of an interact ive
natural language system.

We offer four guidelines for organizing recovery
dialogues:
• the interaction should be as focused as possible;
• the required user response should be as terse as

possible;
• the interaction should be in terms of the sys tem's

domain of discourse ra ther than the linguistic con-
cepts it uses internally;

• there should be as few such interactions as possible.
To see the need for focused interaction, consider

the input:

Add two fixed head por ted disks to my order

The problem is that the user has omit ted "dua l " be-
tween " h e a d " and "po r t ed" . Assuming that disks can
only be single or dual ported, and using the sentential
level recovery strategies descr ibed earlier, a parser

American Journal of Computational Linguistics, Vo lume 9, Numbers 3-4, Ju ly -December 1983 135

Jaime G. Carbonell and Phil ip J. Hayes Recovery Strategies for Parsing Extrammatical Language

should be able to come up with an interpretat ion of
the input that is two ways ambiguous. In te rac t ion
with the user is required to resolve this ambiguity, but
the degree to which the sys tem's initial quest ion is
focused on the problem can make a big difference in
how easy it is for the user to respond, and how much
work is required of the system to interpret the user
response. An unfocused way of asking the question is:

D o yon mean:
Add two f ixed head single ported disks to my or-

der, or
Add two f ixed head dual ported disks to my order

Here the user is forced to compare two very similar
looking possibilities to ascertain the sys tem's interpre-
tat ion problem. Compar isons of this kind to isolate
possible interpretat ion problems place an unnecessary
cognitive load on the user. Fur thermore , it is unclear
how the user should reply. Other than saying " the
second one" , he has little opt ion but to repea t the
whole input. Since the sys tem's query is not focused
on the source of the ambiguity, it is conversat ional ly
awkward for the user to give the single word reply,
"dual" . This response is highly elliptical, but f rom the
point of view of required information, it is complete.
It also satisfies our second guideline that the required
response be as terse as possible.

A much bet ter way of asking the user to resolve the
ambiguity is:

Do you mean 'single' or 'dual' ported disks?

This question focuses precisely on the ambiguity, and
therefore requires no effor t f rom the user besides that
of giving the informat ion the system desires. Moreo-
ver, it invites the highly desirable reply "dua l" . Since
the system is focused on the precise ambiguity, it can
also generate a discourse expecta t ion for this and oth-
er appropr ia te elliptical f ragments in the user ' s re-
sponse, and thereby recognize them with little difficul-
ty.

The ability to generate focused queries to resolve
ambiguities places certain requirements on how a par-
ser represents the ambiguous structure internally. Un-
less the ambiguity is represented as locally as possible,
it will be very hard to generate focused queries. If a
parser finds the ambigui ty in the above example by
discovering it has two independent parse structures at
the end of the parsing process, then generating a fo-
cused query involves a computat ional ly taxing intracta-
ble compar ison process. However , if the ambiguity is
represented as locally as possible, for instance as two
al ternat ive fillers for a single instant ia t ion of a disk
f rame nested within the "add to o rder" f rame, then
generating the focused query is easy - just output a
paraphrase of the case f rame (the one for disk) at the
level immediately above the ambiguity with a disjunc-
tion taking the place of the single filler of the ambigu-

ous case (the por tedness case). Moreover , such a
representa t ion forms an excellent basis for interpreting
the natural elliptical reply. As Hayes and Carbonel l
(1981) show, parsers based on case f rame instantia-
tion are particularly well suited to generating ambigui-
ty representat ions of this kind.

Ano the r tactic re lated to focused in teract ion that
parsing systems can employ to smooth recovery dia-
logues is to couch their questions in terms that make it
more likely that the user 's reply will be something they
can understand. Thus in:

Please add two 300 megabyte rotat ing mass s torage
devices to my order.

if " ro ta t ing mass storage device" is not in the sys tem's
vocabulary, it is unwise for it to reply "wha t is a rota t -
ing mass s torage device?" , since the te rms the user
chooses to clarify his input may be equally unintelligi-
ble to the system. It is much bet ter to give the user a
choice be tween the things that the system could recog-
nize in the place where the unrecognizable phrase
occurred. In this example, this would mean giving the
user a choice be tween all the compu te r c o m p o n e n t s
that can admit 300 megabytes as a possible case filler.
If this list was unmanageab ly long, the system should
at least conf i rm explicitly that the unknown phrase
refers to a compute r componen t by something like:

By ' ro ta t ing mass storage device ' are you referr ing
to a computer componen t?

This at least establishes whether the user is trying to
do something that the sys tem can help him with or
whether the user has misconcept ions about the abilities
of the system.

Upon conf i rmat ion that the user mean t 'disk ' , the
system could add the new phrase as a synonym for
disk, perhaps af ter engaging the user in fur ther clarifi-
cational dialogue to ascertain that 'd isk ' is not merely
one kind of ' ro ta t ing mass s torage device ' , or vice
versa. If it were the case that one was more general
than the other , the new ent ry could be p laced in a
semant ic hierarchy and used in future recogni t ion
(perhaps af ter determining on what key features the
two differ).

Our third guideline s ta ted that the in terac t ion
should be in terms of the domain of discourse ra ther
than the internal linguistic convent ions of the system.
Breaking this rule might involve requiring the user to,
for instance, compare the parse trees represent ing two
ambiguous interpretat ions of his input or telling him
the name of the internal state where the parse failed in
an ATN parser. Such interact ion requires a linguisti-
cally and computat ional ly sophist icated user. Moreo-
ver, it is highly non- focused f rom the user 's point of
view since it requires him to translate the parser ' s view
of the problem into one that has meaning within the
task domain, thereby switching contexts f rom per fo rm-

136 Amer ican Journal of Computational Linguistics, Volume 9, Numbers 3-4, Ju ly -December 1983

Jaime G. Carbonell and Philip J. Hayes Recovery Strategies for Parsing Extrammatical Language

ance of the task to linguistic issues. This enforced
digression places an undue cognitive load on the user
and should be avoided.

