
Evaluating Computational Language Models
with Scaling Properties of Natural Language

Shuntaro Takahashi
Graduate School of Engineering,
The University of Tokyo
Department of Advanced
Interdisciplinary Studies
takahashi@cl.rcast.u-tokyo.ac.jp

Kumiko Tanaka-Ishii
The University of Tokyo
Research Center for Advanced Science
and Technology
kumiko@cl.rcast.u-tokyo.ac.jp

In this article, we evaluate computational models of natural language with respect to the uni-
versal statistical behaviors of natural language. Statistical mechanical analyses have revealed
that natural language text is characterized by scaling properties, which quantify the global
structure in the vocabulary population and the long memory of a text. We study whether five
scaling properties (given by Zipf’s law, Heaps’ law, Ebeling’s method, Taylor’s law, and long-
range correlation analysis) can serve for evaluation of computational models. Specifically, we
test n-gram language models, a probabilistic context-free grammar, language models based on
Simon/Pitman-Yor processes, neural language models, and generative adversarial networks for
text generation. Our analysis reveals that language models based on recurrent neural networks
with a gating mechanism (i.e., long short-term memory; a gated recurrent unit; and quasi-
recurrent neural networks) are the only computational models that can reproduce the long
memory behavior of natural language. Furthermore, through comparison with recently proposed
model-based evaluation methods, we find that the exponent of Taylor’s law is a good indicator of
model quality.

1. Introduction

The question of evaluation methods for computational models of natural language
is fundamental in language engineering. Aside from human rating, current evalua-
tion methods rely on the probability distribution produced by the model, or on the
n-gram similarity between the generated text and a corresponding reference written by
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human experts. The representative metric of the former type is perplexity. Perplexity
quantifies the prediction accuracy of a language model and thus requires its probability
distribution. The latter category includes the metrics BLEU (Papineni et al. 2002) and
ROUGE (Lin 2004). These evaluation methods compute the n-gram co-occurrence be-
tween the generated text and a reference. Hence, these methods are reasonable for cases
in which either the probability distribution of the computational model is explicit and
comparable or a corresponding reference is given.

The emergence of intractable models such as generative adversarial networks
(GANs) for text generation has revealed the limitation of these conventional evaluation
methods. Tentative studies (Lin et al. 2017; Rajeswar et al. 2017; Yu et al. 2017; Guo et al.
2018; Lu et al. 2018) have sought to generate natural language text in the adversarial
learning framework. Because these models do not explicitly output the probability
distribution for prediction, they are evaluated by feeding the generated text to other
models, such as a neural language model (Fedus, Goodfellow, and Dai 2018) or a prob-
abilistic context-free grammar (PCFG) (Rajeswar et al. 2017). Although those proposals
are promising and worth considering, the effectiveness of the methods for evaluation
has not been thoroughly investigated. As an alternative to those approaches, in this
article we test evaluation with the scaling properties of natural language text.

The scaling properties of natural language are the universal statistical behaviors
observed in natural language text. For example, Zipf’s law characterizes the vocabu-
lary population with a power-law function for the rank-frequency distribution. Recent
statistical mechanical studies (Ebeling and Neiman 1995; Altmann, Pierrehumbert, and
Motter 2009; Tanaka-Ishii and Bunde 2016; Kobayashi and Tanaka-Ishii 2018; Tanaka-
Ishii and Kobayashi 2018) revealed another statistical aspect of natural language: long
memory. This refers to the way that sequences of characters or words in natural lan-
guage universally exhibit clustering, bursty behavior. In particular, results using Tay-
lor’s law (Kobayashi and Tanaka-Ishii 2018; Tanaka-Ishii and Kobayashi 2018) show that
a natural language text has a consistent range for the Taylor exponent, which quantifies
the degree of burstiness in the text.

As the results obtained with scaling properties have clear interpretations, they
suggest qualitative implications for language models. For example, evaluation with
Zipf’s law examines whether a model can properly produce infrequent words. Similarly,
evaluation with Taylor’s law quantifies whether a model can learn the long memory in
a natural language text. In this article, we show that, among the computational models,
only neural language models based on recurrent neural networks (RNNs) with a gating
mechanism can learn and reproduce the long memory of natural language text. None of
the other models can reproduce this behavior. In addition, our study demonstrates the
capabilities of the scaling properties for evaluating language models.

The rest of the article is organized as follows. In §2, we review the evaluation metrics
that have been widely used for tasks in natural language processing. In §3, we introduce
the scaling properties of natural language: those given by Zipf’s law, Heaps’ law,
Ebeling’s method, Taylor’s law, and long-range correlation analysis. We also explain
the methods of applying these scaling properties to evaluate computational models.
In §4, we provide a summary of the models of natural language considered in this
article. Specifically, our work covers n-gram language models, mathematical language
models based on the Simon and Pitman-Yor processes, grammatical models, and neural
language models. The experimental procedure and settings are explained in §5. In §6,
we assess the scaling properties as evaluation metrics and compare them with other
metrics using a PCFG and neural language models. In §7, we use the scaling properties
to evaluate the models of natural language and discuss the implications of the results.
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§8 discusses evaluation of GAN models for text generation. Finally, we conclude our
work with a summary in §9.

Note that we describe all computational models of natural language considered
in this article, as introduced in §4, by the term language model. For some readers this
might sound inadequate, because some of these models do not actually form a model
to predict subsequent words (e.g., a PCFG and the models based on the Simon and
Pitman-Yor processes). Because the term computational models of natural language is long,
however, for the sake of brevity we simply use the term language models.

2. Previous Evaluation Metrics

There are two major approaches to evaluate a language model:

• directly inspecting some subpart of the model, or

• verifying the output generated by the model.

This section summarizes previous methods of evaluating models from these two view-
points, with §2.1 and §2.2 corresponding to the first and second approaches, respec-
tively, and §2.3 considering both. As clarified in §3, our proposal belongs to the second
category.

2.1 Evaluation Using Probability Distribution: Perplexity

A standard evaluation metric for language models such as n-gram and neural language
models is the perplexity (Manning and Schutze 1999), which is a measure of the
prediction accuracy. Given a test sample x1, . . . , xN of length N and a language model
that predicts the probability of words, denoted as q(xi), the perplexity is defined as the
number e to the power of the average log probability of the correct prediction for every
word:

perplexity = e−
1
N
∑N

i=1 log q(xi ) (1)

Perplexity is usually applied to predict the successive token xi given a context of
length k, namely, xi−k, . . . , xi−1. The probability distribution q(xi) for prediction must
be explicit for evaluation with the perplexity. Moreover, to compare models by using
the perplexity, the probability distribution must be defined in a comparable manner.
For example, n-gram language models and neural language models are comparable, as
they predict the next word from the context.

