
Computer Generation of Multiparagraph English Text 1
W i l l i a m C. M a n n
J a m e s A . M o o r e

I n f o r m a t i o n S c i e n c e s I n s t i t u t e
U n i v e r s i t y of S o u t h e r n Ca l i fo rn ia
M a r i n a del Rey, Ca l i fo rn ia 90291

This paper reports recent research into methods for creating natural language text. A
new processing paradigm called Fragment-and-Compose has been created and an experi-
mental system implemented in it. The knowledge to be expressed in text is first divided
into small propositional units, which are then composed into appropriate combinations and
converted into text.

KDS (Knowledge Delivery System), which embodies this paradigm, has distinct parts
devoted to creation of the propositional units, to organization of the text, to prevention of
excess redundancy, to creation of combinations of units, to evaluation of these combina-
tions as potential sentences, to selection of the best among competing combinations, and to
creation of the final text. The Fragment-and-Compose paradigm and the computational
methods of KDS are described.

Introduction

C o m p u t e r users have d i f f i cu l t i e s in u n d e r s t a n d i n g
wha t k n o w l e d g e is s t o r e d in the i r c o m p u t e r s ; the sys-

t ems have c o r r e s p o n d i n g d i f f icu l t ies in de l ive r ing the i r
knowledge . The k n o w l e d g e in the mach in e m a y be
r e p r e s e n t e d in an i n c o m p r e h e n s i b l e n o t a t i o n , o r we
m a y w a n t to share the k n o w l e d g e wi th a large g roup
of p e o p l e who lack the t r a i n i n g to u n d e r s t a n d the
c o m p u t e r ' s fo rma l no t a t i on . F o r example , t he re a re
large s imu la t ion p r o g r a m s tha t get in to very c o m p l i c a t -
ed s ta tes we wou ld l ike to be ab le to u n d e r s t a n d eas i -
ly. T h e r e are da t a base sys t ems wi th c o m p l e x k n o w -
ledge b u r i e d in them, bu t real p r o b l e m s in e x t r a c t i n g
it. T h e r e are s t a t u s - k e e p i n g sys t ems f rom which we
wou ld l ike to get snapsho t s . T h e r e are sys t ems tha t
t ry to p rove things , f rom which we wou ld l ike to have
p rog res s r epo r t s and jus t i f i ca t ions for va r ious ac t ions .
M a n y o t h e r k inds of sys t ems have k n o w l e d g e - d e l i v e r y
di f f icul t ies .

1 This research was supported in part by National Science
Foundation grant No. MCS76-07332 and in part by the Air Force
Office of Scientific Research contract No. F49620-79-c-0181. The
participation of Neil Goldman and James Levin is gratefully ac-
knowledged. The views and conclusions contained in this document
are those of the authors and should not be interpreted as necessari-
ly representing the official policies or endorsements, either ex-
pressed or implied, of the Air Force Office of Scientific Research of
the U.S. Government.

The c i r c u m s t a n c e s tha t m a k e it p a r t i cu l a r l y a t t r a c -

t ive to de l ive r this k n o w l e d g e in na tu r a l l anguage are:

a) c o m p l e x i t y of the s o u r c e k n o w l e d g e , so t ha t i ts

n o t a t i o n is no t eas i ly l e a r n e d , b) u n p r e d i c t a b i l i t y of

the d e m a n d s fo r k n o w l e d g e , so t ha t the a c t u a l d e -
m a n d s c a n n o t be me t wi th spec i f i c p r e p r o g r a m m e d

ou tpu t , and c) the need to se rve a large poo l of un-

t r a i ne d or l ight ly t r a ined users of these sys tems .

F o r a n u m b e r of the k inds of sys t ems m e n t i o n e d

above , ge t t ing the i n f o r m a t i o n ou t is one of the p r inc i -

pa l l imi ta t ions on the s y s t e m s ' uses. If the i n f o r m a t i o n

cou ld be a c c e s s e d m o r e eas i ly , t hen far m o r e p e o p l e

cou ld use the sys tems . So we are t a lk ing in pa r t a b o u t

f a c i l i t a t i ng ex i s t i ng s y s t e m s , bu t m u c h m o r e a b o u t

c r ea t i ng new o p p o r t u n i t i e s for sys t ems to serve peop le .

I f c o m p u t e r s y s t e m s c o u l d e x p r e s s t h e m s e l v e s in

f luen t n a t u r a l l a n g u a g e , m a n y of t he se d i f f i cu l t i e s

w o u l d d i s a ppe a r . H o w e v e r , the n e c e s s a r y p r o c e s s e s

for such e xp re s s ion do no t exis t , and the re a re fo rmi -

d a b l e o b s t a c l e s even to des ign ing such p rocesses . The

t h e o r y of wr i t ing is s k e t c h y and vague , and the re a re

few in t e r e s t i ng c o m p u t e r sys t ems to serve as p r e c e d -

ents . A n y r e s e a r c h e f fo r t to c r ea t e such sys tems - -

sy s t ems tha t k n o w h o w to wr i t e - - can be s ign i f i can t

b o t h in i ts p r ac t i ca l imp l i c a t i ons and for the k n o w l -

edge of wr i t ing tha t it p roduces .

Copyright 1981 by the Association for Computational Linguistics. Permission to copy without fee all or part of this material is granted
provided that the copies are not made for direct commercial advantage and the Journal reference and this copyright notice are included on
the first page. To copy otherwise, or to republish, requires a fee and/or specific permission.

0 3 6 2 - 6 1 3 X / 8 1 / 0 1 0 0 1 7 - 1 3 5 0 1 . 0 0

American Journal of Computational Linguistics, Volume 7, Number 1, January-March 1981 17

Wi l l i am C. Mann and James A. M o o r e Computer Generation of Multiparagraph English T e x t

Writing is an intellectually interesting task, though
poorly understood. If we want to have a better theo-
ry, a better characterization of this task, then we can
use computer program design and test as a discovery
procedure for exploring the subject. In the present
state of the art, the same research can create both
theoretical knowledge and practical computat ional
methods.

