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This paper reports recent research into methods for creating natural language text. A 
new processing paradigm called Fragment-and-Compose has been created and an experi-  
mental system implemented in it. The knowledge to be expressed in text is first divided 
into small propositional units, which are then composed into appropriate combinations and 
converted into text. 

KDS (Knowledge Delivery System), which embodies this paradigm, has distinct parts 
devoted to creation of  the propositional units, to organization of  the text,  to prevention of  
excess  redundancy, to creation of  combinations of  units, to evaluation of  these combina- 
tions as potential sentences,  to selection of  the best among competing combinations, and to 
creation of the final text. The Fragment-and-Compose paradigm and the computational 
methods of  KDS are described. 

Introduction 

C o m p u t e r  users  have  d i f f i cu l t i e s  in u n d e r s t a n d i n g  
wha t  k n o w l e d g e  is s t o r e d  in the i r  c o m p u t e r s ;  the  sys-  

t ems  have  c o r r e s p o n d i n g  d i f f icu l t ies  in de l ive r ing  the i r  
knowledge .  The  k n o w l e d g e  in the  mach in e  m a y  be  
r e p r e s e n t e d  in an i n c o m p r e h e n s i b l e  n o t a t i o n ,  o r  we  
m a y  w a n t  to share  the  k n o w l e d g e  wi th  a large  g roup  
of  p e o p l e  who  lack  the  t r a i n i n g  to  u n d e r s t a n d  the  
c o m p u t e r ' s  fo rma l  no t a t i on .  F o r  example ,  t he re  a re  
large  s imu la t ion  p r o g r a m s  tha t  get  in to  very  c o m p l i c a t -  
ed  s ta tes  we wou ld  l ike to be  ab le  to u n d e r s t a n d  eas i -  
ly. T h e r e  are  da t a  base  sys t ems  wi th  c o m p l e x  k n o w -  
ledge  b u r i e d  in them,  bu t  real  p r o b l e m s  in e x t r a c t i n g  
it. T h e r e  are  s t a t u s - k e e p i n g  sys t ems  f rom which  we 
wou ld  l ike to  get  snapsho t s .  T h e r e  are  sys t ems  tha t  
t ry  to p rove  things ,  f rom which  we wou ld  l ike to  have  
p rog res s  r epo r t s  and  jus t i f i ca t ions  for  va r ious  ac t ions .  
M a n y  o t h e r  k inds  of  sys t ems  have  k n o w l e d g e - d e l i v e r y  
di f f icul t ies .  
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knowledged. The views and conclusions contained in this document 
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The  c i r c u m s t a n c e s  tha t  m a k e  it p a r t i cu l a r l y  a t t r a c -  

t ive to  de l ive r  this  k n o w l e d g e  in na tu r a l  l anguage  are:  

a) c o m p l e x i t y  of  the  s o u r c e  k n o w l e d g e ,  so t ha t  i ts 

n o t a t i o n  is no t  eas i ly  l e a r n e d ,  b)  u n p r e d i c t a b i l i t y  of  

the  d e m a n d s  fo r  k n o w l e d g e ,  so t ha t  the  a c t u a l  d e -  
m a n d s  c a n n o t  be  me t  wi th  spec i f i c  p r e p r o g r a m m e d  

ou tpu t ,  and  c) the  need  to  se rve  a large  poo l  of  un-  

t r a i ne d  or  l ight ly  t r a ined  users  of  these  sys tems .  

F o r  a n u m b e r  of  the  k inds  of  sys t ems  m e n t i o n e d  

above ,  ge t t ing  the  i n f o r m a t i o n  ou t  is one  of  the  p r inc i -  

pa l  l imi ta t ions  on  the  s y s t e m s '  uses.  If  the  i n f o r m a t i o n  

cou ld  be  a c c e s s e d  m o r e  eas i ly ,  t hen  far  m o r e  p e o p l e  

cou ld  use  the  sys tems .  So we are  t a lk ing  in pa r t  a b o u t  

f a c i l i t a t i ng  ex i s t i ng  s y s t e m s ,  bu t  m u c h  m o r e  a b o u t  

c r ea t i ng  new o p p o r t u n i t i e s  for  sys t ems  to serve  peop le .  

I f  c o m p u t e r  s y s t e m s  c o u l d  e x p r e s s  t h e m s e l v e s  in 

f luen t  n a t u r a l  l a n g u a g e ,  m a n y  of  t he se  d i f f i cu l t i e s  

w o u l d  d i s a ppe a r .  H o w e v e r ,  the  n e c e s s a r y  p r o c e s s e s  

for  such e xp re s s ion  do  no t  exis t ,  and  the re  a re  fo rmi -  

d a b l e  o b s t a c l e s  even  to  des ign ing  such p rocesses .  The  

t h e o r y  of  wr i t ing  is s k e t c h y  and  vague ,  and  the re  a re  

few in t e r e s t i ng  c o m p u t e r  sys t ems  to serve  as p r e c e d -  

ents .  A n y  r e s e a r c h  e f fo r t  to  c r ea t e  such sys tems  - -  

sy s t ems  tha t  k n o w  h o w  to wr i t e  - -  can  be  s ign i f i can t  

b o t h  in i ts p r ac t i ca l  imp l i c a t i ons  and  for  the  k n o w l -  

edge  of  wr i t ing  tha t  it  p roduces .  
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Writing is an intellectually interesting task, though 
poorly understood. If we want to have a better theo- 
ry, a better characterization of this task, then we can 
use computer program design and test as a discovery 
procedure for exploring the subject. In the present 
state of the art, the same research can create both 
theoretical knowledge and practical computat ional  
methods. 

Of course, in a limited sense, programs already 
deliver knowledge in natural language by using 
"canned text." A person writes some text, possibly 
with the use of blank segments, and the text is stored 
for use in association with a particular demand. The 
machine fills in the blanks as needed in a way antici- 
pated as sufficient for the demand. This is a very 
useful technique, but it does not tell us much about 
the task of writing, and it does not generalize to situa- 
tions in which the need for text has not been well 
anticipated in the programming stage. The basic or- 
ganization and writing of canned text are done by a 
person, so that sort of "writing" falls outside the scope 
of this paper. 