The final guideline is to minimize the amount of
corrective interactions that occur. It is very tedious
for a user to be confronted with questions about what
he meant after almost every input, or as Codd (1974)
has suggested, to approve a paraphrase of each input
before the system does anything. Clearly, there are
situations when the user must be asked a direct ques-
tion, to wit, when informat ion is missing or in the
presence of real ambiguity. However , a technique not
requiring a reply is preferable when the system makes
assumptions that are very likely to be correct , or when
there are strong preferences for one alternative among
several in ambiguity, anaphora , or ellipsis resolution.
The echoing technique ment ioned in Sect ion 4.1 is
very useful in keeping required user replies to a mini-
mum while still allowing the user to overrule any un-
warranted assumptions on the part of the system. The
trick is for the system to incorporate any assumptions
it makes into its next output, so the user can see what
it has understood, correct it if it is wrong, and ignore
it if it is correct:

User: Add two dual ported rotat ing mass storage
devices to my order

System: What storage capaci ty should the two dual
ported disks have?

Here the sys tem informs the user of its assumpt ion
about the meaning of " ro ta t ing mass storage device"
(possible because only disks have dual ports) without
asking him directly if he means "disk" .

This section has given a brief glimpse of some of
the dialogue issues that arise in a robust parsing sys-
tem. The overriding point here is that robust parsing
techniques do not stop at the single sentence level.
Instead, they must be integrated with dialogue tech-
niques that allow for active user cooperat ion as a re-
covery s trategy of last resort.

5. E x p e r i m e n t s in Robust Parsing

Having examined various kinds of extragrammatical i ty
and the kinds of recovery strategies required to handle
them, we turn finally to a series of exper iments we
have conducted or plan to conduct in robust parsing.
Before describing some of the parsers involved in
these experiments, we summarize some of the broad
lessons that can be drawn from our earlier discussion.
These observat ions have had a major role in guiding
the design of our experimental systems.
• The parsing process should be as in terpret ive as

possible. We have seen several times the need for
a parsing process to "s tand back" and look at a
broad picture of the set of expectat ions (or gram-
mar) it is applying to the input when an ungram-
maticali ty arises. The more interpretive a parser is,

the bet ter able it is to do this. A highly interpre-
tive parser is also bet ter able to apply its expecta-
tions to the input in more than one way, which may
be crucial if the s tandard way does not work in the
face of an ungrammatical i ty .

• The parsing process should make it easy to apply
semantic information. As we have seen, semantic
in format ion is of ten very impor tan t in resolving
ungrammatical i ty.

1, The parsing process should be able to take advan-
tage of non-uniformity in language like that identi-
fied in Section 3.5.2. As we have seen, recovery
can be much more efficient and reliable if a parser
is able to make use of variations in ease of recogni-
tion or discriminating power be tween different con-
stituents. This kind of "oppo r tun i sm" can be built
into recovery strategies.

I, The parsing process should be capable of operat ing
top -down as well as bo t tom-up . We have seen
examples where both of these modes are essential.
Our earliest exper iments in robus t parsing were

conducted through the FlexP parsing sys tem (Hayes
and Mourad ian 1981). This sys tem was based on
partial pat tern matching, and while it had the first and
last of the characterist ics listed above, it did not meas-
ure up well to the other two. Indeed, many of our
ideas on the importance of those characterist ics were
developed though observat ion of FlexP 's shortcomings
as descr ibed in 3.5.2, and more fully in Hayes and
Carbonel l (1981). With these lessons in mind, we
cons t ruc ted two addit ional exper imenta l parsers:
CASPAR to explore the utility of case f rame instantia-
tion in robust parsing, and DYPAR to explore the no-
tion of combining several different parsing strategies
in a single parser. Both experiments proved fruitful,
as the next two sections show, and DYPAR has now
been developed into a comple te parsing system, the
DYPAR-II parser , as par t of the XCALIBUR exper t
system interface (Carbonel l et al. 1983). After that,
we describe an approach to parsing we are currently
developing that we believe to be based on the best
features of bo th systems. A final sect ion discusses
other methods and approaches that we consider prom-
ising avenues for future research.

5.1. The C A S P A R parser

As our earlier discussion on sentential- level ungram-
matical i ty pointed out, case f rame instant ia t ion ap-
pears to have many advantages as a f r amework for
robust parsing. Our initial exper iments in realizing
these advantages were conducted through the CASPAR
parser (Hayes and Carbonel l 1981). CASPAR was
restricted in coverage, but could deal with simple im-
perat ive verb phrases (that is, impera t ive verbs fol-
lowed by a sequence of noun phrases possibly marked
by preposi t ions) in a very robust way.

American Journal of Computational Linguistics, Volume 9, Numbers 3-4, July-December 1983 137

Jaime G. Carbonell and Phil ip J. Hayes Recovery Strategies for Parsing Extrammatical Language

Examples of grammatical input for CASPAR (drawn
f rom an interface to a data base keeping t rack of
course registration at a university) include:

Cancel math 247
Enrol Jim Campbel l in English 324
Transfer student 5518 from Economics 101 to

Business Administrat ion 111

Such constructions are classic examples of case con-
structions; the verb or command is the central con-
cept, and the noun phrases or arguments are its cases.
Considered as surface cases, the command arguments
are either marked by preposit ions, or unmarked and
identified by position, such as the posit ion of direct
object in the examples above.

The types of grammatical deviation that CASPAR
could deal with include:
• Unexpec ted and unrecognizable (to the sys tem)

interjections as in:

÷ S ÷ Q ÷ S 3 Enrol if you don ' t mind student
2476 I think in Economics 247.

• missing case markers:

Enrol Jim Campbel l Economics 247.

• out of order cases:

In Economics 247 Jim Campbel l enrol.

• ambiguous cases:

Transfer Jim Campbel l Economics 247 English
332.

Combina t ions of these ungrammatical i t ies could also
be dealt with.

CASPAR used a parsing s t ra tegy specifically de-
signed to exploit the recogni t ion character is t ics of
imperat ive case frames, viz. that the preposi t ions used
to mark cases are much easier to recognize than their
cor responding case fillers. Below the clause level,
CASPAR used linear pa t te rn matching to recognize
lower level consti tuents, which were defined in seman-
tic terms appropr ia te to the restricted domain in which
CASPAR was used. The algorithm used by CASPAR
was as follows:

1. Starting f rom the left of the input string, apply
the linear pat tern matcher in scanning mode 4 us-
ing all the pat terns which correspond to impera-
tive verbs (commands) . If this succeeds, the

3 The reason for including these particular extraneous charac-
ters will be easily guessed by users of certain computers.

4 The linear pattern matcher may be operated in anchored
mode, where it tries to match one of a number of linear patterns
starting at a fixed word in the input, or in scanning mode, where it
tries to match the patterns it is given at successive points in the
input string until one of the patterns matches, or it reaches the end
of the string.

command corresponding to the pat tern that
matched becomes the current command, and the
remainder of the input string is parsed relative to
its domain-specif ic case frame. If it fails,
CASPAR cannot parse the input.