Of course, in a limited sense, programs already
deliver knowledge in natural language by using
"canned text." A person writes some text, possibly
with the use of blank segments, and the text is stored
for use in association with a particular demand. The
machine fills in the blanks as needed in a way antici-
pated as sufficient for the demand. This is a very
useful technique, but it does not tell us much about
the task of writing, and it does not generalize to situa-
tions in which the need for text has not been well
anticipated in the programming stage. The basic or-
ganization and writing of canned text are done by a
person, so that sort of "writing" falls outside the scope
of this paper.

The idea that natural language would be a useful
output medium for a computer system is quite old, but
the research to make such output possible is still in a
very primitive state. Most of it has concentrated on
sentence generation, in which problems such as word
selection or translation to natural language from logi-
cal formulas have been chosen for study. These are
important, but the needs for knowledge delivery sim-
ply cannot be satisfied by single sentences. It is nec-
essary to have multiple sentences to communicate
complex information, and multiple paragraphs would
be even more valuable.

The remainder of this paper thus focuses on com-
puter generation of multisentence text. We present
some examples of multisentence output from past sys-
tems and then discuss our own research.

Mul t isentent ia l Text Generat ion in Past Research

Several systems have generated multisentence text
[2,5,8,10,11].2 3 Sample texts from three of these are
shown in Figure 1. One example is the S C H O L A R
system, which describes aspects of South American
geography. S C H O L A R ' s description of a South
American country was several sentences long [2]. The
SAM system, a story generator operating from a con-
ceptual dependency script, also created multisentential
output [10]. More recently, Meehan developed
TALE-SPIN, a fable generator that worked in a differ-

2 Since this paper was written in 1979, additional work in-
volving multisentential generation has been done or published
[3,4,7]. Only the references have been updated.

3 All of the cited research has worked with English, but other
languages would have served as well.

SCHOLAR:

TELL ME ABOUT THE LOCATION OF URUGUAY.

THE LOCATION IN URUGUAY IS SOUTH AMERICA.

THE LATITUDE RANGES FROM -30 TO -35 DEGREES.

THE LONGITUDE RANGES FROM -53 TO -58 DEGREES.

THE NORTHERN AND EASTERN BORDERING COUNTRY IS BRAZIL.

THE WESTERN BORDERING COUNTRY IS ARGENTINA.

THE BOUNDARY IS THE URUGUAY RIVER.

THE SOUTHEASTERN COAST IS THE ATLANTIC OCEAN.

THE SOUTHERN COAST IS THE RIO DE LA PLATA.

SAM:

John decided he wasgoing to a restaurant. He went to one.

He asked the hostess for a table. She told him he could go

to i t . He went to i t . She went to i t . He sat down in a

chair. He got a menu from her. He read i t . A waiter saw

John was at the table. The waiter went to i t . John

ordered a lobster. A chef cooked i t . The waiter got i t

from the chef. The waiter served i t to John quickly. He

ate i t . He asked the waiter for a check. John got i t from

the waiter. John remembered the waiter had served the

lobster to him quickly. John l e f t the waiter a large t ip.

John paid the check. He l e f t the restaurant.

TALESPIN:

ONCE UPON A TIME GEORGE ANT LIVED NEAR A PATCH OF GROUND.

THERE WAS A NEST IN AN ASH TREE. WILMA BIRD LIVED IN THE

NEST. THERE WAS SOME WATER IN A RIVER. WILMA KNEW THAT

THE WATER WAS IN THE RIVER. GEORGE KNEW THAT THE WATER WAS

IN THE RIVER. ONE DAY WILMA WAS VERY THIRSTY. WILMA

WANTED TO GET NEAR SOME WATER. WILMA FLEW FROM HER NEST

ACROSS A MEADOW THROUGH A VALLEY TO THE RIVER. WILMA DRANK

THE WATER. WILMA WASN'T THIRSTY ANY MORE.

GEORGE WAS VERY THIRSTY. GEORGE WANTED TO GET NEAR SOME

WATER. GEORGE WALKED FROM HIS PATCH OF GROUND ACROSS THE

MEADOW THROUGH THE VALLEY TO A RIVER BANK. GEORGE FELL

INTO THE WATER. GEORGE WANTED TO GET NEAR THE VALLEY.

GEORGE COULDN'T GET NEAR THE VALLEY. GEORGE WANTED TO GET

NEAR THE MEADOW. GEORGE COULDN'T GET NEAR THE MEADOW.

WILMA WANTED TO GET NEAR GEORGE. WILMA GRABBED GEORGE WITH

HER CLAW. WILMA TOOK GEORGE FROM THE RIVER THROUGH THE

VALLEY TO THE MEADOW. GEORGE WAS DEVOTED TO WILMA. GEORGE

OWED EVERYTHING TO WILMA. WILMA LET GO OF GEORGE. GEORGE

FELL TO THE MEADOW. THE END.

Figure 1. Some published multisentence text samples.

ent way, also based on a conceptual dependency rep-
resentation [8].

These systems share several features. First, the
data structures that are the basis of the generat ion
were designed for text processing; many of the special
demands of text processing were anticipated and ac-
commodated in the design of the knowledge structures
themselves. Second, the sentence boundaries in these
systems were direct correlates of internal features of

18 Amer i can Journal of Computational Linguistics, Vo lume 7, Number 1, January -March 1981

W i l l i a m C. Mann and James A. Moore Computer Generation of Mult iparagraph English Text

the data structures themselves. Often the sentence
order arose in the same way. 4 Third, these systems
had fixed generation goals, implicit in the code. Thus,
the reader 's needs were taken to be fixed and pre-
known by the system. Fourth, although goal-pursuit
could sometimes be described in the material being
generated, the systems themselves did not operate on a
goal-pursuit algorithm. Finally, none of these systems
chose the particular sentences to use in their output on
the bases of quality assessment or comparisons among
alternatives.

In all five of these points, the KDS research con-
trasts with these previous efforts. We have worked
with data structures not designed for text generation;
the sentence boundaries we develop are not direct
correlates of internal features of the data structures;
there are explicit goals for the generation process to
satisfy; the system itself pursues goals; and the final
text is chosen through quality comparisons among
alternative ways of saying things.