The idea that natural language would be a useful 
output medium for a computer system is quite old, but 
the research to make such output possible is still in a 
very primitive state. Most of it has concentrated on 
sentence generation, in which problems such as word 
selection or translation to natural language from logi- 
cal formulas have been chosen for study. These are 
important, but the needs for knowledge delivery sim- 
ply cannot be satisfied by single sentences. It is nec- 
essary to have multiple sentences to communicate  
complex information,  and multiple paragraphs would 
be even more valuable. 

The remainder of this paper thus focuses on com- 
puter generation of multisentence text. We present 
some examples of multisentence output from past sys- 
tems and then discuss our own research. 

Mul t isentent ia l  Text  Generat ion in Past Research 

Several systems have generated multisentence text 
[2,5,8,10,11].2 3 Sample texts from three of these are 
shown in Figure 1. One example is the S C H O L A R  
system, which describes aspects of South American 
geography.  S C H O L A R ' s  description of a South 
American country was several sentences long [2]. The 
SAM system, a story generator operating from a con- 
ceptual dependency script, also created multisentential 
output  [10]. More recently, Meehan developed 
TALE-SPIN,  a fable generator that worked in a differ- 

2 Since this paper was written in 1979, additional work in- 
volving multisentential generation has been done or published 
[3,4,7]. Only the references have been updated. 

3 All of the cited research has worked with English, but other 
languages would have served as well. 

SCHOLAR: 

*TELL ME ABOUT THE LOCATION OF URUGUAY.* 

THE LOCATION IN URUGUAY IS SOUTH AMERICA. 

THE LATITUDE RANGES FROM -30 TO -35 DEGREES. 

THE LONGITUDE RANGES FROM -53 TO -58 DEGREES. 

THE NORTHERN AND EASTERN BORDERING COUNTRY IS BRAZIL. 

THE WESTERN BORDERING COUNTRY IS ARGENTINA. 

THE BOUNDARY IS THE URUGUAY RIVER. 

THE SOUTHEASTERN COAST IS THE ATLANTIC OCEAN. 

THE SOUTHERN COAST IS THE RIO DE LA PLATA. 

SAM: 

John decided he wasgoing to a restaurant. He went to one. 

He asked the hostess for a table. She told him he could go 

to i t .  He went to i t .  She went to i t .  He sat down in a 

chair. He got a menu from her. He read i t .  A waiter saw 

John was at the table. The waiter went to i t .  John 

ordered a lobster. A chef cooked i t .  The waiter got i t  

from the chef. The waiter served i t  to John quickly. He 

ate i t .  He asked the waiter for  a check. John got i t  from 

the waiter. John remembered the waiter had served the 

lobster to him quickly. John l e f t  the waiter a large t ip.  

John paid the check. He l e f t  the restaurant. 

TALESPIN: 

ONCE UPON A TIME GEORGE ANT LIVED NEAR A PATCH OF GROUND. 

THERE WAS A NEST IN AN ASH TREE. WILMA BIRD LIVED IN THE 

NEST. THERE WAS SOME WATER IN A RIVER. WILMA KNEW THAT 

THE WATER WAS IN THE RIVER. GEORGE KNEW THAT THE WATER WAS 

IN THE RIVER. ONE DAY WILMA WAS VERY THIRSTY. WILMA 

WANTED TO GET NEAR SOME WATER. WILMA FLEW FROM HER NEST 

ACROSS A MEADOW THROUGH A VALLEY TO THE RIVER. WILMA DRANK 

THE WATER. WILMA WASN'T THIRSTY ANY MORE. 

GEORGE WAS VERY THIRSTY. GEORGE WANTED TO GET NEAR SOME 

WATER. GEORGE WALKED FROM HIS PATCH OF GROUND ACROSS THE 

MEADOW THROUGH THE VALLEY TO A RIVER BANK. GEORGE FELL 

INTO THE WATER. GEORGE WANTED TO GET NEAR THE VALLEY. 

GEORGE COULDN'T GET NEAR THE VALLEY. GEORGE WANTED TO GET 

NEAR THE MEADOW. GEORGE COULDN'T GET NEAR THE MEADOW. 

WILMA WANTED TO GET NEAR GEORGE. WILMA GRABBED GEORGE WITH 

HER CLAW. WILMA TOOK GEORGE FROM THE RIVER THROUGH THE 

VALLEY TO THE MEADOW. GEORGE WAS DEVOTED TO WILMA. GEORGE 

OWED EVERYTHING TO WILMA. WILMA LET GO OF GEORGE. GEORGE 

FELL TO THE MEADOW. THE END. 

Figure 1. Some published multisentence text samples. 

ent way, also based on a conceptual dependency rep- 
resentation [8]. 

These systems share several features. First, the 
data structures that are the basis of the generat ion 
were designed for text processing; many of the special 
demands of text processing were anticipated and ac- 
commodated in the design of the knowledge structures 
themselves. Second, the sentence boundaries in these 
systems were direct correlates of internal features of 
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the data structures themselves. Often the sentence 
order arose in the same way. 4 Third, these systems 
had fixed generation goals, implicit in the code. Thus, 
the reader 's  needs were taken to be fixed and pre- 
known by the system. Fourth, although goal-pursuit 
could sometimes be described in the material being 
generated, the systems themselves did not operate on a 
goal-pursuit algorithm. Finally, none of these systems 
chose the particular sentences to use in their output on 
the bases of quality assessment or comparisons among 
alternatives. 

In all five of these points, the KDS research con- 
trasts with these previous efforts. We have worked 
with data structures not designed for text generation; 
the sentence boundaries we develop are not direct 
correlates of internal features of the data structures; 
there are explicit goals for the generation process to 
satisfy; the system itself pursues goals; and the final 
text is chosen through quality comparisons among 
alternative ways of saying things. 