2. If the current command has an unmarked direct
object case, apply the linear pa t tern matcher in
anchored mode at the next 5 word using the set of
pat terns appropr ia te to the type of object that
should fill the case. If this succeeds, record the
filler thus obta ined as the filler for the case.

3. Starting f rom the next word, apply the pat tern
matcher in scanning mode using the pat terns cor-
responding to the surface markers of all the mark-
ed cases that have not yet been filled. If this
fails, terminate.

4. If the last step succeeds, CASPAR selects a mark-
ed case - the one f rom which the successful pat-
tern came. Apply the matcher in anchored mode
at the next word using the set of pat terns appro-
priate to the type of object that should fill the
case selected. If this succeeds record the filler
thus obtained as the filler for the case.

5. Go to step 3.

Unless the input turns out to be complete ly unparsa-
ble, this a lgori thm will p roduce a c o m m a n d and a
(possibly incomplete) set of arguments. It is also in-
sensit ive to spurious input immedia te ly preceding a
case marker. However , it is not able to deal with any
of the other ungrammat ica l i t ies men t ioned above.
Dealing with them involves going back over any parts
of the input that were skipped by the pat tern matcher
in scanning mode. If, af ter the above algorithm has
terminated, there are any such skipped substrings, and
there are also arguments to the command that have
not been filled, the pat tern matcher is applied in scan-
ning mode to each of the skipped substrings using the
pat terns corresponding to the filler types of the un-
filled arguments . This will pick up any arguments
which were misplaced, or had garbled or missing case
markers.

This algorithm would deal with, for instance, the
convoluted example:

To Economics 247 Jim Campbel l t ransfer please
f rom Mathemat ics 121

as follows:
• The initial scan for a c o m m a n d verb would find

" t r ans fe r " , and thus cause all fur ther parsing to be
in terms of the case f rame for that command.

5 The word after the last one the pattern matcher matched
the last time it was applied. If some input was skipped in finding
the verb in step l, this is tacked onto the end of the sequence used
by the next operation.

138 Amer ican Journal of Computational Linguist ics, Vo lume 9, Numbers 3-4, Ju ly -December 1983

Ja ime G. Carbonel l and Phi l ip J. Hayes Recovery Strategies for Parsing Ext rammat ica l Language

• The direct object required by " t ransfer" would not
be found its expected place, after the verb, so
CASPAR would skip to look for a case marker.

• The case marker " f r o m " would be found, and
CASPAR would subsequently recognize the case
marked by " f rom" and put it in the source course
slot of the transfer case frame.

• The end of the input is then reached, but some cas-
es remain unfilled, so CASPAR goes into skipping
mode looking for case markers on the missed initial
segment and finds the destination course case.

• Now only the 'Jim Campbell ' and 'please' segments
are left and the student case is left unfilled, so
CASPAR can fill the student case correctly, and has
'please' left over as spurious input.
While limited in its scope of coverage, CASPAR

provides a practical demonstra t ion of how well case
frame instantiation fulfills our list of desiderata for
robust parsing.
• CASPAR uses its case frames in a highly interpretive

manner. It can, for instance, search directly after
the verb for the filler of a case which is expected to
be the direct object, but if that does not work, it is
prepared to recognize the same case elsewhere in
the input. Also, when it deals with out of order
input, it "steps back" and takes a broad view by
only considering unparsed input segments as poten-
tial fillers of cases that have not yet been filled.

• The case frame representat ion makes it easy to
bring semantic information to bear, e.g. restrictions
on what can fill each case, considerations of which
cases are optional or mandatory, and whether any
cases can have fillers that impose pragmatic const-
raints.

• CASPAR also shows the ability of case frame instan-
tiation to exploit variations in importance and ease
of recognition among different constituents. The
power of exploiting such variations is shown both
by the range of grammatical deviations CASPAR
can handle, and by the efficiency it displays in
straightforward parsing of grammatical input. This
efficiency is derived from the limited number of
patterns that the pattern matcher has to deal with
at any one time. On its first application, the
matcher only deals with command patterns; on sub-
sequent applications, it alternates between the pat-
terns for the markers of the unfilled cases of the
current command, and the patterns for a specific
object type. Also, except in post-processing of
skipped input, only case marker and command pat-
terns are employed when the pattern matcher is in
its less efficient scanning mode. The constituents
that are more difficult to recognize (e.g., object
descriptions) are processed in the more efficient
anchored mode.

Only in its predominance of top-down versus
bo t tom-up processing does CASPAR fail to meet

our desiderata. The only bot tom-up component to
CASPAR is the initial verb recognition phrase. If
the verb were not there, it would be completely
unable to parse. An extension to CASPAR to ame-
liorate this problem would be to start parsing case
fillers bottom-up, and hypothesize the existence of
the verb whose case frame most closely matched
the set of case fillers found (or ask the user if there
was no clear choice). This is obviously a much less
efficient mode of operation than the one presented
above, but it illustrates a way in which the basic
case frame information could be interpreted to deal
with the lack of a recognizable case header.

5.2. The D Y P A R parser

DYPAR originated as an experimental vehicle to test
the feasibility and potential benefits of combining
multiple parsing strategies into a uniform framework.
Initially, three parsing strategies (pattern matching,
semantic grammar interpretation, and syntactic trans-
formations) were combined. Transformat ions were
used to reduce variant sentential structures to canoni-
cal form. In addition to a large set of operators, 6 the
patterns could contain recursive non-terminal sub-
constituents corresponding to semantic grammar cate-
gories or other subconstituents. Each grammar non-
terminal could expand to a full pat tern containing
additional non-terminals.

The experiment proved successful in that DYPAR
allowed one to write grammars at least an order of
magnitude more concise than pure semantic grammars
of equivalent coverage. This version of the system is
called DYPAR-I (Boggs, Carbonell , and Monarch
1983) and has been made available for general use.
Subsequently, case frame instantiation was introduced
as the new dominant strategy, and the new system,
DYPAR-II, is currently used as the experimental parser
for XCALIBUR, a natural language interface to expert
systems (Carbonell et al. 1983).