The Task for the Knowledge Delivery System

In the light of these considerations, the problem
can be restated more specifically as follows:

Given

1. An explicit goal of knowledge expression,

2. A computer-internal knowledge base ade-
quate for some non-text purpose, and

3. Identification of the parts of the knowledge
base that are relevant to the goal,

the task is to produce clean, multiparagraph text, in
English, which satisfies the goal.

The Partitioning Paradigm

When we have stated this task to AI workers famil-
iar with natural language processing, with no further
specification, they have expected a particular kind of
solution. They say, "Well, there are some sentence
generators around, but the given information struc-
tures are too large to be expressed in single sentences.
Therefore what we need is a method for dividing up the
input structure into sentence-size pieces. Then we can
give the pieces to a suitable sentence generator and
get the desired text." This is the expected solution,
and people will simply presume that it is the line of
development being taken.

4 This is not to say that sentence boundaries are always one
for one with data structures, nor that the data structures always
contain all the information used in making a sentence. But the
forms of data structures in these systems have been shaped almost
exclusively by natural language processing tasks, which tends to
make sentence boundary determination easy. The content of those
structures has often been filled in manually, leaving indeterminable
the relative contributions of program and programmer.

That approach, which we call the Partitioning para-
digm for text generation, was used in all the systems
described above. For the Partit ioning paradigm to
work, the generation task must be simplified by fea-
tures of the knowledge base:

1. The knowledge base data structures have
features that indicate appropriate sen-
tence boundaries, and

2. The pieces of information appropriate to
be expressed in an individual sentence are
adjacent. That is, a process can access all
of the information appropriate to be ex-
pressed in a single sentence by following
the data structure, without being required
to traverse information to be expressed in
other sentences.

These conditions prevail (by design) in all of the
systems described above, but they are not generally
typical of information storage in computers. As we
will see, KDS takes an entirely different approach to
the problem.

Several inherent difficulties become apparent when
we attempt to use partitioning:

1. Missing adjacencies - - Since (by our
problem definition) the knowledge comes
from a structure not prestructured for the
generation task, what is and what is not
adjacent in the knowledge base may be quite
arbitrary. We may wish to include several
widely scattered items in a sentence, so that
it is not possible to carve out a piece with
those items in it at all. The adjacencies that
we need in order to partition the structure
into sentence-size parts may simply be
absent.

2. Intractable residues - - Even though we
may be able to find some way to start cutting
out sentence-size objects from the data
structure, there is no assurance at all that we
will be able to run that method to completion
and carve the entire structure into sentence-
size pieces. Think of the comparable prob-
lem of carving statues from a block of mar-
ble. We may be able to get one statue or
several, but if every part of the original block
must end up looking like a statue, ordinary
carving methods are insufficient. The resi-
dues left after carving out the first few stat-
ues may be intractable. A comparable sort
of thing can happen in attempting to parti-
tion data structures.

3. Lack of boundary correlates - - In some
ways the worst difficulty is that an arbitrary
given data structure does not contain struc-
tural correlates of good sentence boundaries.

American Journal of Computational Linguistics, Volume 7, Number 1, January-March 1981 19

Wi l l i am C. Mann and James A. Moore Computer Generation of Multiparagraph English T e x t

One cannot inspect the data structure and
tell in any way where the sentence bounda-
ries ought to be. Along with the other diffi-
culties, this has led us to reject the expected
solution, the Part i t ioning paradigm, and to
create another.

The Fragment-and-Compose Paradigm

Our solution comes in two steps:

1. Find methods for fragmenting the given
data structure into little pieces, small prop-
ositional parts.

2. Find methods for composing good sentences
and good paragraphs out o f those little
parts.

We call this the Fragment-and-Compose paradigm.
It is interesting to note that other systems employ a
F ragment -and-Compose approach - - e.g., building
construct ion, papermaking, and digestion. In each,
one begins by producing small, easily manipulated
objects much smaller than the desired end-product
structures, and then assembles these into the desired
end products in a planned, multistage way. For the
block of marble, the comparable processes are crush-
ing and casting.

We may not be very encouraged in our text genera-
tion task by such precedents . However , there are
precedents much closer to our actual task. The task of
natural language translation resembles in many ways
the task of translating from a computat ional knowl-
edge source (although it has a comprehension subtask
which we lack). Consider the (annotated) quotation
below from Toward a Science of Translating [9].

The process by which one determines
equivalence (faithfully translates) between
source and receptor languages is obviously a
highly complex one. However , it may be
reduced to two quite simple procedures:

(1) "decomposi t ion" of the message into the
simplest semantic structure, with the most
explicit s tatement of relationships; and

(2) "recomposi t ion" of the message into the
receptor language.

The quotation is from Nida's chapter on translation
procedures. Notice particularly the two steps:
decomposition and recomposition, and the emphasis on
simple, explicit semantic structures in the results of the
decomposition.

It turns out that this is the central procedural state-
ment of Nida's book, and the remainder of the book
can be seen as giving constraints and considerations on
how this decomposi t ion and recomposi t ion ought to
take place. We have very good reasons here for
expect ing that F r a g m e n t - a n d - C o m p o s e is an

appropriate paradigm for natural language knowledge
delivery.

To give a sense of what can be done using
Fragment-and-Compose, here is a piece of a machine-
generated text (created by KDS) about what happens
when fire breaks out in the computer room.

Whenever there is a f i re , the alarm system is

started, which sounds a bell and starts a timer.

Ninety seconds after the timer starts, unless the

alarm system is cancelled, the system calls Wells

Fargo. When Wells Fargo is called, they, in

turn, call the Fire Department.

Description of KDS

Figure 2 is a block diagram of KDS, which simply
says that KDS takes in an Expressive Goal (telling
what the text should accomplish relative to its reader)
and also a pre-identified body of Relevant Knowledge
in the notat ion of its source. The output is multipara-
graph text that is expected to satisfy the goal.

Expressive ~
goal - ~ [K D S

Relevant
knowledge / ,

Multiparagraph
text

Figure 2. Input and output of KDS.

We will be carrying a single example through this
description of KDS. It is the most complex example
handled by KDS, and it incorporates many ideas from
previous studies on description of computer message
systems.