The Task for the Knowledge Delivery System 

In the light of these considerations, the problem 
can be restated more specifically as follows: 

Given 

1. An explicit goal of knowledge expression, 

2. A computer-internal knowledge base ade- 
quate for some non-text purpose, and 

3. Identification of the parts of the knowledge 
base that are relevant to the goal, 

the task is to produce clean, multiparagraph text, in 
English, which satisfies the goal. 

The Partitioning Paradigm 

When we have stated this task to AI workers famil- 
iar with natural language processing, with no further 
specification, they have expected a particular kind of 
solution. They say, "Well, there are some sentence 
generators around, but the given information struc- 
tures are too large to be expressed in single sentences. 
Therefore what we need is a method for dividing up the 
input structure into sentence-size pieces. Then we can 
give the pieces to a suitable sentence generator and 
get the desired text." This is the expected solution, 
and people will simply presume that it is the line of 
development being taken. 

4 This is not to say that sentence boundaries are always one 
for one with data structures, nor that the data structures always 
contain all the information used in making a sentence. But the 
forms of data structures in these systems have been shaped almost 
exclusively by natural language processing tasks, which tends to 
make sentence boundary determination easy. The content of those 
structures has often been filled in manually, leaving indeterminable 
the relative contributions of program and programmer. 

That approach, which we call the Partitioning para- 
digm for text generation, was used in all the systems 
described above. For  the Partit ioning paradigm to 
work, the generation task must be simplified by fea- 
tures of the knowledge base: 

1. The knowledge base data structures have 
features that indicate appropriate sen- 
tence boundaries, and 

2. The pieces of information appropriate to 
be expressed in an individual sentence are 
adjacent. That is, a process can access all 
of the information appropriate to be ex- 
pressed in a single sentence by following 
the data structure, without being required 
to traverse information to be expressed in 
other sentences. 

These conditions prevail (by design) in all of the 
systems described above, but they are not generally 
typical of information storage in computers. As we 
will see, KDS takes an entirely different approach to 
the problem. 

Several inherent difficulties become apparent when 
we attempt to use partitioning: 

1. Missing adjacencies - -  Since (by our 
problem definition) the knowledge comes 
from a structure not prestructured for the 
generation task, what is and what is not 
adjacent in the knowledge base may be quite 
arbitrary. We may wish to include several 
widely scattered items in a sentence, so that 
it is not possible to carve out a piece with 
those items in it at all. The adjacencies that 
we need in order to partition the structure 
into sentence-size parts may simply be 
absent. 

2. Intractable residues - -  Even though we 
may be able to find some way to start cutting 
out sentence-size objects from the data 
structure, there is no assurance at all that we 
will be able to run that method to completion 
and carve the entire structure into sentence- 
size pieces. Think of the comparable prob- 
lem of carving statues from a block of mar- 
ble. We may be able to get one statue or 
several, but if every part of the original block 
must end up looking like a statue, ordinary 
carving methods are insufficient. The resi- 
dues left after carving out the first few stat- 
ues may be intractable. A comparable sort 
of thing can happen in attempting to parti- 
tion data structures. 

3. Lack of boundary correlates - -  In some 
ways the worst difficulty is that an arbitrary 
given data structure does not contain struc- 
tural correlates of good sentence boundaries. 
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One cannot  inspect the data structure and 
tell in any way where the sentence bounda- 
ries ought to be. Along with the other diffi- 
culties, this has led us to reject the expected 
solution, the Part i t ioning paradigm, and to 
create another. 

The Fragment-and-Compose Paradigm 

Our solution comes in two steps: 

1. Find methods for fragmenting the given 
data structure into little pieces, small prop- 
ositional parts. 

2. Find methods for composing good sentences 
and good paragraphs out o f  those little 
parts. 

We call this the Fragment-and-Compose  paradigm. 
It is interesting to note that other systems employ a 
F ragment -and-Compose  approach - -  e.g., building 
construct ion,  papermaking,  and digestion. In each, 
one begins by producing small, easily manipulated 
objects  much smaller than the desired end-product  
structures, and then assembles these into the desired 
end products in a planned, multistage way. For  the 
block of marble, the comparable processes are crush- 
ing and casting. 

We may not be very encouraged in our text genera- 
tion task by such precedents .  However ,  there are 
precedents much closer to our actual task. The task of 
natural language translation resembles in many ways 
the task of translating from a computat ional  knowl- 
edge source (although it has a comprehension subtask 
which we lack). Consider the (annotated) quotation 
below from Toward a Science of  Translating [9]. 

The process by which one determines 
equivalence (faithfully translates) between 
source and receptor  languages is obviously a 
highly complex one. However ,  it may be 
reduced to two quite simple procedures: 

(1) "decomposi t ion" of the message into the 
simplest semantic structure,  with the most 
explicit s tatement of relationships; and 

(2) "recomposi t ion" of the message into the 
receptor  language. 

The quotation is from Nida's chapter on translation 
procedures.  Notice  particularly the two steps: 
decomposition and recomposition, and the emphasis on 
simple, explicit semantic structures in the results of the 
decomposition. 

It turns out that this is the central procedural  state- 
ment of Nida's book, and the remainder of the book 
can be seen as giving constraints and considerations on 
how this decomposi t ion and recomposi t ion ought to 
take place. We have very good reasons here for  
expect ing that  F r a g m e n t - a n d - C o m p o s e  is an 

appropriate paradigm for natural language knowledge 
delivery. 

To give a sense of what can be done using 
Fragment-and-Compose,  here is a piece of a machine- 
generated text (created by KDS) about  what happens 
when fire breaks out in the computer  room. 

Whenever there is a f i re ,  the alarm system is 

started, which sounds a bell and starts a timer. 

Ninety seconds after the timer starts, unless the 

alarm system is cancelled, the system calls Wells 

Fargo. When Wells Fargo is called, they, in 

turn, call the Fire Department. 

Description of KDS 

Figure 2 is a block diagram of KDS, which simply 
says that KDS takes in an Expressive Goal  (telling 
what the text should accomplish relative to its reader)  
and also a pre-identified body of Relevant  Knowledge 
in the notat ion of its source. The output  is multipara- 
graph text that is expected to satisfy the goal. 