Because perplexity is the current standard metric for automatic evaluation of model
quality, the other metrics appearing in this article are compared with the perplexity.

2.2 Evaluation Using Reference: BLEU/ROUGE

Another popular evaluation metric is the n-gram co-occurrence–based approach, in-
cluding BLEU (Papineni et al. 2002) and ROUGE (Lin 2004). These metrics are widely
used in paired-corpus-oriented tasks such as machine translation and automatic sum-
marization. They evaluate by using statistics of the counts of the same n-grams appear-
ing in the machine-generated text and a corresponding reference, which is a correct
answer written by an expert.
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These approaches only use the output of a model and thus do not require access
to any of its internal elements. Because they require the corresponding reference for
computing the n-gram co-occurrence, however, their utility is limited to paired-corpus
tasks.

Because intractable models such as GANs for text generation cannot have an explicit
reference, the application of BLEU or ROUGE to those models is not trivial. A series of
GAN studies (Yu et al. 2017; Lin et al. 2017; Guo et al. 2018; Lu et al. 2018) quantitatively
measured the quality of the generated text with BLEU by regarding the whole training
data set as a reference. The validity of this evaluation method remains questionable, as
BLEU was designed for comparison between a pair of a machine-generated text and
its correct reference. Zhu et al. (2018) reported that the application of BLEU with this
approach does not provide consistent results with different n-grams chosen.

2.3 Evaluation Using Other Language Models

One approach for evaluation without using either a model distribution or a reference is
the use of language models, that is, evaluation of language models by using other lan-
guage models. Fedus, Goodfellow, and Dai (2018) proposed evaluating GAN-generated
text with a neural language model trained with the same natural language data set.
This direction is promising, if the language model is a reliable model of natural lan-
guage. Even with state-of-the-art neural language models, however, the model quality is
limited.

The use of a clear, transparent model for evaluation, such as an n-gram language
model, would also be a possible method. That approach, however, could only measure
models of the n-gram structures of natural language and would thus be similar to BLEU
evaluation. The use of a PCFG is another possible method of evaluation without a ref-
erence. A PCFG is constructed using a parsed corpus such as the Penn Treebank (PTB),
and the generated text is parsed with the Viterbi algorithm (Forney 1973). The algorithm
computes the log-likelihood of the text. The PCFG is expected to output a small negative
log-likelihood for a grammatically correct sentence. As we demonstrate later, however,
it is doubtful that a PCFG could meaningfully evaluate the grammaticality of a sentence.

3. Scaling Properties of Natural Language for Evaluation

In this section, we explain scaling properties, the statistical properties of natural lan-
guage text that have a power-law form. One study on the statistics of natural language
reported nine scaling laws (Altmann and Gerlach 2017). Four of them concern word for-
mation and a network structure, which do not directly relate to language modeling. This
leaves five scaling properties, which can be categorized into those for the vocabulary
population and those for long memory. These properties are characterized by power-
law functions, which involve a power exponent. The exponents of the scaling properties
have the capability to characterize the degree of each property. They therefore serve to
evaluate whether a language model has the same behavior as natural language text.
Specifically, given a text generated by a language model, we set two levels of assessment
for evaluation:

Q1 Does the scaling property hold qualitatively?
Q2 How does the exponent differ from that of the training data?
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As revealed in the following sections, many models fail to satisfy even the first criterion,
especially for long memory. For those models that do satisfy Q1, their exponents can be
compared with those of the original text.

Hence, we propose the exponents of scaling properties as metrics to evaluate
machine-generated text. Consider a power-law relation y ∝ zκ for points (y1,z1),. . .,
(yN,zN). These points (yi,zi) are calculated for any given text. Let c be the coefficient
of the power law, and then the exponent κ is estimated by the least-squares method:

κ̂, ĉ = arg min
κ,c
ε(κ, c) (2)

ε(κ, c) ≡

√√√√ N∑
i=1

(log yi − log czκi )2/N (3)

The data points are regressed on a log-log scale. The regression method could
be a problem if the errors between the data points and the fitting function are not
Gaussian-distributed. There are other proposed regression methods such as maximum
likelihood estimation for Zipf’s law [Clauset, Shalizi, and Newman 2009; Gerlach and
Altmann 2013]. In this article, however, because exponents obtained with the least-
squares method are effective in distinguishing machine-generated text from natural
language text, and because this method has been a conventional standard, we adopt
it for estimation.

The following subsections introduce the five scaling properties: Zipf’s law, Heaps’
law, Ebeling’s method, Taylor’s law, and a long-range correlation method. As an ex-
ample, Figure 1 shows a visual presentation of these methods for the wikitext-2 (WT2)
data set (Merity et al. 2016). WT2 is a collected corpus of well-written Wikipedia articles,
preprocessed by replacing rare words having frequencies under a certain threshold with
a meta symbol,<unk>. The details of the data set appear in the first row of Table 1, later
in §3.3.

3.1 Vocabulary Population
3.1.1 Zipf’s Law. Let r be the rank of a particular word type and f (r) be its frequency. The
well-known Zipf’s law formulates a power-law relation between the frequency and the
rank:

f (r) ∝ r−α (4)

with α ≈ 1.0. This scaling behavior generally holds not only for unigrams but also for
larger n-grams, with smaller exponent values. Figure 1(a) shows Zipf distributions for
WT2, with unigrams in red and bigrams in blue. Because WT2 replaces rare words, as
mentioned before, the tail of the unigram distribution disappears. The Zipf distributions
for unigrams and bigrams typically intersect in the middle of the plots. In practice,
the plot is not often aligned linearly in a log-log scale, which makes estimation of the
exponent α difficult. Although previous works have dealt with this problem, it is a
sensitive topic and is beyond the scope of this article. We therefore do not estimate α
but instead observe the distribution qualitatively.

3.1.2 Heaps’ Law. Heaps’ law describes how the vocabulary size grows with the text size
following a power-law function. Let n be the length of a text and v(n) be its vocabulary
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Figure 1
Scaling properties of the WT2 data set. (a) Zipf’s law: The rank-frequency distributions of words
(red) and word pairs (blue). (b) Heaps’ law: The growth of vocabulary size with text length. The
solid line is a power-law fitting, and the dashed line represents a power law with exponent
α = 1.0, meaning that all words in a sequence are unique. (c) Ebeling’s method: Fluctuation
analysis of character occurrence. (d) Taylor’s law: Mean-variance relation of word occurrence. (e)
Long-range correlation: Temporal correlation of the sequence of the return intervals of rare
words. All data points of these five scaling properties are plotted in a log-log scale.

size. Then Heaps’ law is formulated as the following relation:

v(n) ∝ nβ, 0 < β < 1 (5)

Figure 1(b) shows the text sizes and corresponding vocabulary sizes for WT2. The
exponent β is 0.75 with error ε = 0.13, which is smaller than β = 1.0 (represented
by the dashed black line). There have been multiple debates on how Heaps’ law is
mathematically related to Zipf’s law (Baeza-Yates and Navarro 2000; van Leijenhorst
and van der Weide 2005; Lü, Zhang, and Zhou 2010).