The multi-strategy approach to parsing grammatical
input in DYPAR-II facilitated the introduction of sever-
al additional strategies to recover from different kinds
of extragrammaticality:
• Spelling correct ion combined with morphological

decomposition of inflected words.
• Bridging garbled or spurious phrases in otherwise

comprehensible input.
• Recognizing constituents when they occur in unex-

pected order in the input.
• Generalized case frame ellipsis resolution, exploit-

ing strong domain semantics.

6 Operators in DYPAR-I include: matching arbitrary subcon-
stituent repetition, optional constituents, free permutation matches,
register assignment and reference, forbidden constituents, and
anchored and scanning modes.

American Journal of Computational Linguistics, Vo lume 9, Numbers 3-4, Ju ly -December 1983 139

Jaime G. Carbonel l and Phi l ip J. Hayes Recovery Strategies for Parsing Extrammatical Language

The two sentential- level recovery strategies (second
and third on the list above) were inspired by, and
largely pat terned after, the corresponding strategies in
CASPAR, therefore little additional commentary is
required. However , an additional complicat ion in
DYPAR-II is that the case frame instantiation process
recognizes recursively embedded case frames, and in
the presence of ill-formed input must deal with multi-
ple levels of expectations. Were it not for strong do-
main semantics, this additional source of complexi ty
would have introduced some ambiguity in the correc-
tion process requiring additional interaction with the
user.

5.2.1. Spelling correction and morphology in
DYPAR

DYPAR combines expectat ion-based spelling correct ion
and morphological decomposit ion of inflected words.
Since the DYPAR grammars are compiled into a cross-
referenced form that indexes dictionary entries from
patterns, it proved simple to generate lists of expected
words when encounter ing an unrecognizable term.
Although of ten the lists were short (highly constrained
by expectat ions), on occasion a substantial fraction of
the dictionary was generated.

Since spelling correct ion interacts with morphologi-
cal decomposition, the two were combined into a sin-
gle recovery algorithm. Here we present a somewhat
simplified form of the algorithm in which the only
morphological operations allowed are on word endings
(e.g., singularization and other suffix stripping opera-
tions).
1. Define the reduced dictionary to be the set of ex-

pected words at the point in the parse where the
unrecognized word was found. This set may con-
tain expected or allowed morphological inflexions
and variants, as well as root forms of words.

2. Morphological decomposition phase - If the word
(plus any accompanying morphological informa-
tion) is a member of the reduced dictionary, return
it and exit.

3. Attempt to perform a one level morphological oper-
ation on the current word (e.g., stripping a legal
suffix)
a. If successful, set the word to the decomposed

form (e.g. root and suffix), save the potential
decomposit ion on a list, and go to step 2.

b. If no morphological operat ion is possible, go to
the spelling correct ion phase (step 4). Only legal
sequences of suffixes are allowed.

4. Spelling correction phase - For each element in the
list of possible decomposi t ions (starting with the
original unrecognized word), apply the spelling
correct ion algorithm to the root word using the
reduced dictionary as the candidate correct ion set.
a. If successful, return the corrected word (along

with any morphological information) and exit.

b. If no spelling correct ion is possible, go on to the
next proposed decomposition.

5. If no proposed morphological decomposit ion yields
a recognizable root, either by direct match or spell-
ing correct ion, exit the algori thm with a failure
condition.
Clearly this strategy incorporates a best-match or

minimal-correct ion criterion, ra ther than generat ing
the set of all possible corrections. Moreover , words
are only looked up in the reduced dictionary. This
means that misspellings into words that are in the full
dictionary but violate expectat ions (and are therefore
not members of the reduced dictionary) are handled in
the same manner as ordinary misspellings.

Let us trace this correct ion strategy on the word
"intrestingness'. Since that word is not recognized, we
enter the algorithm above and generate a reduced dic-
tionary. Assume that the reduced dictionary contains
the word "interest", but none of its morphological
variants. First we strip the "ness" suffix, but the re-
suiting character string remains unrecognizable. Then
we strip the "ing" suffix with similar results. Finally
we strip off the coincidental " e s t " as a suffix and still
find no recognizable root. At this point, morphology
can do no more and the algorithm enters the spelling
correct ion phase with the following candidate

((root: (intrestingness) suffixes: 0)
(root: (intresting) suffixes: (ness))
(root: (intrest) suffixes: (ing ness))
(root: (intr) suffixes: (est ing ness))

Next , we a t tempt to spelling correc t "intrestingness"
using the reduced dictionary and fail. We also fail with
"intresting", but succeed with " in t res t " and exit the
algorithm with the value

(root: (interest) suffixes: (ing ness))

and without considering the spurious "e s t " stripping.
Had the word been correctly spelt, or had any of the
compound morphological forms been inserted into the
dict ionary explicitly, the algorithm would have suc-
ceeded and exited sooner.

5.2.2. Ellipsis resolution

DYPAR-II utilizes a variant of the case frame ellipsis
resolution method discussed in Section 4.1. In addi-
tion to the general algorithm, it incorporates a method
for dealing with ellipsis when another component of
the XCALIBUR system has generated strong discourse
expectations. The ellipsed fragment is parsed in the
context of these expectat ions, as i l lustrated by the
recovery strategy below:

Exemplary discourse expectation rule:

IF: The system generated a query for confirmation
or d i sconf i rmat ion of a proposed value of a

140 American Journal of Computational Linguistics, Volume 9, Numbers 3-4, July-December 1983

Jaime G. Carbonell and Philip J. Hayes Recovery Strategies for Parsing Extrammatical Language

filler of a case in a case f rame in focus,
THEN: EXPECT one or more of the following:

1) A conf i rmat ion or d isconf i rmat ion pa t te rn
appropr ia te to the query in focus.

2) A different but semantical ly permissible
filler of the case f rame in quest ion
(optionally naming the attr ibute or provid-
ing the case marker) .

3) A comparat ive or evaluative pat tern appro-
priate to the proposed value of the case in
focus.

4) A query about possible fillers or constraints
on possible fillers of the case in question.
[If this expec ta t ion is conf i rmed, a sub-
dialogue is entered, where previously fo-
cused entities remain in focus.]

The following dialogue f ragment i l lustrates how
these expecta t ions come into play in a focused dia-
logue:

> A d d a line printer with graphics capabilities.

Is 150 lines per minute acceptable?