A small cont ingency-plans data base contains
knowledge about what happens in various circum-
stances, and about people 's actions, responsibilities,
authorities, and resources. The particular knowledge
to be delivered concerns a computer room in which
there may be some indication of fire and in which
there is a computer operator who should know what to
do if that happens. This operator is the nominal read-
er of the text.

The general Expressive Goal is that the computer
operator will know what to do in all of the predictable
contingencies that can arise starting with an indication
of fire. The contingencies are represented in the "Fire
Alarm Scene," part of the knowledge base. A sche-
matic sketch of the Fire Alarm Scene is given in Fig-
ure 3. (The figure is expository and contains far less
information than the actual Scene. The Scene is a
"semantic net ," a collection of LISP expressions that
refer to the same objects.)

20 American Journal of Computational Linguistics, Vo lume 7, Number 1, January -March 1981

Will iam C. Mann and James A. Moore Computer Generation of Multiparagraph English Text

I INIT I
(bell sounds or
fire detected;
timer starts)

i T,Mo0T I I ATTENO I
(~ (evaluate situation)

(Wells Fargo called) (don't cancel) (cancel alarm)

iR~SPONSEI I FL'OHT I
(Fire Dept. responds) (evacuate)

I~,~,~, ! I~o~o~1
(Fire Dept. fights fire) (Fire Dept.

goes home) I ,

(end of scene)

I ~ I c a e ~ / I ~A~OWO~I
,r sumewo k,

Figure 3. Events in the Fire-Alarm scene.

American Journal of Computational Linguistics, Volume 7, Number 1 , ~ u a r y - M a r c h 1981 21

Wil l iam C. Mann and James A. Moore Computer Generation of Mult iparagraph English Text

KDS MODULES MODULE RESPONSIBILITIES

FRAGMENTER

PROBLEM SOLVER

KNOWLEDGE FILTER
HILL CLIMBER

SURFACE SENTENCE MAKER

* Extraction of knowledge from external notation
e Division into expressible clauses
* Style selection
e Gross organization of text
• Cognitive redundancy removal
• Composition of concepts
• Sentence quality seeking
• Final text creation

Figure 4. KDS module responsibilities.

The knowledge identified as relevant includes not
only the events of this scene but also enough informa-
tion to support another computa t ional task. In this
example the knowledge is sufficient to suppor t an
al ternate task, which we call the Mot ivat ion Exhibit
task, i.e., to exhibit, for each action in the scene, the
ac tor ' s reasons for pe r fo rming the action. So, for

example, the relevant knowledge includes the knowl-
edge that fires destroy proper ty , that destroying prop-
er ty is bad, that the amount of p rope r ty des t royed
increases with the duration of the fire, and that the
Fire D e p a r t m e n t is able to employ methods for
stopping fires. This is sufficient to be able to explain
why the Fire Depar tmen t a t tempts to stop fires. KDS
does not per form the Motivat ion Exhibit task, but its
knowledge is sufficient for it. We generate f rom a
knowledge base sufficient for multiple tasks in order
to explore the problems created when the knowledge
representa t ion is not designed for text processing.

The content of the scene is as follows:

In the beginning state, INIT , the fire
alarm sounds a bell. As we follow down the
left side of the figure, we see that the fire
alarm starts an interval timer, and at the end
of the interval , the t imer automat ica l ly
phones Wells Fargo Company , the alarm sys-
tem manager. Wells Fargo phones the Fire
Depar tment , and the Fire Depar tmen t comes.
The Fire Depar tmen t fights the fire if there
is one, and otherwise goes home.

Meanwhile , the compute r ope ra to r must
pay at tent ion to the alarm and decide what
to do. He can block the alarm sys tem's ac-
tion, cancelling the alarm, or he can let the
alarm system take its course. In the latter
case, his next duty is to call the Fire Depar t -
ment himself, which has the same effect as
Wells Fargo calling it. Af ter that, his next
duty is to flee. If he blocks the alarm then
he is to go back to his previous task.

Major Modules of KDS

KDS consists of five major modules, as indicated in
Figure 4. A Fragmente r is responsible for extract ing
the relevant knowledge f rom the notat ion given to it
and dividing that knowledge into small expressible
units, which we call f ragments or protosentences . A
Problem Solver, a goal-pursuit engine in the AI tradi-
t ion, is responsible for selecting the presen ta t iona l
style of the text and also for imposing the gross organ-
izat ion onto the text according to that style. A
Knowledge Fil ter r emoves p ro tosen tences that need
not be expressed because they would be redundant to
the reader.

The largest and most interesting module is the Hill
Climber, which has three responsibilities: to compose

22 American Journal of Computat ional Linguistics, Volume 7, Number 1, January-March 1981

William C. Mann and James A. Moore Computer Generation of Multiparagraph English Text

complex pro tosen tences f rom simple ones, to judge
relative quality among the units resulting f rom com-
position, and to repeatedly improve the set of proto-
sentences on the basis of those judgments so that it is
of the highest overall quality. Finally, a very simple
Surface Sentence Maker creates the sentences of the
final text out of protosentences.

The data flow of these modules can be thought of
as a simple pipeline, each module processing the rele-
vant knowledge in turn. We will describe each of
these modules individually.

Fragmenter M o d u l e

The Fragmente r (Figure 5) takes in the re levant
knowledge as it exists externally and produces a set of
independent protosentences, called the Sayset. These
primitive f ragments , the pro tosentences , have no in-
tended order. (In our final tests, they are presented in
a list that is immediately randomized.) Each primitive
pro tosen tence can, if necessary, be expressed by an
English sentence.

Relevant _~tFRAGMENTE R .__D..{SAYSET} Knowledge

Figure 5. Fragmenter module input and output.

To help the reader unders tand the level of these
fragments, were they to be expressed in English, they
would look like:

"Fire destroys objects ."
"Fire causes death."
"Death is bad."
"Destroying objects is bad." etc.

So the problem for the remainder of the system is
to express well what can surely be expressed badly. It
is important to note that this is an improvement prob-
lem rather than a p rob lem of making expression in
English feasible.