Expressive ~ 
goal - ~ [  K D S  

Relevant 
knowledge / ,  

Multiparagraph 
text 

Figure 2. Input and output of KDS. 

We will be carrying a single example through this 
description of KDS. It is the most complex example 
handled by KDS, and it incorporates many ideas from 
previous studies on description of computer  message 
systems. 

A small cont ingency-plans  data base contains 
knowledge about  what happens in various circum- 
stances, and about  people 's  actions, responsibilities, 
authorities, and resources. The particular knowledge 
to be delivered concerns a computer  room in which 
there may be some indication of fire and in which 
there is a computer  operator  who should know what to 
do if that happens. This operator  is the nominal read- 
er of the text. 

The general Expressive Goal  is that the computer  
operator  will know what to do in all of the predictable 
contingencies that can arise starting with an indication 
of fire. The contingencies are represented in the "Fire 
Alarm Scene," part of the knowledge base. A sche- 
matic sketch of the Fire Alarm Scene is given in Fig- 
ure 3. (The figure is expository and contains far less 
information than the actual Scene. The Scene is a 
"semantic net ,"  a collection of LISP expressions that 
refer to the same objects.)  
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I INIT I 
(bell sounds or 
fire detected; 
timer starts) 

i T,Mo0T I I ATTENO I 
( ~  (evaluate situation) 

(Wells Fargo called) (don't cancel) (cancel alarm) 

iR~SPONSEI I FL'OHT I 
(Fire Dept. responds) (evacuate) 

I~,~,~, ! I~o~o~1 
(Fire Dept. fights fire) (Fire Dept. 

goes home) I , 

(end of scene) 

I ~ I c a e ~  / I ~A~OWO~I 
,r sumewo k, 

Figure 3. Events in the Fire-Alarm scene. 
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KDS MODULES MODULE RESPONSIBILITIES 

FRAGMENTER 

PROBLEM SOLVER 

KNOWLEDGE FILTER 
HILL CLIMBER 

SURFACE SENTENCE MAKER 

* Extraction of knowledge from external notation 
e Division into expressible clauses 
* Style selection 
e Gross organization of text 
• Cognitive redundancy removal 
• Composition of concepts 
• Sentence quality seeking 
• Final text creation 

Figure 4. KDS module responsibilities. 

The knowledge identified as relevant  includes not 
only the events  of this scene but also enough informa-  
tion to support  another  computa t ional  task. In this 
example  the knowledge  is sufficient  to suppor t  an 
al ternate task, which we call the Mot ivat ion Exhibit  
task, i.e., to exhibit,  for each action in the scene, the 
ac tor ' s  reasons  for  pe r fo rming  the action. So, for  

example,  the relevant  knowledge includes the knowl-  
edge that  fires destroy proper ty ,  that  destroying prop-  
er ty is bad,  that  the amount  of p rope r ty  des t royed  
increases with the duration of the fire, and that  the 
Fire D e p a r t m e n t  is able to employ  methods  for  
stopping fires. This is sufficient to be able to explain 
why the Fire Depar tmen t  a t tempts  to stop fires. KDS 
does not per form the Motivat ion Exhibit  task, but its 
knowledge is sufficient for it. We generate  f rom a 
knowledge base sufficient for  multiple tasks in order  
to explore the problems created when the knowledge 
representa t ion is not designed for  text processing. 

The content  of the scene is as follows: 

In the beginning state,  INIT ,  the fire 
alarm sounds a bell. As we follow down the 
left side of the figure, we see that  the fire 
alarm starts an interval timer, and at the end 
of the interval ,  the t imer automat ica l ly  
phones Wells Fargo Company ,  the alarm sys- 
tem manager.  Wells Fargo phones the Fire 
Depar tment ,  and the Fire Depar tmen t  comes.  
The Fire Depar tmen t  fights the fire if there 
is one, and otherwise goes home. 

Meanwhile ,  the compute r  ope ra to r  must  
pay at tent ion to the alarm and decide what  
to do. He  can block the alarm sys tem's  ac- 
tion, cancelling the alarm, or he can let the 
alarm system take its course. In the latter 
case, his next duty is to call the Fire Depar t -  
ment  himself, which has the same effect  as 
Wells Fargo calling it. Af ter  that,  his next 
duty is to flee. If  he blocks the alarm then 
he is to go back to his previous task. 

Major Modules  of KDS 

KDS consists of five major  modules,  as indicated in 
Figure 4. A Fragmente r  is responsible for  extract ing 
the relevant  knowledge f rom the notat ion given to it 
and dividing that  knowledge  into small expressible  
units, which we call f ragments  or protosentences .  A 
Problem Solver, a goal-pursuit  engine in the AI  tradi- 
t ion, is responsible  for  selecting the presen ta t iona l  
style of the text  and also for  imposing the gross organ-  
izat ion onto  the text  according to that  style. A 
Knowledge  Fil ter  r emoves  p ro tosen tences  that  need  
not be expressed because they would be redundant  to 
the reader.  

The largest and most  interesting module is the Hill 
Climber,  which has three responsibilities: to compose  
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complex pro tosen tences  f rom simple ones, to judge 
relative quality among the units resulting f rom com- 
position, and to repeatedly improve the set of proto-  
sentences on the basis of those judgments  so that it is 
of the highest overall quality. Finally, a very simple 
Surface Sentence Maker  creates the sentences of the 
final text out of protosentences.  

The data flow of these modules can be thought  of 
as a simple pipeline, each module processing the rele- 
vant  knowledge in turn. We will describe each of 
these modules individually. 

Fragmenter  M o d u l e  

The Fragmente r  (Figure 5) takes in the re levant  
knowledge as it exists externally and produces a set of 
independent  protosentences,  called the Sayset. These 
primitive f ragments ,  the pro tosentences ,  have no in- 
tended order. (In our final tests, they are presented in 
a list that  is immediately randomized.)  Each primitive 
pro tosen tence  can, if necessary,  be expressed by an 
English sentence. 