> N o , 320 is bet ter Expectations 1, 2 & 3
(or) other options for the speed? Expectation 4
(or) Too slow, try 300 or faster Expectations 2 & 3

The ut terance " t ry 300 or f as te r " is syntact ical ly a
complete sentence, but semantically it is just as frag-
men ta ry as the previous ut terances . The s t rong dis-
course expectat ions suggest that it be processed in the
same manner as syntact ical ly incomplete u t terances ,
since it satisfies the dialogue expectat ions listed above.
Thus, the terseness principle opera tes at all levels:
syntactic, semantic and pragmatic.

Addit ionally, DYPAR-II contains rules to ensure
semantic completeness of ut terances even in the ab-
sence of specific discourse expectations. As we have
just seen, not all sentence f ragments are f ragmentary
in the syntactic sense. But not all such purely seman-
tic ellipsis can be predicted through dialogue generated
expectat ions.

>Which fixed media disks are configurable on a
VAX780?

The RP07-aa, the RP07-ab, ...

> A d d the largest

In this example, there is no good basis for predicting
what the user will do in response to the information in
the answer to his question. His response turns out to
be semantical ly elliptical - we need to answer the
question " largest wha t?" before proceeding. One can
call this problem a special case of definite noun phrase
resolution, rather than semantic ellipsis, but terminol-
ogy is immaterial. Such phrases occur with regularity
in our corpus of examples and must be resolved by a
fairly general process. The following rule answers the

question f rom context , regardless of the syntact ic com-
pleteness of the new utterance.

Contextual substitution rule

IF: A command or query case f rame lacks one or
more required case fillers, and the last case
f rame in focus has an ins tant ia ted case that
meets all the semantic tests for the case miss-
ing the filler,

THEN" I) Copy the filler onto the new case f rame,
and

2) At tempt to copy uninstant iated case fillers
as well (if they meet semantic tes ts) .

3) Echo the act ion being pe r fo rmed for im-
plicit conf i rmat ion by the user.

For the example above, the case f rame with a missing
componen t is the selection case f rame introduced by
" l a rges t " that requires a set of componen t s f rom
which to select. The previous (and therefore still fo-
cused) input has a set of disks in its only case slot and
this meets the semantic criteria for the selection slot;
hence it is copied over and used.

Rules such as the one above are fairly general in
coverage, and the s ta tement of the rule is independent
of any specific case g rammar or domain semantics.
The rules, however, rely on the presence of the same
specific case f rames and the semant ic constra ints as
used in the normal parsing of isolated grammat ica l
constructions.

5.3. Multi-strategy parsing

In addition to underscoring the importance of our four
desiderata for robust parsers listed at the beginning of
this section, our exper iments with CASPAR and
DYPAR demonst ra ted that robustness can be achieved
by the use of several different parsing strategies on the
same input. These strategies operate both on gram-
matical input and as a means of recovery f rom un-
grammatical input. The notion of multiple strategies
fits very well with the four desiderata. In particular:
• The required high degree of interpret iveness can be

obtained by having several different strategies ap-
ply the same grammatical information to the input
in several different ways.

• Different strategies can be writ ten to take advan-
tage of different aspects of non-uniformity for dif-
ferent construct ion types.

• Some strategies can opera te top -down and others
bo t tom up.
Nor, as we have seen in DYPAR, is a multiple strat-

egy approach inconsistent with our previous emphasis
on case f rame instant ia t ion as a suitable vehicle for
robust parsing. Indeed, many of the strategies re-
quired by a robust parser will be based on case f rame
instant ia t ion with all the flexibility that that entails.
However , case f rame instant ia t ion cannot carry the

American Journal of Computational Linguistics, Volume 9, Numbers 3-4, July-December 1983 141

Jaime G. Carbonell and Philip J. Hayes Recovery Strategies for Parsing Extrammatical Language

entire burden of robustness alone, and so must be
supplemented by other strategies such as the ones
present in DYPAR. In fact, even the method of case
frame instantiation presented for CASPAR can be seen
as two strategies: one an initial pass using standard
expectat ions, and the other a recovery strategy for
when the first fails. The bot tom-up strategy discussed
at the end of the section on CASPAR would make a
third.

5.3.1. Coordinat ing mult iple st rategies through
an ent i ty -or iented approach

A major problem that arises in using multiple parsing
strategies is coordinat ion between the strategies.
Questions of interaction and order of application are
involved. In CASPAR and DYPAR, the problem was
solved simply by "hard-wi r ing" the interactions, but
this is not satisfactory in general, especially if we wish
to extend the set of strategies available in a smooth
way. One alternative we have begun to explore in-
volves the idea of ent i ty-or iented parsing (Hayes
1984).

The central notion behind ent i ty-oriented parsing is
that the primary task of a natural language interface is
to recognize entities - objects, actions, states, com-
mands, etc. - f rom the domain of discourse of the
interface. This recognition may be recursive in the
sense that descriptions of entities may contain descrip-
tions of subsidiary entities (for example, commands
refer to objects).

In ent i ty-or iented parsing, all the entities that a
particular interface system needs to recognize are de-
fined separately. These definitions contain informa-
tion both about the way the entities will be manifested
in the natural language input (this information can also
be used to generate output) , and about the internal
semantic structure of the entities. This arrangement
has the following advantages for parsing robustness:
• The individual ent i ty definit ions form an ideal

f ramework around which to organize multiple pars-
ing strategies. In particular, each definit ion can
specify which strategies are applicable to recogniz-
ing it. Of course, this only provides a f ramework
for robust recognition, the robustness achieved will
still depend on the quality of the various recogni-
tion strategies used.

• The individual definition of all recognizable domain
entities allows them to be recognized independent-
ly. Assuming there is appropriate indexing of enti-
ties through lexical items that might appear in a
surface description of them, this recognition can be
done bot tom-up, thus allowing for recognit ion of
elliptical, f ragmentary , or partially incomprehensi-
ble input. The same definitions can also be used in
a more efficient top-down manner when the input
conforms to the system's expectations.

• This style of organization is particularly well suited
to case frame instantiation. The appropriate case
frames can be associated with each entity definition
for use by case-oriented strategies. Of course, this
does not prevent other strategies f rom being used
to recognize the entity, so long as suitable informa-
tion for the other strategies to interpret is provided
in the entity definition.

These arguments can be made more concrete by exam-
ple.

5.3.2. Example ent i ty def in i t ions

First we examine some example enti ty and language
definitions suitable for use in ent i ty-or iented parsing.
The examples are drawn from the domain of an inter-
face to a data base of college courses. Here is the
(partial) definition of a course. Square brackets de-
note a t t r ibute /value lists, and round brackets ordinary
lists.