3.2 Long Memory

The statistical mechanics domain has introduced two approaches for quantifying long
memory in a time series: fluctuation analysis and the long-range correlation method.
We introduce two fluctuation analysis methods, one for characters and one for words,
and one long-range correlation method, applied to words. Although these methods are
related analytically for a well-formed time series (Eisler, Bartos, and Kertész 2007), the
relation is nontrivial for real phenomena.
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3.2.1 Ebeling’s Method. Ebeling’s method (Ebeling and Neiman 1995) analyzes the power-
law relation between the lengths of subsequences of a text and the variance of the
number of characters in the subsequences. Given a set of elements (characters in this
method), W, let y(c, l) be the counts of character c within subsequences of the text of
length l. Then, the fluctuation function m(l) is defined as

m(l) =
∑
c∈W

m2(c, l) ∝ lη (6)

where m2(c, l) is the variance of the counts y(c, l):

m2(c, l) =< y2(c, l) > −(< y(c, l) >)2 (7)

Theoretically, if a time series is independent and identically distributed (i.i.d.), then η =
1.0, in general, and η > 1.0 if a time series has long memory. Ebeling and Neiman (1995)
reported that the character sequence of the Bible has exponent η = 1.67, indicating the
presence of clustering behavior at the character level. Following the original work, we
apply this method at the character level. Figure 1(c) shows the fluctuation analysis m(l)
for WT2. The exponent is η = 1.32 with error ε = 0.10.

3.2.2 Taylor’s Law. Taylor’s law was originally reported in two pioneering works (Smith
1938; Taylor 1961) and has been applied in various domains (Eisler, Bartos, and Kertész
2007). It describes the power-law relation between the mean and the variance in spa-
tiotemporal observations. In this article, we apply Taylor’s law for natural language
text as proposed by Kobayashi and Tanaka-Ishii (2018) and Tanaka-Ishii and Kobayashi
(2018).

Given a text with a set of words, W, for a given segment size l the number of
occurrences of a particular word w ∈W is counted, and the mean µw and standard
deviation σw are calculated. We thus obtain a scatter plot of µ and σ for all elements
of W. Taylor’s law states the following power-law relation between σ and µ with the
Taylor exponent ζ:

σ ∝ µζ (8)

Figure 1(d) shows the Taylor’s law plot for WT2 with l = 5, 620 (l can be any value
larger than 1). The scatter plot generally follows a power-law function with exponent
ζ = 0.62 and has some deviation from the regression line, with error ε = 0.15.

The Taylor exponent takes the range of values 0.50 ≤ ζ ≤ 1.00, and the two limit
values ζ = 0.50, 1.0 have clear interpretations. For an i.i.d. process, it is proved that ζ =
0.50. On the other hand, one case with ζ = 1.0 occurs when all segments of length l
contain the elements of W with the same proportions. For example, given W = {a, b},
suppose that b always occurs twice as often as a in all segments (e.g., one segment with
three a and six b, another segment with one a and two b). Then, both the mean and
standard deviation for b are twice those for a, and thus ζ = 1.0. Therefore, the Taylor
exponent quantifies how consistently words co-occur in a text. The Taylor exponent of
a natural language text typically has a range of 0.55 ≤ ζ ≤ 0.65 and never takes ζ =
0.50 (which would indicate no long memory). It takes different ranges of values for
different types of sequences (e.g., child-directed speech and programming source code).
It is therefore expected to have the capability to evaluate machine-generated text.
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Ebeling’s method and Taylor’s law analysis have the following two differences.
First, Ebeling’s method analyzes the growth of the variance m(l) with respect to the
length of the subsequences, l, and Taylor’s law analyzes the variance with respect to
the mean frequency within a fixed subsequence length. Second, to acquire an exponent
for a text, Ebeling’s method takes the sum of the variances over all symbols, whereas
Taylor’s law obtains the exponent from the individual points for all words.

For the latter reason, Ebeling’s method is influenced by a small number of fre-
quently appearing symbols. Because it involves the sum of the variances of all words
that follow the power law, the behavior of the exponent η often tends to be less sensible
than that of the Taylor exponent.

3.2.3 Long-Range Correlation. Long-range correlation analysis quantifies the burstiness
of word occurrence in a natural language text. The analysis measures the degree of
self-similarity within a sequence. Among such analyses, early works proposed mutual-
information-based methods (Li 1989; Ebeling and Pöschel 1994; Lin and Tegmark 2017).
Such methods compute the mutual information between characters separated by s
characters. These works reported that the mutual information decays according to a
power law with the distance s. Takahashi and Tanaka-Ishii (2017) showed, however, that
the mutual information method cannot quantify the long-range dependence in word
sequences. Moreover, the mutual information between characters decays quickly and
reaches a plateau at a distance s ≈ 101 for natural language texts such as the collected
works of Shakespeare and the PTB data set.

Another approach to long-range correlation analysis is the use of the autocorrelation
function (ACF). The ACF c(s) is defined as the Pearson correlation for two elements of
a sequence separated by a distance s:

c(s) =
E[(xt − µ)(xt+s − µ)]

σ2 (9)

where µ and σ are the respective mean and standard deviation of the time series xt. The
value of c(s) ranges between −1 and 1. A time series is said to be long-range correlated
if the ACF c(s) for two elements separated by distance s follows a power law:

c(s) ∝ s−ξ, s > 0, 0 < ξ < 1 (10)

In the case of application to real-world data, a sequence is said to be long-range cor-
related if c(s) takes positive values for s until about 1/100 of the length (Lennartz and
Bunde 2009). For sequences without correlation, c(s) fluctuates around zero.

Because the ACF is applicable only for numerical time series, the application of this
method for natural language text requires transformation of the sequence of symbols
into a numerical time series. Recent methods do so by considering the intervals of
word occurrences (Tanaka-Ishii and Bunde 2016). In this article, we apply a method that
measures the ACF of a sequence of the return intervals of rare words, which amounts
to 1

Q of the text length. With this method, Tanaka-Ishii and Bunde (2016) reported that
power-law decay of the ACF is observed for natural language texts.

Figure 1(e) shows the long-range correlation analysis of word sequences in WT2.
The hyperparameter was set to Q = 16 for all results in this article. As seen in the figure,
the ACF c(s) always takes positive values up to 1/100 of the sequence length and follows
a power-law function (i.e., a straight line in a log-log plot) with exponent ξ = 0.33 and
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error ε = 0.04. Throughout this article, the error ε of this metric is only measured for
s ≤ 100.