Relevant _~tFRAGMENTE R .__D..{SAYSET} Knowledge 

Figure 5. Fragmenter module input and output. 

To help the reader  unders tand  the level of these 
fragments,  were they to be expressed in English, they 
would look like: 

"Fire destroys objects ."  
"Fire causes death."  
"Death  is bad."  
"Destroying objects  is bad."  etc. 

So the problem for the remainder  of the system is 
to express well what can surely be expressed badly. It  
is important  to note that  this is an improvement  prob-  
lem rather  than a p rob lem of making expression in 
English feasible. 

The pro tosentences  the F ragmente r  produces  are 
proposit ional  and typically carry much less information 
than a sentence of smooth English text. In our exam- 
ple, the f ragmenter  produces the list structures shown 
in part  below for two of its fragments.  

((CONSTIT (WHEN (CALLS NIL WELLS-FARGO) 
(CALLS WELLS-FARGO FIRE-DEPT)))...) 

((CONSTIT (WHENEVER (STARTS NIL ALARM-SYSTEM) 
(PROB (SOUNDS ALARM-SYSTEM BELL)...) 

These f ragments  encode:  "When  {unspecified} calls 
Wells Fargo,  Wells Fargo calls the Fire Depar tmen t . "  

and "Whenever  {unspecified} starts the alarm system, 
the alarm system probably  sounds the bell." 

Problem Solver  M o d u l e  

The second major  module is the Prob lem Solver 
(Figure 6). The pr imary responsibilities of the Prob-  
lem Solver are to select a text presentation style and to 
organize the text content according to the selected style. 
For  this purpose,  it has a built-in t axonomy of styles 
f rom which it selects. Al though the t axono my  and 
selection processes are very rudimentary  in this partic- 
ular system, they are significant as representat ives  of 
the kinds of structures needed for style selection and 
style imposition. 

Express ive  

Goal 

{SAYSET I 

PROBLEM 
SOLVER (SAYLIST with 

ADVICE) 

Figure 6. Problem Solver input and output. 

We believe that text style should be selected on the 
basis of the expected effects. In simple cases this is so 
obvious as to go unrecognized;  in more complex cases, 
which cor respond  to complex texts,  there are many  
stylistic choices. In order to select a style, one needs: 

1. A description of the effect  the text should 
have on the reader,  

2. Knowledge of how to apply stylistic 
choices, and 

3. A description of the effects  to be expected 
f rom each stylistic choice. 

Note  that  these are required whether  stylistic 
choices are distributed or holistic, i.e., whether  they 
are made in terms of attr ibutes of the final text or in 
terms of particular methods for creating or organizing 
the text. 

The first requirement  above,  a description of de- 
sired effects ,  is (more  or less by definit ion) a goal. 
The second i tem is the set of applicable methods,  and 
the third is the knowledge of their effects. The Prob-  
lem Solk, er is a goal-pursui t  process  that  pe r fo rms  
means-ends  analysis in a manner  long familiar in AI. 
The information organizat ion is significant part ly be-  
cause of the demand it puts on the knowledge of style: 
Knowledge of  style must be organized according to ex- 
pected effect. Otherwise,  the program has no adequate  
basis for selecting style. 
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The Problem Solver takes in the Sayset produced 
by the Fragmenter  and the Expressive Goal given to 
the system and produces a Saylist, which is an ordered 
list of the protosentences,  some of which have been 
marked with Advice. The Problem Solver pursues 
given goals. It has several submodules that specialize 
in particular kinds of goals, including modules Tell and 
Instructional-narrate, which are active on this example. 
The Problem Solver can operate on the current Saylist 
with three kinds of actions in any of its modules: 

1. It can Factor  the Saylist into two sublists 
separated by a paragraph break. It ex- 
tracts all protosentences with a particular 
character  or attribute and places them 
above the paragraph break, which is 
above all those that lack that attribute. 
Order within each sublist is retained. 

2. It can impose an order on some or all of 
the elements of the Saylist. 

3. It can  mark protosentences with Advice. 
Sometimes the Problem Solver knows 
some attribute of the final text that ought 
to be achieved, perhaps because of a de- 
mand of the chosen style, but it has no 
way to effect this directly. In this case it 
marks all the affected protosentences with 
Advice, which will be acted on after the 
Problem Solver has finished. 

following fragment: 

(PARAGRAPH-BREAK (REASON: (BOUNDARY NON-H-ACTOR))) 

((CONSTIT (WHEN (IF (POSSIBLE) 
(CALL YOU FIRE-DEPT)) 

(EVOKE YOU EVAC-SCENE)))... 
(ADVlSORS FRAG INST-NARRATE) 
(ADVICE ...(GOOD YOU))) 

These represent:  " (Put  a paragraph break here be- 
cause the actions of agents other than the hearer end 
here)"  and "If  possible, call the Fire Depar tment ;  
then, in either case, evacuate. (Advised by F R A G  and 
I N S T - N A R R A T E  Modules) (Advised that YOU is 
G O O D ) " .  

K n o w l e d g e  Filter Module  

The Knowledge Filter is a necessary part of KDS 
because as soon as we attempt to create text from a 
knowledge base suitable to support some other compu- 
tational purpose, we find a great deal of information 
there that ought not to be expressed, because the 
reader already knows it. 

This is a general phenomenon that will be encoun- 
tered whenever we generate from an ordinary compu- 
tational knowledge base. As an illustration, consider 
Badler 's  work on getting a program to describe a 
movie in English. 

Figure 7 describes the rules used in the Problem 
Solver that carry out these three kinds of actions. In 
this example, the Tell module acts before 
Instructional-narrate. The Factoring rules are applied 
sequentially, so that the last one prevails over previous 
ones. 

The first Tell rule corresponds to the heuristic that 
the existence of something ought to be mentioned 
before its involvement with other things is described. 
The third rule corresponds to the heuristic that  the 
writer (KDS) ought to reveal its own goals of writing 
before pursuing those goals. 