[
EntityName: CollegeCourse
Type: Structured
Components: (

[ComponentName: CourseNumber
Type: Integer
GreaterThan: 99
LessThan: 1000

]
[ComponentName: CourseDepartment

Type: CollegeDepartment
]
[ComponentName: CourseClass

Type: CollegeClass
]
[ComponentName: Courselnstructor

Type: CollegeProfessor
]

)
SurfaceRepresentation: (

[SyntaxType: Pattern
Pattern: ($CourseDepartment $CourseNumber)

]
[SyntaxType: NounPhrase

Head: (course I seminar I ...)
AdjectivalComponents: (CourseDepartment ...)
Adjectives: (

[AdjectivalPhrase: (new I most recent)
Component: CourseSemester
Value: CurrentSemester

]

)
PostNominalCases: (

[Case-marker: (?intended for I directed to I ...)
Component: CourseClass

142 American Journal of Computational Linguistics, Volume 9, Numbers 3-4, July-December 1983

Jaime G. Carbonel| and Philip J. Hayes Recovery Strategies for Parsing Extrammatical Language

[

)
]

]

[Case-marker: (?taught by I ...)
Component: Courselnstructor

]

)

Precise details of this language are not relevant here.
Impor tan t features to note include the definition of a
course as a structured object with components : num-
ber, depar tment , instructor, etc.. This definit ion is
separate from the surface representat ion of a course
which is defined to take one of two forms: a simple
word pat tern of the course depar tment followed by the
course number (dollar signs refer back to the compo-
nents) , or a full noun phrase with adjectives, post -
nominal cases, etc. Since we are assuming a multi-
s t rategy approach to parsing, the two quite different
kinds of surface language definition do not cause any
problem - they can both be applied to the input inde-
pendently by different construction-specif ic strategies,
and the one which accounts for the input best will be
used.

Subsidiary objects like Col legeDepar tment are de-
fined in similar fashion.

[

EntityName: CollegeDepartment
Type: Enumeration
EnumeratedValues: (

ComputerScienceDepartment
MathematicsDepartment
HistoryDepartment

)

SurfaceRepresentation: (
[SyntaxType: Pattern

Pattern: (CS I Computer Science I CompSci I ...)
Value: ComputerScienceDepartment

]

)
]

Col legeCourse itself will be a subsidiary enti ty in
other higher-level entities of our restr icted domain,
such as a command to the data base system to enrol a
student in a course.

[

EntityName: EnrolCommand
Type: Structured
Components: (

[ComponentName: Enrollee
Type: CollegeStudent

]
[ComponentName: EnrolIn

Type: CollegeCourse
]

)

SurfaceRepresentation: (
[SyntaxType: ImperativeCaseFrame

Head: (enroll register I include I ...)
DirectObject: ($Enrollee)
Cases: (

[Case-marker: (in I into I ...)
Component: EnrolIn

[
)

]
)

[

5.3.3. P a r s i n g w i t h a n e n t i t y - o r i e n t e d a p p r o a c h

Now we turn to the question of how language defini-
tions like those in the examples just given can be used
to drive a parser. Let us examine first how a simple
data base command like

Enrol Susan Smith in CS 101

might be parsed using the above language definitions.
The first job is to recognize that we are parsing an
En ro lCommand . In a purely top -down system, we
would establish this by having a list of all the entities
that we are prepared to recognize as complete inputs
and trying each one of these to see if they could be
recognized, a rather inefficient process. A more natu-
ral s t rategy in an ent i ty-or iented approach is to try to
index b o t t o m - u p f rom words in the input to those
entities that they might appear in. In this case, the
best indexer for E n r o l C o m m a n d is the first word,
'enrol ' . In general, the best indexer need not be the
first word of the input and we need to consider all
words, thus raising the potential of indexing more than
one entity. Hence we might also index CollegeStu-
dent, Col legeCourse, and Col legeDepar tment . A sim-
ple method of cutt ing down the number of index-
genera ted possibili t ies to invest igate t op -down is to
eliminate all those that are subsidiary to others that
have been indexed. For our example, this would elim-
inate everything except E n r o l C o m m a n d , the desired
result. One final point about indexing: it is clearly
undesirable to index f rom every word that could ap-
pear in the surface representa t ion of an entity; only
highly discriminating words like ' enrol ' or 'CS ' should
be used. Whether a word is sufficiently discriminating
can be determined either manually, which is unreliable,
or automatical ly by keeping a count of the number of
entities indexed by a given word and removing it f rom
the index if it indexes more than a certain threshold
number.

American Journal of Computational Linguistics, Volume 9, Numbers 3-4, Ju ly-December 1983 143

Jaime G. Carbonel l and Phi l ip J. Hayes Recovery Strategies for Parsing Extrammatical Language

Once Enro lCommand has been established as the
entity to recognize in the above example, the remain-
der of the recognit ion can be accomplished straightfor-
wardly in a top-down manner . The definition of the
surface representa t ion of En ro lCommand is an impera-
tive case f rame with a CollegeStudent as direct object
and with a Col legeCourse as a second case indicated
by ' in ' . This informat ion can be used directly by a
simple case f rame recognit ion s trategy of the type used
in CASPAR. No translation into a structurally differ-
ent representa t ion is necessary. The most natural way
to represent the resulting parse would be:

[InstanceOf: EnrolCommand
Enrollee: [InstanceOf: CollegeStudent

FirstNames: (Susan)
Surname: Smith
]

Enrolln: [InstanceOf: CollegeCourse
CourseDepartment: ComputerScienceDepartment
CourseNumber: 101
]

]

Note how this parse result is expressed in terms of the
underlying structural representa t ion used in the enti ty
definitions without the need for a separate semantic
interpretat ion step.

To see the possibili t ies for robus tness with the
ent i ty-or iented approach, consider the input:

Place Susan Smith in computer science for fresh-
men

There are two problems here: we assume that the user
intended 'p lace ' as a synonym for 'enrol ' , but that it
happens not to be in the sys tem's vocabulary; the user
has also shor tened the grammat ica l ly acceptable
phrase, ' the computer science course for f reshmen ' , to
an equivalent phrase not covered by the surface repre-
sentat ion for Col legeCourse as defined above. Since
'p lace ' is not a synonym for ' enrol ' in the language as
present ly defined, we cannot index E n r o l C o m m a n d
f rom it and hence cannot get the same kind of top-
down recognit ion as before. So we are forced to rec-
ognize smaller f ragments bo t tom-up . Le t ' s assume we
have a complete listing of students and so can recog-
nize 'Susan Smith' as a student. That leaves ' computer
science for f reshmen ' . We can recognize ' compute r
science ' as a Col legeDepar tment and ' f r e shmen ' as a
CollegeClass , so since they are bo th componen t s of
CollegeCourse, we can a t tempt to unify our currently
f r agmen ta ry recogni t ion by trying to recognize a
course description f rom the segment of the input that
they span, viz. ' compute r science for f reshmen ' .