3.3 Examples of Scaling Properties for Other Natural Language Texts

Except for Zipf’s and Heaps’ laws, the scaling properties have hardly appeared in the
context of computational linguistics or language engineering. This may be because
these properties do not directly incorporate semantics or syntax, which are of central
concern in those domains. Instead, the properties quantify the universal structures
behind natural language in a statistical sense. Those introduced so far are robust and
apply to texts across different genres and languages as long as the text is sufficiently
long. Figure 2 shows the scaling properties of another language modeling data set, the
PTB. This text also satisfies all five scaling properties. They are indeed universal with
respect to the genre or even language. More results are shown in Appendix A. Figure A1
shows the scaling properties of the collected works of Shakespeare, and their exponents
are listed in the third block of Table 1. Likewise, the scaling properties and exponents
for Hong Lou Meng, a Chinese literary work, are shown in Figure A2 and listed in the last
block of Table 1, respectively. Among the exponents, that of the long-range correlation,
ξ, differs largely among the four data sets considered thus far. In contrast, the other
exponents generally take similar values for the data sets.

Figure 2
Scaling properties of the Penn Treebank (preprocessed).
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Table 1
Summary of the data sets used in this article and their statistics.

Tokens Vocab. Vocabulary Population Long Memory
Zipf’s Heaps’ Ebeling’s Taylor’s Long Range
Law Law Method Law Correlation

f (r)∝ r−α v(n)∝ nβ m(l)∝ lη σ∝ µζ c(s)∝ s−ξ

Wikitext-2 (English, Wikipedia article)
preprocessed data set 2,088,628 33,278 Yes 0.75 (0.13) 1.33 (0.10) 0.62 (0.15) 0.33 (0.04)
original data set 2,088,628 76,617 Yes 0.78 (0.09) 1.33 (0.10) 0.65 (0.11) 0.32 (0.03)

Penn Treebank (English, The Wall Street Journal news article)
preprocessed data set 887,521 10,000 Yes 0.70 (0.16) 1.23 (0.06) 0.56 (0.14) 0.81 (0.24)
original data set 892,008 89,317 Yes 0.83 (0.07) 1.20 (0.05) 0.57 (0.06) 0.60 (0.16)

Shakespeare (old English collection of literature works)
original text 740,706 83,105 Yes 0.79 (0.07) 1.24 (0.09) 0.59 (0.05) 0.13 (0.02)

Hong Lou Meng (Chinese, literature work)
original text 703,034 18,312 Yes 0.74 (0.14) 1.31 (0.07) 0.58 (0.07) 0.39 (0.04)

4. Computational Models of Natural Language

This section introduces the computational models of natural language tested in this ar-
ticle. We test four categories of language models: n-gram models, grammatical models,
language models based on the Simon or Pitman-Yor process, and neural language mod-
els. These categories cover the different genres of language models that have appeared
in the history of computational linguistics. For every category, some sophisticated,
advanced models have been proposed. The experiments reported in §6 and §7, however,
were conducted only with the most recent models whose code was available, except for
the n-gram models. This served to avoid errors in reimplementation.

4.1 n-Gram Models

An n-gram language model is the most basic model, as it is an n− 1-ordered Markov
model. Let c(Xt

1) be the count of Xt
1 = x1, x2, . . . , xt, and then the probability of element

xt is calculated as

P(xt+1|Xt
1 ) ≈ P(xt+1|Xt

t−n+1 ) =
c(Xt+1

t−n+1 )

c(Xt
t−n+1 )

(11)

This article examines 3-gram and 5-gram models. Other than the original n-gram
model, we also test models with a variety of smoothing techniques to improve the
perplexity. In particular, linear interpolation (Stolcke 2002), Katz backoff (Katz 1987),
and Kneser-Ney smoothing (Kneser and Ney 1995) have been known to enhance the
performance of n-gram models. We also set n = 3 and n = 5 for these models to compare
with the original n-gram models. It has been empirically verified that longer context
does not necessarily contribute to improving the perplexity and can even degrade
performance (Chen and Goodman 1999). Simple n-gram models, in fact, have been
mathematically shown to be incapable of reproducing long memory (Kingman 1963;
Lin and Tegmark 2017).
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4.2 Grammatical Models

The PCFG is a basic grammatical model. We constructed this grammar model with the
annotated PTB data set and used the Natural Language Toolkit (NLTK) (Loper and
Bird 2002) to generate sentences according to the probabilities assigned to productions.
Unlike an n-gram model, the PCFG generates a text by using a tree.

4.3 Language Models Based on Simon/Pitman-Yor Processes

The Simon and Pitman-Yor processes are abstract models of natural language that
reproduce Zipf’s law and Heaps’ law. These are generative models, and a sequence
is formulated over time, either through (1) introduction of new words or (2) sampling
from the past sequence. Let K(Xt

1) be the number of word types existing in Xt
1, and let

nk(Xt
1) be the frequency of the kth word type in Xt

1. The sequence starts with K(X0) = 1
and X0 = x0 at t = 0. For t ≥ 1, given a constant a with 0 < a < 1, the Simon process
(Simon 1955) introduces a new word with probability a, or a word is sampled from Xt

1
with probability 1− a:

P(xt+1 = wk) =

{
(1− a)

nk(Xt
1)

t 1 ≤ k ≤ K(Xt
1)

a k = K(Xt
1) + 1

The Simon process strictly follows Zipf’s law with exponent α = 1.0 and conse-
quently Heaps’ law, as well. In contrast, the Pitman-Yor process copes with this problem
by decreasing the introduction rate of new words in proportion to K(Xt

1) via another
parameter b, with 0 ≤ a < 1 and 0 ≤ b:

P(xt+1 = wk) =


nk(Xt

1)− a
t + b 1 ≤ k ≤ K(Xt

1)

aK(Xt
1) + b

t + b k = K(Xt
1) + 1

These two parameters serve to produce Zipf’s law with slightly convex behavior
(Goldwater, Griffiths, and Johnson 2011). The basic models introduced to this point
define nothing about how to introduce words: We could simply generate random
sequences and examine their scaling properties, because the basic formulations thus
far govern the nature of the language models elaborated from these basic models.