The pro tosentences the F ragmente r produces are
proposit ional and typically carry much less information
than a sentence of smooth English text. In our exam-
ple, the f ragmenter produces the list structures shown
in part below for two of its fragments.

((CONSTIT (WHEN (CALLS NIL WELLS-FARGO)
(CALLS WELLS-FARGO FIRE-DEPT)))...)

((CONSTIT (WHENEVER (STARTS NIL ALARM-SYSTEM)
(PROB (SOUNDS ALARM-SYSTEM BELL)...)

These f ragments encode: "When {unspecified} calls
Wells Fargo, Wells Fargo calls the Fire Depar tmen t . "

and "Whenever {unspecified} starts the alarm system,
the alarm system probably sounds the bell."

Problem Solver M o d u l e

The second major module is the Prob lem Solver
(Figure 6). The pr imary responsibilities of the Prob-
lem Solver are to select a text presentation style and to
organize the text content according to the selected style.
For this purpose, it has a built-in t axonomy of styles
f rom which it selects. Al though the t axono my and
selection processes are very rudimentary in this partic-
ular system, they are significant as representat ives of
the kinds of structures needed for style selection and
style imposition.

Express ive

Goal

{SAYSET I

PROBLEM
SOLVER (SAYLIST with

ADVICE)

Figure 6. Problem Solver input and output.

We believe that text style should be selected on the
basis of the expected effects. In simple cases this is so
obvious as to go unrecognized; in more complex cases,
which cor respond to complex texts, there are many
stylistic choices. In order to select a style, one needs:

1. A description of the effect the text should
have on the reader,

2. Knowledge of how to apply stylistic
choices, and

3. A description of the effects to be expected
f rom each stylistic choice.

Note that these are required whether stylistic
choices are distributed or holistic, i.e., whether they
are made in terms of attr ibutes of the final text or in
terms of particular methods for creating or organizing
the text.

The first requirement above, a description of de-
sired effects , is (more or less by definit ion) a goal.
The second i tem is the set of applicable methods, and
the third is the knowledge of their effects. The Prob-
lem Solk, er is a goal-pursui t process that pe r fo rms
means-ends analysis in a manner long familiar in AI.
The information organizat ion is significant part ly be-
cause of the demand it puts on the knowledge of style:
Knowledge of style must be organized according to ex-
pected effect. Otherwise, the program has no adequate
basis for selecting style.

American Journal of Computational Linguistics, Volume 7, Number 1, January-March 1981 23

Will iam C. Mann and James A. Moore Computer Generation of Multiparagraph English Text

The Problem Solver takes in the Sayset produced
by the Fragmenter and the Expressive Goal given to
the system and produces a Saylist, which is an ordered
list of the protosentences, some of which have been
marked with Advice. The Problem Solver pursues
given goals. It has several submodules that specialize
in particular kinds of goals, including modules Tell and
Instructional-narrate, which are active on this example.
The Problem Solver can operate on the current Saylist
with three kinds of actions in any of its modules:

1. It can Factor the Saylist into two sublists
separated by a paragraph break. It ex-
tracts all protosentences with a particular
character or attribute and places them
above the paragraph break, which is
above all those that lack that attribute.
Order within each sublist is retained.

2. It can impose an order on some or all of
the elements of the Saylist.

3. It can mark protosentences with Advice.
Sometimes the Problem Solver knows
some attribute of the final text that ought
to be achieved, perhaps because of a de-
mand of the chosen style, but it has no
way to effect this directly. In this case it
marks all the affected protosentences with
Advice, which will be acted on after the
Problem Solver has finished.

following fragment:

(PARAGRAPH-BREAK (REASON: (BOUNDARY NON-H-ACTOR)))

((CONSTIT (WHEN (IF (POSSIBLE)
(CALL YOU FIRE-DEPT))

(EVOKE YOU EVAC-SCENE)))...
(ADVlSORS FRAG INST-NARRATE)
(ADVICE ...(GOOD YOU)))

These represent: " (Put a paragraph break here be-
cause the actions of agents other than the hearer end
here)" and "If possible, call the Fire Depar tment ;
then, in either case, evacuate. (Advised by F R A G and
I N S T - N A R R A T E Modules) (Advised that YOU is
G O O D) " .

K n o w l e d g e Filter Module

The Knowledge Filter is a necessary part of KDS
because as soon as we attempt to create text from a
knowledge base suitable to support some other compu-
tational purpose, we find a great deal of information
there that ought not to be expressed, because the
reader already knows it.

This is a general phenomenon that will be encoun-
tered whenever we generate from an ordinary compu-
tational knowledge base. As an illustration, consider
Badler 's work on getting a program to describe a
movie in English.

Figure 7 describes the rules used in the Problem
Solver that carry out these three kinds of actions. In
this example, the Tell module acts before
Instructional-narrate. The Factoring rules are applied
sequentially, so that the last one prevails over previous
ones.

The first Tell rule corresponds to the heuristic that
the existence of something ought to be mentioned
before its involvement with other things is described.
The third rule corresponds to the heuristic that the
writer (KDS) ought to reveal its own goals of writing
before pursuing those goals.

Instruct ional-narrate uses a presentat ional tech-
nique that makes the reader a participant in the text.
So, for example, the final text says, "When you hear
the alarm bell ...," rather than "When the operator
hears the alarm bell...," Instruct ional-narrate knows
that the role of "you" should be emphasized in the
final text, but it has no direct way to achieve this. To
every protosentence that refers to "you," it attaches
advice saying that explicit reference to the reader,
which is done by mentioning "you" in the final text,
has positive value. This advice is taken inside the
Hill-climber.

In our example the Problem Solver creates the

Factoring Rules:

TELL

1. Place all (EXISTS ...) propositions in an upper
section.

2. Place all propositions involving anyone's goals
in an upper section.

3. Place all propositions involving the author's
goals in an upper section.

INSTRUCTIONAL-NARRATE

1. Place all propositions with non-reader actor in
an upper section.

2. Place all time dependent propositions in a low-
er section.

Ordering Rules:

INSTRUCTIONAL-NARRATE

1. Order time-dependent propositions according
to the (NEXT ...) propositions.

Advice-giving Rules:

INSTRUCTIONAL-NARRATE

1. YOU is a good thing to make explicit in the
text.

Figure 7. Rules used in the Problem Solver.