Instruct ional-narrate  uses a presentat ional  tech- 
nique that makes the reader a participant in the text. 
So, for example, the final text says, "When you hear 
the alarm bell ...," rather than "When the operator  
hears the alarm bell...," Instruct ional-narrate  knows 
that the role of "you"  should be emphasized in the 
final text, but it has no direct way to achieve this. To 
every protosentence that refers to "you,"  it attaches 
advice saying that explicit reference to the reader, 
which is done by mentioning "you"  in the final text, 
has positive value. This advice is taken inside the 
Hill-climber. 

In our example the Problem Solver creates the 

Factoring Rules: 

TELL 

1. Place all (EXISTS ...) propositions in an upper 
section. 

2. Place all propositions involving anyone's goals 
in an upper section. 

3. Place all propositions involving the author's 
goals in an upper section. 

INSTRUCTIONAL-NARRATE 

1. Place all propositions with non-reader actor in 
an upper section. 

2. Place all time dependent propositions in a low- 
er section. 

Ordering Rules: 

INSTRUCTIONAL-NARRATE 

1. Order time-dependent propositions according 
to the (NEXT ...) propositions. 

Advice-giving Rules: 

INSTRUCTIONAL-NARRATE 

1. YOU is a good thing to make explicit in the 
text. 

Figure 7. Rules used in the Problem Solver. 
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Figure 8. Badler 's  "Moving Car Scenario".  

Figure 8 is reproduced f rom [1]. It  shows fifteen 
successive scenes f rom a short  compute r -gene ra t ed  
movie. The graphics system that  generates  the movie 
provides a stock of proposit ional  knowledge about  it. 
The objects in the scene are known to the machine 
unambiguously and in sufficient detail to generate the 
movie. The research task is to create a computer  pro-  
gram that will describe in English the physical activi- 
ties in this and similar movies. The detail is volumi- 
nous, and s o  Badler is faced with a serious information 
suppression problem. After  several stages of applying 
various filtering heuristics, such as " D o n ' t  describe 
directly anything that  doesn ' t  move ,"  he can represent  
the movie by the five s ta tements  below. 

1. There is a car. 

2. The car starts moving toward the observer  
and eastward,  then onto the road. 

3. The car, whil e going forward,  starts turn- 
ing, moves toward the observer  and-eas t -  
ward, then nor thward-and-eas tward ,  then 
f rom the driveway and out -of  the drive- 
way, then of f -of  the driveway. 

4. The car, while going forward,  moves  
nor thward-and-eas tward ,  then northward,  

then around the house and away- f rom the 
driveway, then away- f rom the house and 
stops turning. 

5. The car, while going forward,  moves  
northward,  then away. 

These are still too cumbersome,  so additional stages 
of reduction are applied, yielding the single statement:  

The car approaches,  then moves onto the 
road, then leaves the dr iveway,  then turns 
around the house, then drives away from the 
house, then stops turning, then drives away. 

Even the longer text above contains only a fract ion 
of the available informat ion  about  the car and the 
other objects.  Informat ion  on their types,  their sub- 
parts,  visibility, mobility, location, orientat ion and size 
are available f rom Badler 's  source. He also develops a 
sequence of events  to describe the movie,  based  on 
certain indicators of continuity and discontinuity. The 
volume o f  information available, the predictability o f  its 
parts, and the insignificance o f  some o f  its details are 
such that all o f  it could not have been expressed in a 
smooth text. 
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One of the principal activities of Badler 's  system is 
selection of information to be removed from the set of 
ideas to be expressed. Some things need not be ex- 
pressed because they follow f rom the reader ' s  general 
knowledge about  mot ion  of objects;  others  are re- 
moved  because they represent  noise, ra ther  than sig- 
nificant events,  generated by the processes that dis- 
cern motion. 

The point  for us is simply that  the demands of 
smooth text production are incompatible with expression 
of all of the available information. Text  product ion 
requires condensat ion and selectivity, the process we 
call knowledge filtering, on any reasonably complete  
body of knowledge. Knowledge filtering is a signifi- 
cant intellectual task. It  requires coordinated use of a 
diversity of knowledge about  the reader,  the knowl- 
edge to be delivered, and the World in which all reside. 
We now recognize the necessi ty of sophis t icated 
knowledge filtering as part  of the process of producing 
quality text. 

KDS's  Knowledge Filter (Figure 9) inputs the Say- 
list, including Advice,  f rom the Problem Solver, and 
outputs  the Saylist with addit ional  Advice,  called 
" D o n ' t  Express"  advice, on some of the pro tosenten-  
ces. So some of the items have been marked  for omis- 
sion f rom the final text. (They are marked rather  than 
deleted so that  they are available for use if needed as 
transitional material  or to otherwise make the resulting 
text  coherent . )  The knowledge filter decides which 
protosentences  to mark  by consulting its internal mod-  
el of the reader to see whether  the proposi t ional  con- 
tent  is known or obvious. The model  of the reader,  in 
this implementat ion,  is very simple: a collection of 
proposit ions believed to be known by him. Although 
KDS ' s  reader  model  does not  contain  any inference 
capabilities about  what  is obvious,  a more robust  mod-  
el certainly would. We recognize that  the work of the 
Knowledge Filter is a serious intellectual task, and we 
expect  that  such a filter will be an identifiable part  of 
future text creation programs.  

In our example the Knowledge Filter produces the 
D O N ' T - E X P R E S S  advice in the following element  of 
the Saylist: 

((CONSTIT (WHENEVER (SOUNDS NIL ALARM-BELL) 
(HEARS YOU ALARM-BELL) 
(PROB)))... 

(ADVISORS INST-NARRATE NONEXP) 
(ADVICE (GOOD YOU) 

DON'T-EXPRESS)) 

In this case, the involvement  of the reader  in 
( H E A R S  Y O U  A L A R M - B E L L )  arises f rom the 
Advice-giving rule for Inst ruct ional-Narrate .  It  indi- 
cates that  it is good to express this. The D O N ' T -  
EXPRESS arises f rom the Knowledge Filter, indicating 

! I (SAYLIST 
(SAYLIST..~IKNOWLEDGEL~. with added 

with - J FILTER I DON'T-EXPRESS 
ADVICE) l / advice) 

i 
Reader 
Model 

Figure 9. Knowledge Filter module input and output. 

that  it is unnecessary  to express  this. D O N ' T -  
EXPRESS prevails. 