There are two possible surface representat ions giv-
en for CollegeCourse. The first, a pat tern, is partially
matched by ' compute r science' , but does not unify the
two fragments. The second, a noun phrase accounts

for both of the f ragments (one is adjectival, the other
part of a pos t -nominal case), but would not normally
match them because the head noun is missing. In
f ragment recognit ion mode, however , this kind of gap
is acceptable , and the phrase can be accepted as a
descr ipt ion of a Col legeCourse with Compute rSc ien-
c e D e p a r t m e n t as Cou r seDepa r tmen t , and F re shman-
Class as CourseClass .

The input still consists of two fragments , however ,
a CollegeStudent and a Col legeCourse , and since we
do not have any informat ion about the word 'p lace ' ,
we are forced to consider all the entit ies that have
those two sub-enti t ies as components . We will sup-
pose there are three: En ro lCommand , Wi thd rawCom-
mand, and T r a n s f e r C o m m a n d (with the obvious inter-
pretat ions) . Trying to recognize each of these, we can
rule out T r a n s f e r C o m m a n d in favour of the first two
because it requires two courses and we only have one.
Also, E n r o l C o m m a n d is p re fe r red to W i t h d r a w C o m -
mand since the preposi t ion ' in ' indicates the Enrol ln
case of En ro lCommand , but does not indicate With-
d rawFrom, the course-conta in ing case of Wi thdraw-
Command . Thus we can conclude that the user in-
tended an Enro lCommand .

In following this bo t tom-up f ragment combinat ion
procedure, we have ignored other combinat ion possi-
bilities that did not lead to the correct answer - for
instance, taking ' C o m p u t e r Science' as the StudentDe-
pa r tmen t case of the Col legeStudent , 'Susan Smith ' .
In practice, an algorithm for bo t tom-up f ragment com-
bination would have to consider all such possibilities.
However , if, as in this case, the combinat ion did not
turn out to fit into a higher- level combina t ion that
accounted for all of the input, it could be discarded in
favour of combina t ions that did lead to a comple te
parse. More than one complete parse would be han-
dled, just like any o ther ambigui ty , through focused
interaction.

Even assuming that the above example had a uni-
que result, since it involved several significant assump-
tions, we would need to use focused interact ion tech-
niques (Hayes 1981) to present a paraphrase of our
interpretat ion to the user for approval before acting on
it. Note that if the user does approve it, we should be
able (perhaps with fur ther approval) to add 'p lace ' to
the vocabulary as a synonym for ' enrol ' since 'p lace '
was an unrecognized word in the surface posi t ion
where ' enrol ' should have been.

A pilot implementa t ion of a parser cons t ruc ted
according to the en t i ty -or ien ted principles out l ined
above has been comple ted and prel iminary evaluat ion
is promising. We are hoping to build a more complete
parser along these lines.

6. Concluding Remarks

Any practical natural language interface must be capa-
ble of dealing with a wide range of ext ragrammat ica l

144 Amer ican Journal of Computational Linguist ics, Vo lume 9, Numbers 3-4, Ju ly -December 1983

Jaime G. Carbonell and Philip J. Hayes Recovery Strategies for Parsing Extrammatical Language

input. This paper has proposed a taxonomy of the
prevalent forms of extragrammatical i ty in real lan-
guage use and presented recovery strategies for many
of them. We also discussed h o w well various ap-
proaches to parsing could support the recovery strate-
gies, and concluded that case frame instantiation pro-
vided the best framework among the c o m m o n l y used
parsing methodologies .

At a more general level, we argued that the superi-
ority of case frame instantiat ion over other parsing
methodolog ies for robust parsing is due to how well it
satisfies four parsing characteristics that are important
for many of the recovery strategies that we described:
• The parsing process should be as interpretive as

possible.
• The parsing process should make it easy to apply

semantic information.
• The parsing process should be able to take advan-

tage of non-uniformity in language.
• The parsing process should be capable of operating

top-down as well as bottom-up.
We claimed that while case frame instantiation satis-
fies these desiderata better than any other c o m m o n l y
used parsing methodology , it was possible to do even
better by using a mult i -strategy approach in which
case frame instantiation was just one member (albeit a
very important one) of a whole array of parsing and
recovery strategies. We described some experiments
that led us to this view and outl ined a parsing metho-
dology, ent i ty-or iented parsing, that we bel ieve will
support a multi-strategy approach.

It is our hope that by pursuing lines of research
leading to parsers that maximize the characterist ics
listed above, we can approach, in semantically limited
domains , the extraordinary degree of robustness in
language recognit ion exhibited by human beings, and
gain some insights into h o w robustness might be
achieved in more general language settings.

7. References

Bobrow, D.G. and Winograd, T. 1977 An Overview of KRL, a
Knowledge Representation Language. Cognitive Science 1 (1):
3-46.

Bobrow, R.J. 1978 The RUS System. BBN Report 3878. Bolt
Beranek and Newman, Cambridge, Massachuseets.

Bobrow, R.J. and Webber, B. 1980 Knowledge Representation for
Syntactic/Semantic Processing. Proc. National Conference of the
American Association for Artificial Intelligence. Stanford Univer-
sity, Stanford, California (August).

Bobrow, D.G.; Kaplan, R.M.; Kay, M.; Norman D.A.; Thompson,
H.; and Winograd, T. 1977 GUS: a Frame-Driven Dialogue
System. Artificial lntelligence 8: 155-173.

Boggs, W.M. and Carbonell, J.G. and Monarch, I. 1983 The
DYPAR-I Tutorial and Reference Manual. Technical report.
Computer Science Department, Carnegie-Mellon University,
Pittsburgh, Pennsylvania.

Brown, J.S. and Burton, R.R. 1975 Multiple Representations of
Knowledge for Tutorial Reasoning. In Bobrow, D.G. and Col-
lins, A., eds. Representation and Understanding. Academic Press,
New York, New York: 311-349.