24 American Journal of Computational Linguistics, Volume 7, Number 1, January-March 1981

W i l l i a m C. M a n n and James A. Moore Computer Generation of Multiparagraph English Text

I

/
3

6 11

7 12

8 13

14

5 10 15

Figure 8. Badler 's "Moving Car Scenario".

Figure 8 is reproduced f rom [1]. It shows fifteen
successive scenes f rom a short compute r -gene ra t ed
movie. The graphics system that generates the movie
provides a stock of proposit ional knowledge about it.
The objects in the scene are known to the machine
unambiguously and in sufficient detail to generate the
movie. The research task is to create a computer pro-
gram that will describe in English the physical activi-
ties in this and similar movies. The detail is volumi-
nous, and s o Badler is faced with a serious information
suppression problem. After several stages of applying
various filtering heuristics, such as " D o n ' t describe
directly anything that doesn ' t move ," he can represent
the movie by the five s ta tements below.

1. There is a car.

2. The car starts moving toward the observer
and eastward, then onto the road.

3. The car, whil e going forward, starts turn-
ing, moves toward the observer and-eas t -
ward, then nor thward-and-eas tward , then
f rom the driveway and out -of the drive-
way, then of f -of the driveway.

4. The car, while going forward, moves
nor thward-and-eas tward , then northward,

then around the house and away- f rom the
driveway, then away- f rom the house and
stops turning.

5. The car, while going forward, moves
northward, then away.

These are still too cumbersome, so additional stages
of reduction are applied, yielding the single statement:

The car approaches, then moves onto the
road, then leaves the dr iveway, then turns
around the house, then drives away from the
house, then stops turning, then drives away.

Even the longer text above contains only a fract ion
of the available informat ion about the car and the
other objects. Informat ion on their types, their sub-
parts, visibility, mobility, location, orientat ion and size
are available f rom Badler 's source. He also develops a
sequence of events to describe the movie, based on
certain indicators of continuity and discontinuity. The
volume o f information available, the predictability o f its
parts, and the insignificance o f some o f its details are
such that all o f it could not have been expressed in a
smooth text.

American Journal of Computational Linguistics, V o l u m e 7, N u m b e r 1, J a n u a r y - M a r c h 1981 2 5

Wil l iam C. Mann and James A. Moore Compute r Generat ion of Multiparagraph English Tex t

One of the principal activities of Badler 's system is
selection of information to be removed from the set of
ideas to be expressed. Some things need not be ex-
pressed because they follow f rom the reader ' s general
knowledge about mot ion of objects; others are re-
moved because they represent noise, ra ther than sig-
nificant events, generated by the processes that dis-
cern motion.

The point for us is simply that the demands of
smooth text production are incompatible with expression
of all of the available information. Text product ion
requires condensat ion and selectivity, the process we
call knowledge filtering, on any reasonably complete
body of knowledge. Knowledge filtering is a signifi-
cant intellectual task. It requires coordinated use of a
diversity of knowledge about the reader, the knowl-
edge to be delivered, and the World in which all reside.
We now recognize the necessi ty of sophis t icated
knowledge filtering as part of the process of producing
quality text.

KDS's Knowledge Filter (Figure 9) inputs the Say-
list, including Advice, f rom the Problem Solver, and
outputs the Saylist with addit ional Advice, called
" D o n ' t Express" advice, on some of the pro tosenten-
ces. So some of the items have been marked for omis-
sion f rom the final text. (They are marked rather than
deleted so that they are available for use if needed as
transitional material or to otherwise make the resulting
text coherent .) The knowledge filter decides which
protosentences to mark by consulting its internal mod-
el of the reader to see whether the proposi t ional con-
tent is known or obvious. The model of the reader, in
this implementat ion, is very simple: a collection of
proposit ions believed to be known by him. Although
KDS ' s reader model does not contain any inference
capabilities about what is obvious, a more robust mod-
el certainly would. We recognize that the work of the
Knowledge Filter is a serious intellectual task, and we
expect that such a filter will be an identifiable part of
future text creation programs.

In our example the Knowledge Filter produces the
D O N ' T - E X P R E S S advice in the following element of
the Saylist:

((CONSTIT (WHENEVER (SOUNDS NIL ALARM-BELL)
(HEARS YOU ALARM-BELL)
(PROB)))...

(ADVISORS INST-NARRATE NONEXP)
(ADVICE (GOOD YOU)

DON'T-EXPRESS))

In this case, the involvement of the reader in
(H E A R S Y O U A L A R M - B E L L) arises f rom the
Advice-giving rule for Inst ruct ional-Narrate . It indi-
cates that it is good to express this. The D O N ' T -
EXPRESS arises f rom the Knowledge Filter, indicating

! I (SAYLIST
(SAYLIST..~IKNOWLEDGEL~. with added

with - J FILTER I DON'T-EXPRESS
ADVICE) l / advice)

i
Reader
Model

Figure 9. Knowledge Filter module input and output.

that it is unnecessary to express this. D O N ' T -
EXPRESS prevails.

Hill C l imber M o d u l e

The Hill Cl imber module (Figure 10) consists of
three parts:

1. A somewhat unconvent ional hill-climbing
algori thm that repea ted ly selects which
one of an available set of changes to
make on the Saylist.

2. A set of Aggregat ion rules (with an inter-
pre ter) telling how the p ro tosen tences
may legally be combined. These corre-
spond roughly to the c lause-combining
rules of English, and the collection repre-
sents something similar to the wri ter ' s
competence at clause coordination. Each
Aggregat ion rule consumes one or more
p ro tosen tences and produces one pro to-
sentence. Advice p ropaga tes onto the
protosentences produced.

3. A set of Preference rules (with an inter-
preter) able to assign a numerical quality
score to any pro tosen tence . The score
computa t ion is sensitive to Advice.