Hill C l imber  M o d u l e  

The Hill Cl imber  module (Figure 10) consists of 
three parts: 

1. A somewhat  unconvent ional  hill-climbing 
algori thm that  repea ted ly  selects which 
one of an available set of  changes to 
make on the Saylist. 

2. A set of Aggregat ion rules (with an inter- 
pre ter )  telling how the p ro tosen tences  
may legally be combined.  These corre-  
spond roughly to the c lause-combining  
rules of English, and the collection repre-  
sents something  similar to the wri ter ' s  
competence  at clause coordination.  Each 
Aggregat ion  rule consumes  one or more  
p ro tosen tences  and produces  one pro to-  
sentence.  Advice p ropaga tes  onto  the 
protosentences  produced.  

3. A set of Preference rules (with an inter- 
preter)  able to assign a numerical  quality 
score to any pro tosen tence .  The score 
computa t ion  is sensitive to Advice. 

The algori thm is equivalent  to the following: 
Scores are assigned to all of the primitive pro tosen-  
tences; then the Aggregat ion rules are applied to the 
Saylist in all possible ways to generate  potential  next 
steps up the hill. The resul tant  p ro tosen tences  are 
also evaluated,  and the Hill Cl imber  a lgori thm then 
compares  the scores of units consumed and produced 
and calculates a n e t  gain or loss for  each potent ia l  
application of an Aggregat ion rule. The best  one is 
executed,  which means  that  the consumed  units are 
removed f rom the Saylist, and the new unit is added 
(in one of the posi t ions vacated ,  which one being 
specified in the Aggregat ion rule). 

This process  is applied repea ted ly  until improve-  
ment  ceases. The output  of the Hill Cl imber  is a Say- 
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(SAYLIST) 

Primitive 
protosentences 

HILL CLIMBING I 
ALGORITHM 

/ 
Aggregation Rule Applier 

AGGREGATION RULES 

(The allowable clause- 
combining methods of English) 

-~ (SAYLIST) 

Primitive and composite 
protosentences 

Preference Rule Appller 

PREFERENCE RULES 
(A numerical score for 

each protosentence) 

(ADVICE taken here) 

Figure 10. Hill Climber module. 

list for which there are no remaining beneficial poten-  1. 
tial applications of Aggregation rules. 

The selection algori thm of the Hill Cl imber  is 
somewhat  unconventional  in that it does not select the 
Aggregation rule application with the largest increase 2. 
in collective score, which would be the usual practice. 
The hill of collective scores has many  local maxima,  
which can be traced to the fact that one application of 
an aggregation rule will preclude several others. Be- 3. 
cause protosentences  are consumed,  the various appli- 
cations are in competi t ion,  and so a rule that produces 
a large gain may preclude even more gain. 

The Hill Climber selects the rule application to use 
based on an equation that includes competi t ive terms. 
It computes  the amoun t  of gain surely precluded by  
each application and makes its selection on the basis 
of maximum net gain, with the precluded gain sub- 

tracted. 

The use of hill climbing avoids the combinator ial  
explosion involved in searching for the best  of all pos-  6. 
sible ways to express the content.  In general only a 
tiny fraction of the possibilities are actually examined. 

This Saylist improvement  activity is the technical  
heart  of the text product ion process;  it develops the 
final sentence boundaries and establishes the smooth-  

ness of the text. 

Figure 11 shows a few of the Aggregation rules. 
(Each of them has been  rewri t ten into an informal  
notat ion suggesting its content .)  Aggregat ion rules are 
intended to be meaning-preserv ing  in the reader ' s  

COMMON CAUSE. 

Whenever C then X. 

Whenever C then Y. 

CONJOIN MID-STATE 

Whenever X t h e n  Y. 

Whenever Y then Z. 

DELETE MID-STATE 

Whenever X t h e n  Y. 

Whenever Y then Z. 

4. DELETE EXISTENTIAL 

There is a Y. 

<ment ion  of Y> 

(Y is known unique) 

5. IF -THEN-ELSE 

If P then Q. 

t 
t 
t 
t 

If not P then R. 

TEST AND BRANCH 

When P then determine if X. / 

If X then Q. 

If not X then R. 

Whenever C then X a n d  Y. 

Whenever X t h e n  Y 

and then Z. 

Whenever X t h e n  Z. 

<ment ion  of Y> 

If P then Q otherwise R. 

When P then determine X 

and decide Q or R. 

Figure 11. Sample Aggregation rules. 

comprehens ion ,  but are not in tended to preserve  
explicitness. 

These are only a few of the Aggregat ion rules that 
have been used in KDS; others have been developed in 
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the course of working on this and other  examples.  
Coverage  of English is still very sparse. In other  
examples,  an aggregation rule has been used to pro- 
duce a mult iple-sentence structure with intersentential  
dependencies.  

Figure 12 shows the Preference rules. They were 
derived empirically, to correspond to those used by the 
author of some comparable  human-produced  text. 

be e laborate  - -  that  being able to advise that a term is 
good or a term is bad is adequate.  

Rule 6 is somewhat  of a puzzle. Empirically, a 
sentence produced by reapplicat ion of an Aggregat ion 
rule was always definitely unacceptable ,  primarily be- 
cause it was awkward  or confusing. We do not under-  
s tand technical ly why this should be  the case,  and 
some say it should not be. We do know that  this rule 
contr ibutes significantly to overall  quality. 

1. Every protosentence gets an initial value of 
-1000. 

2. Every primitive protosentence embedded in a 
composite protosentence decreases value by 
10. 

3. If there is advice that a term is good, each oc- 
currence of that term increases value by 100. 

4. Each time-sequentially linked protosentence 
after the first increases value by 100. 

5. Certain constructions get bonuses of 200: the 
if-then-else construct and the when-X- 
determine-Y. 

6. Any protosentence produced by multiple appli- 
cations of the same aggregation rule gets a 
large negative value. 

Figure 12. Preference rules. 