Carbonell, J.G. 1979 Towards a Self-Extending Parser. Proceed-
ings o f the 17th Meeting o f the Association for Computational
Linguistics: 3-7.

Carbonell, J.G. and Hayes, P.J. 1984 Robust Parsing Using Multi-
ple Construction-Specific Strategies. In Bole, L., ed., Natural
Language Parsing Systems. Springer-Verlag, New York, New
York.

Carbonell, J.G.; Boggs, W.M.; Mauldin, M.L.; and Anick, P.G.
1983 The XCALIBUR Project, A Natural Language Interface
to Expert Systems. Proceedings o f the Eighth International Joint
Conference on Artificial Intelligence.

Carbonell, J.G.; Boggs, W.M.; Mauldin, M.L.; and Anick, P.G.
1983 XCALIBUR Progress Report # l : First Steps Towards an
Integrated Natural Language Interface. Technical report.
Computer Science Department, Carnegie-Mellon University,
Pittsburgh, Pennsylvania.

Carbonell, J.G. 1982 Meta-Language Utterances in Purposive
Discourse. Technical report. Computer Science Department,
Carnegie-Mellon University, Pittsburgh, Pennsylvania.

Carbonell, J.G. 1983 Discourse Pragmatics in Task-Oriented
Natural Language Interfaces. Proceedings o f the 21st Annual
Meeting o f the Association for Computational Linguistics.

Codd, E.F. 1974 Seven Steps to RENDEZVOUS with the Casual
User In Klimbie, J.W. and Koffeman, K.L., eds., Proceedings o f
the 1FIP TC-2 Working Conference on Data Base Management
Systems. North Holland, Amsterdam: 179-200.

Dejong, G. 1979 Skimming Stories in Real-Time. Ph.D. disserta-
tion. Computer Science Department, Yale University, New
Haven, Connecticut.

Durham, i.; Lamb, D.D.; and Saxe, J.B. 1983 Spelling Correction
in User Interfaces. Communications o f the ACM 26.

Haas, N. and Hendrix, G.G. 1983 Learning by Being Told: Ac-
quiring Knowledge for Information Management. In Michalski,
R.S.; Carbonell, J.G.; and Mitchell, T.M., eds., Machine Learn-
ing, An Artificial Intelligence Approach. Tioga Press, Palo Alto,
California.

Hayes, P.J. 1981 A Construction Specific Approach to Focused
Interaction in Flexible Parsing. Proceedings o f 19th Annual
Meeting o f the Association for Computational Linguistics (June):
149-152.

Hayes, P.J. 1984 Entity-Oriented Parsing. COLING84, Stanford
University, Stanford, California (July).

Hayes, P.J. and Mouradian, G.V. 1981 Flexible Parsing. Ameri-
can Journal o f Computational Linguistics 7(4); 232-241.

Hayes, P.J. and Carbonell, J.G. 1981 Multi-strategy Construction-
Specific Parsing for Flexible Data Base Query and Update.
Proceedings o f the Seventh International Joint Conference on Arti-
ficial Intelligence. Vancouver (August): 432-439.

Hayes, P.J. and Reddy, D.R. 1983 Steps Toward Graceful Interac-
tion. Spoken and Written Man-Machine Communication, Interna-
tional Journal o f Man-Machine Studies. 19(3): 211-284.

Hayes, P.J. and Carbonell, J.G. 1981 Multi-Strategy Parsing and
its Role in Robust Man-Machine Communication. Technical
report CMU-CS-81-118. Computer Science Department,
Carnegie-Mellon University, Pittsburgh, Pennsylvania (May).

Hendrix, G.G. 1977 Human Engineering for Applied Natural
Language Processing. Proceedings of the Fifth International Joint
Conference on A rtificial Intelligence: 183-191.

Kwasny, S.C. and Sondheimer, N.K. 1981 Relaxation Techniques
for Parsing Grammatically Ill-Formed Input in Natural Lan-
guage Understanding Systems. American Journal o f Computa-
tional Linguistics 7(2): 99-108.

Sacerdoti, E.D. 1977 Language Access to Distributed Data with
Error Recovery. Proceedings o f the Fifth International Joint
Conference on Artificial Intelligence: 196-202.

Schank, R.C.; Lebowitz, M.; and Birnbaum, L. 1980 An Integrat-
ed Understander. American Journal o f Computational Linguistics
6(1): 13-30.

Waltz, D.L. 1978 An English Language Question Answering
System for a Large Relational Data Base, Communications of the
ACM 21(7): 526-539.

American Journal of Computational Linguistics, Volume 9, Numbers 3-4, July-December 1983 145

Jaime G. Carbonell and Philip J. Hayes Recovery Strategies for Parsing Extrammatical Language

Waltz, D.L. and Goodman, A.B. 1977 Writing a Natural Language
Data Base System. Proceedings of the Fifth International Joint
Conference on Artificial Intelligence: 144-150.

Weischedel, R.M. and Sondheimer, N.K. 1983 Meta-Rules as a
Basis for Processing Ill-formed Input. American Journal of
Computational Linguistics 9(3-4): 161-177.

Weischedel, R.M. and Black, J. 1980 Responding-to Potentially
Unparseable Sentences. American Journal of Computational
Linguistics 6: 97-109.

Wilks, Y. A. 1975 Preference Semantics. In Keenan, ed., Formal
Semantics of Natural Lanbuage. Cambridge University Press,
Cambridge, England.

Woods, W. A. 1980 Cascaded ATN Grammars. American Journal
of Computational Linguistics 6: 1-12.

Woods, W.A.; Kaplan, R.M.; and Nash-Webber, B. 1972 The
Lunar Sciences Language System: Final Report. Technical
report 2378. Bolt Beranek and Newman, Cambridge, Massa-
chusetts.

Woods, W.A.; Bates, M.; Brown, G.; Bruce, B.; Cook, C.; Klovst-
ad, J.; Makhoul, J.; Nash-Webber, B.; Schwartz, R.; Wolf, J.;
and Zue, V. 1976 Speech Understanding Systems - Final
Technical Report. Technical report 3438. Bolt Beranek and
Newman, Cambridge, Massachusetts.

Wright, K. and Fox, M 1983 The SRL Users Manual. Technical
report. Robotics Institute, Carnegie-Mellon University, Pitts-
burgh, Pennsylvania.

146 American Journal of Computational Linguistics, Volume 9, Numbers 3-4, July-December 1983