By mapping words to the elements produced, we would generate a language model,
like the two-stage model proposed in Goldwater, Griffiths, and Johnson (2011). Here,
we consider a more advanced model proposed as the hierarchical Pitman-Yor language
model (HPYLM) (Teh 2006), which integrates the Pitman-Yor process into an n-gram
model.1

1 The implementation used in the experiment is available at https://github.com/musyoku/hpylm.
Although HPYLM is an n-gram language model and it is possible to calculate the perplexity, the resulting
value is not comparable with those of other n-gram language models and neural language models.
Specifically, the training data requires using <BOS> and <EOS> to signify the beginning and end of a
sentence, respectively. This decreases the perplexity because of the regularities introduced by these
insertions, such as <EOS> being almost always followed by <BOS>.
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4.4 Neural Language Models

State-of-the-art neural language models are known to outperform n-gram language
models by the measure of perplexity. The majority of promising neural language models
(Mikolov and Zweig 2012; Melis, Dyer, and Blunsom 2018; Merity, Keskar, and Socher
2018b; Yang et al. 2018) adopt RNNs. An RNN computes a hidden state ht recursively
from the input xt and the previous hidden state ht−1 to create an effective flow of past
information:

ht = Φ(xt, ht−1) (12)

The function Φ depends on the recurrent architecture of the network. A simple RNN
model computes the hidden vector ht as a matrix transformation of xt and ht−1 by the
parameters Wxh and Whh and a nonlinear transformation by the sigmoid function:

ht = sigmoid(Wxhxt + Whhht−1 + bh) (13)

In modern applications, RNNs with a gating mechanism, such as long short-term
memory (LSTM) (Hochreiter and Schmidhuber 1997), a gated recurrent unit (GRU) (Cho
et al. 2014), and quasi-recurrent neural networks (QRNNs) (Bradbury et al. 2017), are
often adopted. The recurrent architectures of these models are defined as follows.

LSTM

it = sigmoid(Uixt + Wiht−1 + bi) (14)

ft = sigmoid(Uf xt + Wf ht−1 + bf ) (15)

ot = sigmoid(Uoxt + Woht−1 + bo) (16)

c̃t = tanh(Uc̃xt + Wc̃ht−1 + bc̃) (17)

ct = sigmoid(ft ◦ ct−1 + it ◦ c̃t) (18)

ht = tanh(ct) ◦ ot (19)

GRU

rt = sigmoid(Urxt + Wrht−1 + br) (20)

ut = sigmoid(Uuxt + Wuht−1 + bf ) (21)

h̃t = tanh(Wxrt ◦ xt + Whht + b) (22)

ht = (1− ut) ◦ ht−1 + ut ◦ h̃t (23)

QRNNs

zt = sigmoid(W1
zxt−1 + W2

zxt) (24)

ft = sigmoid(W1
f xt−1 + W2

f xt) (25)

ht = ft ◦ ht−1 + (1− ft) ◦ zt (26)
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Here, the operator ◦ denotes element-wise multiplication, the capital symbols W and
U with subscripts are matrices, and the lowercase symbols b with subscripts are bias
vectors. All these architectures have a gating mechanism (Equations (18), (23), and (26)),
which balances the use of the states at the previous and current time steps.

In this article, we consider a total of nine neural language models. Three of them
are based on a simple RNN, a GRU (Cho et al. 2014), and QRNNs (Bradbury et al.
2017; Merity, Keskar, and Socher 2018a). The rest are LSTM-based language models.
The first LSTM model is trained without regularizations such as dropout. The second
model is AWD-LSTM (Merity, Keskar, and Socher 2018b), which applies regulariza-
tion effectively to achieve competitive prediction performance. The other four models
integrate extended architectures of RNN language models, namely, continuous cache
(Grave, Joulin, and Usunier 2017) and mixture of softmaxes (MoS) (Yang et al. 2018).
Continuous cache is a memory augmentation architecture that computes a cache prob-
ability pcache from the l most recent context. It computes the similarity between ht and
hi to estimate the reappearance of the word at time step i. The output probability of
the model with continuous cache, denoted as the AWD-LSTM-Cache model, is a linear
interpolation of the AWD-LSTM output and the cache probability. We also test a model
incorporating the Simon process, denoted as the AWD-LSTM-Simon model. It behaves
as a uniform sampling from the past generated sequence and is a special case of AWD-
LSTM-Cache. In addition, the MoS architecture reformulates the language modeling
task as matrix factorization and is a state-of-the-art language model integrated with
AWD-LSTM as the AWD-LSTM-MoS model. Finally, we also consider a combination of
all these architectures, denoted as the AWD-LSTM-MoS-Cache model.

The hyperparameters used in our experiments followed the instructions in Merity,
Keskar, and Socher (2018b) and Yang et al. (2018). The context length (or the length of
back-propagation through time) was 70, as given in the references, for both character-
and word-based models. The cache window size of the AWD-LSTM-Simon model was
set to 10, 000, to balance a large window size with computational efficiency. All the
language models were trained to minimize the negative log-likelihood of the training
data by stochastic gradient algorithms. Note that the perplexity scores for character-
and word-based models are not directly comparable, as they indicate bits per character
and per word, respectively.

5. Experiments

For every language model, a sample text of 1 million words was generated and eval-
uated using the metrics explained thus far. We expected models that learned a natural
language text to be able to generate a sample text with scaling properties resembling
those of the original text. In particular, we expected that the exponent values would be
close to those of the original data set.

The subsequent two sections, §6 and §7, proceed by examining the scaling prop-
erties as applied to models that learned WT2 or the PTB. As introduced in §3.3, these
are two standard data sets used as language model benchmarks. For both WT2 and
the PTB, the data set was preprocessed to reduce the vocabulary size. Infrequent words
were replaced with <unk>, and numbers were replaced with N in the PTB (Mikolov
et al. 2010). Language models were then constructed by training with either WT2 or the
PTB, except for the Simon and Pitman-Yor processes (but not HPYLM, which does learn)
and the PCFG. The PCFG could be constructed only with the PTB data set, because it
requires a parsed corpus, which does not exist for WT2.
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Table 2
Summary of the scaling properties of the language models with WT2. † The perplexity measure
for HPYLM is not equivalent to that for the n-gram and neural language models because of the
preprocessing difference. ‡ The values for these models are in bits per character.

Perplexity Vocabulary Population Long Memory
Zipf’s Heaps’ Ebeling’s Taylor’s Long Range
Law Law Method Law Correlation

f (r)∝ r−α v(n)∝ nβ m(l)∝ lη σ∝ µζ c(s)∝ s−ξ

Original Data set
Wikitext-2 (Preprocessed) - Yes 0.75 (0.13) 1.32 (0.10) 0.62 (0.15) 0.33 (0.04)
Wikitext-2 (Original) - Yes 0.78 (0.09) 1.33 (0.10) 0.65 (0.11) 0.32 (0.03)

Shuffled Data set
Wikitext-2(1-gram) - Yes 0.75 (0.16) 1.00 (0.01) 0.50 (0.02) No
Wikitext-2(2-gram) - Yes 0.76 (0.16) 1.00 (0.00) 0.50 (0.01) No
Wikitext-2(5-gram) - Yes 0.76 (0.16) 1.00 (0.00) 0.50 (0.02) No
Wikitext-2(10-gram) - Yes 0.76 (0.16) 1.00 (0.00) 0.50 (0.02) No