One of the surprising discoveries of this work, seen 
in all of the cases investigated, is that  the task of text 
generat ion is dominated by the need for brevity: How 
to avoid saying things is at least as important  as how 
to say things. Preference Rule 1 introduces a tenden-  
cy toward  brevi ty ,  because  most  of the Aggregat ion  
rules consume two or three p ro tosen tences  but  pro-  
duce only one, yielding a large gain in score. Sen- 
tences produced  f rom aggregated  p ro tosen tences  are 
generally briefer  than the corresponding sentences for 
the protosentences  consumed.  For  example,  applying 
Rule 1 to the pair: 

"When you permit  5 the alarm system, call the 
Fire Depar tment  if possible. When you per-  
mit the alarm system then evacuate ."  

yields, 

"When  you permit  the alarm system, call the 
Fire Depar tment  if possible, then evacuate ."  

Rule 3 introduces the sensitivity to advice. We 
expect  that this sort  of advice taking does not need to 

5 This way of using "permit" is unfamiliar to many people, 
but it is exactly the usage that we found in a manual of instruction 
for computer operators on what they should do in case of fire. In 
the course of attempting to produce comparable text we accepted 
the usage. 

Sentence Generator  Module  

The Sentence Gene ra to r  (Figure 13) takes the final 
ordered  set of  p ro tosen tences  p roduced  by the Hill 
Cl imber  and produces the final text, one sentence at a 
time. Each sentence is produced independently,  using 
a simple con tex t - f ree  g rammar  and semant ic  test ing 
rules. Because sentence generat ion has not been  the 
focus of our work,  this module  does not  represen t  
much innovation,  but  merely establishes that  the text 
fo rmat ion  work  has been  comple ted  and does not 
depend on further  complex processing. 

(Protosentence 
list) 

SENTENCE 
GENERATOR 

Referring- 
Phrase 

Generator 

Final text 

Figure 13. Sentence Generator  module input and output. 

The single significant innovat ion  in the Sentence 
Genera to r  is the Referr ing Phrase Genera tor ,  the only 
part  in which prior sentences affect  the current  sen- 
tence. The Referr ing Phrase Genera to r  keeps  track of 
what  objects  have been referred to, and how. It pre- 
sumes that  objects  previously  re fe r red  to are in the 
reader ' s  a t tent ion and that  af ter  they have been identi- 
fied by the first reference,  subsequent  references  need 
only distinguish the objec t  f rom others  in a t tent ion.  
This process is equivalent to the one described by [6] 
developed for this research. It  knows how to intro- 
duce terms,  refer  to objec ts  by incomple te  descr ip-  
tions, and introduce pronouns.  However ,  none of our 
examples  has exercised all of the features  of Levin and 
Goldman ' s  algorithm. 

O u t p u t  T e x t  

Applying all of this machinery  in our example,  we 
get the result shown in Figure 14. Note  the paragraph  
break,  a product  of a factoring rule (the first rule in 
Ins t ruct ional-narra te)  in the Problem Solver module.  
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Whenever there is a f i re ,  the alarm system is 

started, which sounds a bell and starts a timer. 

Ninety seconds after the timer starts, unless the 

alarm system is cancelled, the system calls Wells 

Fargo. When Wells Fargo is called, they, in 

turn, call the Fire Department. 

When you hear the alarm bell or smell smoke, 

stop whatever you are doing, determine whether or 

not there is a f i re ,  and decide whether to permit 

the alarm system or to cancel i t .  When you 

determine whether there is a f i re ,  i f  there is, 

permit the alarm system, otherwise cancel i t .  

When you permit the alarm system, call the Fire 

Department i f  possible, then evacuate. When you 

cancel the alarm system, i f  i t  is more than 90 

seconds since the timer started, the system wil l  

have called Wells Fargo already, otherwise 

continue what you were doing. 

Figure 14. Final fire-alarm text from KDS. 

Conclus ions  and Prospects  

The development of KDS highlights several aspects 
of the task of writing that strongly influence text qual- 
ity. The overwhelming importance of brevity, seen in 
both the Knowledge Filter and the Preference rules, is 
striking. Writing is seen here as a constructive activity 
rather than simply as interpretive. That is, it is not so 
much a mapping between knowledge representat ions 
as it is the creation of new symbolic objects, not 
equivalent to older ones, but suitable for achieving 
particular effects. The image of writing as a kind of 
goal pursuit activity helps us to factor the task into 
parts. The task (and the program) is occupied with 
finding a good way to say things, not with establishing 
feasibility of saying them. 

The KDS development has also identified important 
features of the problem of designing a knowledge-  
delivery pi~ogram. The defects of the Partitioning par- 
adigm are newly appreciated; the Fragment -and-  
Compose paradigm is much more manageable. It is 
easy to understand, and the creation of Aggregation 
rules is not difficult. The separation of Aggregation 
and Preference actions seems essential to the task, or 
at least to making the task manageable. As a kind of 
competence /per formance  separation it is also of theo- 
retical interest. Knowledge filtering, as one kind of 
responsiveness of the writer to the reader, is essential 
to producing good text. 

The importance of fragmenting is clear, and the 
kinds of demands placed on the Fragmenter  have been 
clarified, but effective methods of fragmenting arbi- 
trary knowledge sources are still not well understood. 

In the future, we expect to see the Fragment-and- 
Compose paradigm reapplied extensively. We expect 
to see goal-pursuing processes applied to text organi- 
zation and style selection. We expect distinct process- 
es for aggregating fragments and selecting combina- 
tions on a preference basis. We also expect a well 
developed model of the reader, including inference 
capabilities and methods for keeping the model up to 
date as the text progresses. Finally, we expect a great 
deal of elaboration of the kinds of aggregation per- 
formed and of the kinds of considerations to which 
preference selection responds. 
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