The algori thm is equivalent to the following:
Scores are assigned to all of the primitive pro tosen-
tences; then the Aggregat ion rules are applied to the
Saylist in all possible ways to generate potential next
steps up the hill. The resul tant p ro tosen tences are
also evaluated, and the Hill Cl imber a lgori thm then
compares the scores of units consumed and produced
and calculates a n e t gain or loss for each potent ia l
application of an Aggregat ion rule. The best one is
executed, which means that the consumed units are
removed f rom the Saylist, and the new unit is added
(in one of the posi t ions vacated , which one being
specified in the Aggregat ion rule).

This process is applied repea ted ly until improve-
ment ceases. The output of the Hill Cl imber is a Say-

26 Amer ican Journal of Computa t iona l Linguist ics, Vo lume 7, Number 1, January -March 1981

William C. Mann and James A. Moore Computer Generation of Multiparagraph English Text

(SAYLIST)

Primitive
protosentences

HILL CLIMBING I
ALGORITHM

/
Aggregation Rule Applier

AGGREGATION RULES

(The allowable clause-
combining methods of English)

-~ (SAYLIST)

Primitive and composite
protosentences

Preference Rule Appller

PREFERENCE RULES
(A numerical score for

each protosentence)

(ADVICE taken here)

Figure 10. Hill Climber module.

list for which there are no remaining beneficial poten- 1.
tial applications of Aggregation rules.

The selection algori thm of the Hill Cl imber is
somewhat unconventional in that it does not select the
Aggregation rule application with the largest increase 2.
in collective score, which would be the usual practice.
The hill of collective scores has many local maxima,
which can be traced to the fact that one application of
an aggregation rule will preclude several others. Be- 3.
cause protosentences are consumed, the various appli-
cations are in competi t ion, and so a rule that produces
a large gain may preclude even more gain.

The Hill Climber selects the rule application to use
based on an equation that includes competi t ive terms.
It computes the amoun t of gain surely precluded by
each application and makes its selection on the basis
of maximum net gain, with the precluded gain sub-

tracted.

The use of hill climbing avoids the combinator ial
explosion involved in searching for the best of all pos- 6.
sible ways to express the content. In general only a
tiny fraction of the possibilities are actually examined.

This Saylist improvement activity is the technical
heart of the text product ion process; it develops the
final sentence boundaries and establishes the smooth-

ness of the text.

Figure 11 shows a few of the Aggregation rules.
(Each of them has been rewri t ten into an informal
notat ion suggesting its content .) Aggregat ion rules are
intended to be meaning-preserv ing in the reader ' s

COMMON CAUSE.

Whenever C then X.

Whenever C then Y.

CONJOIN MID-STATE

Whenever X t h e n Y.

Whenever Y then Z.

DELETE MID-STATE

Whenever X t h e n Y.

Whenever Y then Z.

4. DELETE EXISTENTIAL

There is a Y.

<ment ion of Y>

(Y is known unique)

5. IF -THEN-ELSE

If P then Q.

t
t
t
t

If not P then R.

TEST AND BRANCH

When P then determine if X. /

If X then Q.

If not X then R.

Whenever C then X a n d Y.

Whenever X t h e n Y

and then Z.

Whenever X t h e n Z.

<ment ion of Y>

If P then Q otherwise R.

When P then determine X

and decide Q or R.

Figure 11. Sample Aggregation rules.

comprehens ion , but are not in tended to preserve
explicitness.

These are only a few of the Aggregat ion rules that
have been used in KDS; others have been developed in

American Journal of Computational Linguistics, Volume 7, Number 1, January -March 1981 27

Wil l iam C. Mann and James A. Moore Computer Generation of Multiparagraph English Text

the course of working on this and other examples.
Coverage of English is still very sparse. In other
examples, an aggregation rule has been used to pro-
duce a mult iple-sentence structure with intersentential
dependencies.

Figure 12 shows the Preference rules. They were
derived empirically, to correspond to those used by the
author of some comparable human-produced text.

be e laborate - - that being able to advise that a term is
good or a term is bad is adequate.

Rule 6 is somewhat of a puzzle. Empirically, a
sentence produced by reapplicat ion of an Aggregat ion
rule was always definitely unacceptable , primarily be-
cause it was awkward or confusing. We do not under-
s tand technical ly why this should be the case, and
some say it should not be. We do know that this rule
contr ibutes significantly to overall quality.

1. Every protosentence gets an initial value of
-1000.

2. Every primitive protosentence embedded in a
composite protosentence decreases value by
10.

3. If there is advice that a term is good, each oc-
currence of that term increases value by 100.

4. Each time-sequentially linked protosentence
after the first increases value by 100.

5. Certain constructions get bonuses of 200: the
if-then-else construct and the when-X-
determine-Y.

6. Any protosentence produced by multiple appli-
cations of the same aggregation rule gets a
large negative value.

Figure 12. Preference rules.

One of the surprising discoveries of this work, seen
in all of the cases investigated, is that the task of text
generat ion is dominated by the need for brevity: How
to avoid saying things is at least as important as how
to say things. Preference Rule 1 introduces a tenden-
cy toward brevi ty , because most of the Aggregat ion
rules consume two or three p ro tosen tences but pro-
duce only one, yielding a large gain in score. Sen-
tences produced f rom aggregated p ro tosen tences are
generally briefer than the corresponding sentences for
the protosentences consumed. For example, applying
Rule 1 to the pair:

"When you permit 5 the alarm system, call the
Fire Depar tment if possible. When you per-
mit the alarm system then evacuate ."

yields,

"When you permit the alarm system, call the
Fire Depar tment if possible, then evacuate ."

Rule 3 introduces the sensitivity to advice. We
expect that this sort of advice taking does not need to

5 This way of using "permit" is unfamiliar to many people,
but it is exactly the usage that we found in a manual of instruction
for computer operators on what they should do in case of fire. In
the course of attempting to produce comparable text we accepted
the usage.

Sentence Generator Module

The Sentence Gene ra to r (Figure 13) takes the final
ordered set of p ro tosen tences p roduced by the Hill
Cl imber and produces the final text, one sentence at a
time. Each sentence is produced independently, using
a simple con tex t - f ree g rammar and semant ic test ing
rules. Because sentence generat ion has not been the
focus of our work, this module does not represen t
much innovation, but merely establishes that the text
fo rmat ion work has been comple ted and does not
depend on further complex processing.