N-gram Language Model
3-gram 837.58 Yes 0.79 (0.13) 1.00 (0.00) 0.50 (0.02) No
5-gram 534.98 Yes 0.78 (0.13) 1.00 (0.00) 0.50 (0.02) No
linear interpolation 294.72 Yes 0.78 (0.13) 1.00 (0.00) 0.50 (0.02) No
Katz backoff 3-gram 285.14 Yes 0.78 (0.13) 1.00 (0.00) 0.50 (0.02) No
Katz backoff 5-gram 357.94 Yes 0.78 (0.13) 1.00 (0.00) 0.50 (0.02) No
Kneser-Ney 3-gram 204.15 Yes 0.78 (0.13) 1.00 (0.00) 0.50 (0.02) No
Kneser-Ney 5-gram 215.44 Yes 0.78 (0.13) 1.00 (0.00) 0.50 (0.02) No

Simon/Pitman-Yor Process and Related Language Model
Simon - Yes 0.95 (0.15) - 0.50 (0.01) 0.09 (0.03)
Pitman-Yor - Yes 0.78 (0.09) - 0.50 (0.01) No
HPYLM (184.34†) Yes 0.78 (0.13) 1.00 (0.00) 0.50 (0.02) No

Neural Language Model (character based)
LSTM (no regularization) (1.44‡) Yes 0.74 (0.17) 1.06 (0.05) 0.50 (0.01) No
AWD-LSTM (1.22‡) Yes 0.73 (0.15) 1.27 (0.10) 0.54 (0.04) 0.30 (0.05)

Neural Language Model (word based)
Simple RNN 164.51 Yes 0.79 (0.12) 1.01 (0.00) 0.50 (0.02) No
GRU 96.22 Yes 0.79 (0.11) 1.12 (0.06) 0.52 (0.03) 0.52 (Weak)
QRNN 74.74 Yes 0.79 (0.11) 1.08 (0.03) 0.52 (0.03) 0.57 (0.08)
LSTM (no regularization) 113.18 Yes 0.78 (0.12) 1.10 (0.03) 0.52 (0.03) 0.43 (0.15)
AWD-LSTM 64.27 Yes 0.76 (0.13) 1.30 (0.15) 0.58 (0.06) 0.05 (0.01)
AWD-LSTM-Simon 61.59 Yes 0.77 (0.10) 1.25 (0.15) 0.55 (0.05) 0.03 (0.01)
AWD-LSTM-MoS 62.44 Yes 0.78 (0.12) 1.16 (0.07) 0.54 (0.04) 0.33 (0.07)
AWD-LSTM-MoS-Cache 59.21 Yes 0.78 (0.11) 1.20 (0.07) 0.57 (0.07) 0.29 (0.05)
AWD-LSTM-Cache 50.39 Yes 0.78 (0.11) 1.25 (0.10) 0.59 (0.07) 0.14 (0.04)

Tables 2 and 3 list the perplexity and the scaling exponents of the models for the
WT2 and PTB data sets, respectively. Each row presents the results for a single text,
either real or machine-generated. The perplexity is not reported for the Simon model,
the Pitman-Yor process, or the PCFG. For the two mathematical models, it was not
measured because they do not have references for computing the prediction accuracy.
The perplexity of the PCFG is not reported because its computation does not trivially
match that of the n-gram and neural language models.

The first blocks in each table indicate the properties of the original data sets with and
without preprocessing. The second blocks list the results for shuffled data sets, which
preserve parts of the n-gram structure. They were tested to check the behavior of the
evaluation metrics on randomized texts. The shuffled data sets were expected to lose
long memory and were largely different from the original natural language texts. The
shuffling was conducted as follows. As an example, the text ABCDEFGHI was first split

494



Takahashi and Tanaka-Ishii Evaluating Language Models with Scaling Properties

Table 3
Summary of the scaling properties of the language models with the PTB. † The perplexity
measure for HPYLM is not equivalent to that for the n-gram and neural language models
because of the preprocessing difference. ‡ The values for these models are in bits per character.

Perplexity Vocabulary Population Long Memory
Zipf’s Heaps’s Ebeling’s Taylor’s Long Range
Law Law Method Law Correlation

f (r)∝ r−α v(n)∝ nβ m(l)∝ lη σ∝ µζ c(s)∝ s−ξ

Original Data set
Penn Treebank (Preprocessed) - Yes 0.70 (0.16) 1.23 (0.06) 0.56 (0.14) 0.81 (0.24)
Penn Treebank (Original) - Yes 0.83 (0.07) 1.20 (0.05) 0.57 (0.06) 0.60 (0.16)

Shuffled Data set
Penn Treebank (1-gram) - Yes 0.72 (0.18) 1.00 (0.00) 0.50 (0.02) No
Penn Treebank (2-gram) - Yes 0.72 (0.18) 1.00 (0.00) 0.50 (0.02) No
Penn Treebank (5-gram) - Yes 0.72 (0.18) 1.00 (0.00) 0.50 (0.02) No
Penn Treebank (10-gram) - Yes 0.72 (0.18) 1.00 (0.01) 0.50 (0.02) No

N-gram Language Model
3-gram 367.79 Yes 0.71 (0.19) 0.99 (0.01) 0.50 (0.02) No
5-gram 561.65 Yes 0.72 (0.21) 1.00 (0.00) 0.50 (0.02) No
linear interpolation 238.59 Yes 0.71 (0.20) 1.00 (0.00) 0.50 (0.02) No
Katz backoff 3-gram 195.65 Yes 0.71 (0.19) 1.00 (0.00) 0.50 (0.02) No
Katz backoff 5-gram 250.18 Yes 0.71 (0.19) 1.00 (0.00) 0.50 (0.02) No
Kneser-Ney 3-gram 150.64 Yes 0.72 (0.21) 1.00 (0.00) 0.50 (0.02) No
Kneser-Ney 5-gram 156.70 Yes 0.71 (0.20) 1.00 (0.00) 0.50 (0.02) No

Simon/Pitman-Yor Process and Related Language Model
HPYLM (140.49†) Yes 0.73 (0.21) 1.00 (0.00) 0.50 (0.02) No

Grammatical Model
PCFG - Yes 0.73 (0.19) 1.00 (0.00) 0.50 (0.02) No

Neural Language Model (character based)
LSTM (no regularization) (1.38‡) Yes 0.79 (0.08) 1.03 (0.01) 0.50 (0.01) No
AWD-LSTM (1.18‡) Yes 0.76 (0.12) 1.10 (0.03) 0.51 (0.02) 0.40 (0.10)

Neural Language Model (word based)
Simple RNN 123.96 Yes 0.71 (0.19) 1.00 (0.01) 0.50 (0.02) 0.74 (Weak)
GRU 85.05 Yes 0.71 (0.18) 1.05 (0.02) 0.50 (0.02) 0.40 (Weak)
QRNN 62.65 Yes 0.71 (0.18) 1.10 (0.03) 0.51 (0.02) 0.54 (Weak)
LSTM (no regularization) 111.79 Yes 0.71 (0.19) 1.04 (0.01) 0.51 (0.02) 0.84 (Weak)
AWD-LSTM 56.40 Yes 0.71 (0.18) 1.06 (0.02) 0.51 (0.03) 0.69 (Weak)
AWD-LSTM-Simon 57.85 Yes 0.72 (0.16) 1.04 (0.01) 0.51 (0.03) No
AWD-LSTM-MoS 54.77 Yes 0.71 (0.18) 1.10 (0.03) 0.52 (0.04) 0.77 (Weak)
AWD-LSTM-MoS-Cache 54.03 Yes 0.71 (0.18) 1.13 (0.04) 0.55 (0.06) 0.61 (Weak)
AWD-LSTM-Cache 52.51 Yes 0.72 (0.17) 1.07 (0.02) 0.53 (0.05) 0.57 (Weak)

into 3-gram chunks, giving ABC/DEF/GHI. Then, the chunks were shuffled randomly
to obtain a 3-gram shuffled data set (i.e., DEF/GHI/ABC). Note that this shuffling does
not preserve some n-gram structures, such as BCD and FGH, in the original text. The
remaining blocks correspond to the results for the language models introduced. The
grammatical model category is absent in Table 2 because of the lack of a parsed corpus
for WT2. Appendix B includes all figures showing the scaling properties.

6. Evaluation of Metrics

The first columns of Table 2 and Table 3 list the perplexities of the language models. The
blank symbol “-” appears in rows for which the perplexity is not available: the original
and shuffled data sets are not language models, while the Simon/Pitman-Yor processes
and the grammatical model have different definitions of probability and cannot be
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measured comparably with the n-gram and neural language models. The perplexity
scores in parentheses were measured comparably but are not comparable with the other
values because of their different implementations of preprocessing, as explained at the
ends of §4.3 and §4.4.

In terms of perplexity, the neural language models consistently outperformed the
n-gram models. Among the n-gram models, Kneser-Ney smoothing consistently out-
performed the other smoothing techniques. The 3-gram models sometimes had better
perplexity than the 5-gram models did, as the training data sets in this experiment were
not especially large (see Table 1). Among the neural language models, the simple RNN
model had the worst perplexity. The RNNs with a gating mechanism improved the
perplexity over that of the simple RNN model. In particular, the AWD-LSTM model
performed the best among the RNN language models. The additional architectures of
the cache mechanism and MoS contributed to improving the perplexity.

6.1 Metrics of Scaling Properties

The proposed evaluation metrics should be compared with another evaluation metric
that is assumed plausible. In this article, the perplexity is adopted as such a metric.
As perplexity has been the standard evaluation metric in language modeling and the
prediction accuracy is of primary importance for that application, we compare the
metrics derived from the scaling properties by comparing them with the perplexity and
consider how they correlate with it.

Columns 3–7 of Table 2 and Table 3 list the respective results for the scaling
properties: Zipf’s law, Heaps’ law, Ebeling’s method, Taylor’s law, and the long-range
correlation. Even when the perplexity was not computable, the properties could all still
be examined regardless of the kind of language model, except for Ebeling’s method,
because it applies to characters. Overall, except for the long-range correlation, the results
were consistent across the data sets: When a scaling law was followed by one data set,
then it was also followed by the other data set.

All the language models qualitatively satisfied Zipf’s law. We indicate this by Yes in
the tables for the reason stated in §3.1. Relatedly, all the language models also satisfied
Heap’s law. These two properties, however, are present even with a unigram language
model. Despite their fame, Zipf’s law and Heaps’ law have no capacity to distinguish
randomized and real text. It is therefore not a challenge for language models to satisfy
Zipf’s and Heaps’ laws.

In contrast, the metrics of long memory were capable of quantifying the quality of
machine-generated texts. For Ebeling’s method (first column of the Long Memory vertical
block), the exponent of the original data set was η = 1.32 for WT2 and η = 1.23 for
the PTB, whereas that of both shuffled data sets was η = 1.00, thus indicating no long
memory in the latter. The neural language models had exponents between η = 1.10 and
η = 1.30 for WT2, and between η = 1.04 and η = 1.13 for the PTB, whereas the other
language models were the same as i.i.d. behavior. Ebeling’s method therefore could
verify the text quality to a certain extent.

The last column in each table lists the results for the long-range correlation. If the
text was not long-range correlated, this is denoted by No or Weak: No if more than one
value was negative for s ≤ 10, or Weak if there was one negative value for s ≤ 100. Such
arbitrariness of judgment is one disadvantage of this metric. In addition, even though
it has good correspondence with the other two metrics of long memory, it has two
further disadvantages. First, the exponent has poor correlation with the perplexity. The
second disadvantage was exhibited in the degree of long-range correlation listed for the
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Figure 3
Scatter plots of the perplexity of various models with respect to the Taylor exponent ζ (left) and
the perplexity of the eval-AWD-LSTM model (right) for the WT2 data set (left). The Taylor
exponents of the n-gram language models were consistently ζ = 0.50, which indicates the
absence of long memory. In contrast, the neural language models had Taylor exponents of
ζ > 0.50, which indicates the presence of long memory in the generated texts (right). The
perplexity of eval-AWD-LSTM had clear, positive correlation with the perplexities of the
language models.

Simon model. The degree was high at the beginning and did not decay (see Figure A16
in Appendix B). As the Simon model had more new words later in a sequence, the
correlation stayed large even for two sequences with a large distance between them.
Therefore, this non-decaying phenomenon was due not to burstiness but to a different
characteristic specific to the Simon process. The Taylor exponent for the Simon process
was ζ = 0.50, indicating that the long-range correlation observed was not due to long
memory behavior.

Finally, the Taylor exponent ζ seemed the most reliable metric among those derived
from the scaling properties. The left panel of Figure 3 shows the correlation between the
perplexity of the models and the Taylor exponent ζ. As the perplexity decreased, the
Taylor exponent ζ showed a steep increase. Because the exponent quantifies the degree
of burstiness of word occurrence, this result indicates that the better models in terms of
perplexity can also reproduce that statistical property.

Overall, the scaling properties of long memory serve for evaluation of generated
texts. The Taylor exponent ζ especially has the capability for evaluation.

6.2 Comparison with PCFG- and Language-Model–Based Evaluation

Next, we test the effectiveness of using the negative log-likelihood from a PCFG
(Rajeswar et al. 2017) and the perplexity obtained from a neural language model
(Fedus, Goodfellow, and Dai 2018). The results show how PCFG-based evaluation is
not effective, in contrast to evaluation based on the scaling properties.
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Figure 4
Average negative log-likelihood of a PCFG for different sentence lengths from the PTB data set
(magenta), n-word chunks from the AWD-LSTM-Cache model (blue), and 5-grams from the
shuffled PTB data set (green). The area shaded red represents the upper and lower bounds of the
negative log-likelihood of the PCFG for the PTB data set.