(Protosentence
list)

SENTENCE
GENERATOR

Referring-
Phrase

Generator

Final text

Figure 13. Sentence Generator module input and output.

The single significant innovat ion in the Sentence
Genera to r is the Referr ing Phrase Genera tor , the only
part in which prior sentences affect the current sen-
tence. The Referr ing Phrase Genera to r keeps track of
what objects have been referred to, and how. It pre-
sumes that objects previously re fe r red to are in the
reader ' s a t tent ion and that af ter they have been identi-
fied by the first reference, subsequent references need
only distinguish the objec t f rom others in a t tent ion.
This process is equivalent to the one described by [6]
developed for this research. It knows how to intro-
duce terms, refer to objec ts by incomple te descr ip-
tions, and introduce pronouns. However , none of our
examples has exercised all of the features of Levin and
Goldman ' s algorithm.

O u t p u t T e x t

Applying all of this machinery in our example, we
get the result shown in Figure 14. Note the paragraph
break, a product of a factoring rule (the first rule in
Ins t ruct ional-narra te) in the Problem Solver module.

28 American Journal of Computat ional Linguistics, Volume 7, Number 1, January-March 1981

Will iam C. Mann and James A. Moore Computer Generation of Multiparagraph English Text

Whenever there is a f i re , the alarm system is

started, which sounds a bell and starts a timer.

Ninety seconds after the timer starts, unless the

alarm system is cancelled, the system calls Wells

Fargo. When Wells Fargo is called, they, in

turn, call the Fire Department.

When you hear the alarm bell or smell smoke,

stop whatever you are doing, determine whether or

not there is a f i re , and decide whether to permit

the alarm system or to cancel i t . When you

determine whether there is a f i re , i f there is,

permit the alarm system, otherwise cancel i t .

When you permit the alarm system, call the Fire

Department i f possible, then evacuate. When you

cancel the alarm system, i f i t is more than 90

seconds since the timer started, the system wil l

have called Wells Fargo already, otherwise

continue what you were doing.

Figure 14. Final fire-alarm text from KDS.

Conclus ions and Prospects

The development of KDS highlights several aspects
of the task of writing that strongly influence text qual-
ity. The overwhelming importance of brevity, seen in
both the Knowledge Filter and the Preference rules, is
striking. Writing is seen here as a constructive activity
rather than simply as interpretive. That is, it is not so
much a mapping between knowledge representat ions
as it is the creation of new symbolic objects, not
equivalent to older ones, but suitable for achieving
particular effects. The image of writing as a kind of
goal pursuit activity helps us to factor the task into
parts. The task (and the program) is occupied with
finding a good way to say things, not with establishing
feasibility of saying them.

The KDS development has also identified important
features of the problem of designing a knowledge-
delivery pi~ogram. The defects of the Partitioning par-
adigm are newly appreciated; the Fragment -and-
Compose paradigm is much more manageable. It is
easy to understand, and the creation of Aggregation
rules is not difficult. The separation of Aggregation
and Preference actions seems essential to the task, or
at least to making the task manageable. As a kind of
competence /per formance separation it is also of theo-
retical interest. Knowledge filtering, as one kind of
responsiveness of the writer to the reader, is essential
to producing good text.

The importance of fragmenting is clear, and the
kinds of demands placed on the Fragmenter have been
clarified, but effective methods of fragmenting arbi-
trary knowledge sources are still not well understood.

In the future, we expect to see the Fragment-and-
Compose paradigm reapplied extensively. We expect
to see goal-pursuing processes applied to text organi-
zation and style selection. We expect distinct process-
es for aggregating fragments and selecting combina-
tions on a preference basis. We also expect a well
developed model of the reader, including inference
capabilities and methods for keeping the model up to
date as the text progresses. Finally, we expect a great
deal of elaboration of the kinds of aggregation per-
formed and of the kinds of considerations to which
preference selection responds.

Refe rences

[1] Badler, N.I., "The Conceptual Description of Physical Activi-
ties," In Proceedings of the 13th Annual Meeting of the Associa-
tion for Computational Linguistics, AJCL Microfiche, 35, 1975.

[2] Carbonell J.R., and A.M. Collins, "Natural Semantics in Artifi-
cial Intelligence," In Proceedings of the Third International Joint
Conference on Artificial Intelligence, 1973, 344-351.

[3] Davey, Anthony, Discourse Production, Edinburgh University
Press, Edinburgh, 1979.

[4] Swartout, William R., "Producing Explanations and Justifica-
tions of Expert Consulting Programs," Technical Report TR-251,
MIT Laboratory for Computer Science, January 1981.

[5] Heidorn, George E., "Natural Language Inputs to a Simulation
Programming System," Technical Report NPS-55HD72101A,
Naval Postgraduate School, 1972.

[6] Levin, J.A., and N.M. Goldman, "Process Models of Reference
in Context," Research Report 78-72, USC/Information Sciences
Institute, 1978.

[7] McDonald, D.D., "Natural Language Production as a Process of
Decision-Making Under Constraints," PhD Thesis, MIT, Dept.
of Electrical Engineering and Computer Science, 1980.

[8] Meehan, James R., "TALE-SPIN, An Interactive Program that
Writes Stories." In Proceedings of the Fifth International Joint
Conference on Artificial Intelligence, 1977.

[9] Nida, Eugene, Toward a Science of Translating, E.J. Brill, Leid-
en, 1964.

[10] Schank, Roger C., and the Yale A.I. Project, "SAM - - A Story
Understander," Research Report 43, Yale University, Dept. of
Computer Science, 1975.

[11] Simmons, R., and J. Slocum, "Generating English Discourse
from Semantic Networks," Comm. A C M 15, 10 (October
1972), 891-905.

William C. Mann is a member of the research staff
of Information Sciences Institute at the University of
Southern California. He received the Ph.D. degree in
computer science from Carnegie-Mellon University in
1973.

James A. Moore is a member of the research staff of
Information Sciences Institute at the University of
Southern California. He received the Ph.D. degree in
computer science from Carnegie-Mellon University in
1974.

American Journal of Computational Linguistics, Volume 7, Number 1, January-March 1981 29