In principle, the negative log-likelihood of a PCFG evaluates the grammaticality of
text. Rajeswar et al. (2017) used the negative log-likelihood of a PCFG to evaluate GAN-
generated texts. The scatter plots in Figure 4 show the average negative log-likelihood
from a PCFG for the PTB data set (magenta), the PTB data set shuffled with 5-grams
(green), and the AWD-LSTM-Cache model (blue). Because the PTB data set is annotated,
the negative log-likelihood was calculated for every sentence, and the values were
plotted for different sentence lengths. As for the other two cases, because the outputs
had no sentence boundaries indicated in the training data, consecutive parts of a given
length n were randomly extracted from the text and fed to the PCFG parser, and the
negative log-likelihood was then calculated. The NLTK (Loper and Bird 2002) parser
implementation was used in this work. The shaded area in red represents the upper
and lower bounds of the original PTB data set.

The average negative log-likelihood of a sentence has a strong linear correlation
with its length, and the values for the PTB data set were consistently lower than those
for the generated text of the AWD-LSTM-Cache model and the 5-gram shuffled text.
The differences from the original PTB data set, however, were not significant, even
though the 5-gram and AWD-LSTM-Cache results were calculated merely for n-word
random chunks. Moreover, the average values for the 5-gram shuffled text and the
machine-generated text were within the range of the PTB’s upper and lower bounds.
This indicates that the negative log-likelihood from a PCFG is probably not usable for
evaluating machine-generated texts.

Apart from the PCFG, Fedus, Goodfellow, and Dai (2018) proposed evaluating the
quality of GAN-generated texts with the perplexity computed from a neural language
model. We next test whether that method provides a good measure of the language
models considered here. Accordingly, we used the AWD-LSTM model to evaluate the
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Table 4
Evaluation of language models by using the AWD-LSTM model (trained with WT2), in
comparison with using the perplexity and the Taylor exponent.

Perplexity Taylor exponent Perplexity from eval-AWD-LSTM

Original Data set

Wikitext-2 (Preprocessed) - 0.62 (0.15) 33.81
Shuffled Data Set

Wikitext-2 (1-gram) - 0.50 (0.02) 7,389.15
Wikitext-2 (2-gram) - 0.50 (0.02) 2,405.15
Wikitext-2 (5-gram) - 0.50 (0.02) 559.92
Wikitext-2 (10-gram) - 0.50 (0.02) 236.49

N-gram Language Model
3-gram 837.58 0.50 (0.02) 3,730.74
5-gram 534.98 0.50 (0.02) 7,532.91
linear interpolation 294.72 0.50 (0.02) 1,371.75
Katz backoff 3-gram 285.14 0.50 (0.02) 663.74
Katz backoff 5-gram 357.94 0.50 (0.02) 664.25
Kneser-Ney 3-gram 204.15 0.50 (0.02) 2,562.24
Kneser-Ney 5-gram 215.44 0.50 (0.02) 2,743.65
HPYLM 184.34 0.50 (0.02) 884.76

Neural Language Model
Simple RNN 164.51 0.50 (0.02) 645.64
GRU 96.22 0.52 (0.03) 266.33
QRNN 74.74 0.52 (0.03) 135.68
LSTM (no regularization) 113.18 0.52 (0.03) 177.12
AWD-LSTM 64.27 0.58 (0.06) 88.73
AWD-LSTM-Simon 61.59 0.55 (0.05) 130.52
AWD-LSTM-MoS 62.44 0.54 (0.04) 97.89
AWD-LSTM-MoS-Cache 59.21 0.57 (0.07) 164.39
AWD-LSTM-Cache 50.39 0.59 (0.07) 109.02

texts generated by the n-gram and neural language models. To avoid confusion, we
call this the eval-AWD-LSTM model. It was trained with the WT2 and PTB data sets to
evaluate the texts generated by the various other models (including AWD-LSTM itself).

The perplexity of eval-AWD-LSTM was calculated for each machine-generated text
by (1). The rightmost columns of Tables 4 and 5 list the results, and the right panel
of Figure 3 shows a scatter plot of the perplexity of the models with respect to the
perplexity of eval-AWD-LSTM. This method seemed to work well, especially in globally
distinguishing the n-gram and neural language model categories: The former category
had perplexities above 600, whereas the latter category had almost all values below 200
for WT2. The eval-AWD-LSTM perplexity could not, however, detect the differences
among the n-gram language models nor among the neural language models (e.g., be-
tween Katz backoff and Kneser-Ney, or AWD-LSTM and AWD-LSTM-Cache). The bias
caused by the evaluation model is also a problem with this method. In the experiment,
AWD-LSTM was the best model by eval-AWD-LSTM evaluation for both the WT2 and
PTB data sets. It is likely that worse-performing models whose behavior is similar to
that of the evaluation model are evaluated more highly than are other models that have
higher fluency but behave differently from the evaluation model.
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Table 5
Evaluation of language models by using the AWD-LSTM model (trained with the PTB), in
comparison with using the perplexity and the Taylor exponent.

Perplexity Taylor exponent Perplexity from
eval-AWD-LSTM

Original Data Set
Penn Tree Bank (Preprocessed) - 0.56 (0.14) 40.70

Shuffled Data Set
Penn Tree Bank (1-gram) - 0.50 (0.02) 3,698.52
Penn Tree Bank (2-gram) - 0.50 (0.02) 1,328.39
Penn Tree Bank (5-gram) - 0.50 (0.02) 351.22
Penn Tree Bank (10-gram) - 0.50 (0.02) 166.93

N-gram Language Model
3-gram 367.79 0.50 (0.02) 1,697.99
5-gram 561.65 0.50 (0.02) 3,463.88
linear interpolation 238.59 0.50 (0.02) 965.58
Katz backoff 3-gram 195.65 0.50 (0.02) 420.48
Katz backoff 5-gram 250.18 0.50 (0.02) 471.03
Kneser-Ney 3-gram 150.64 0.50 (0.02) 1,324.67
Kneser-Ney 5-gram 156.70 0.50 (0.02) 1,411.14
HPYLM 140.49 0.50 (0.02) 412.13

Neural Language Model
Simple RNN 123.96 0.50 (0.02) 321.31
GRU 85.05 0.50 (0.02) 258.12
QRNN 62.65 0.51 (0.02) 113.22
LSTM (no regularization) 113.18 0.51 (0.02) 234.05
AWD-LSTM 64.27 0.51 (0.03) 90.01
AWD-LSTM-Simon 61.59 0.51 (0.03) 144.45
AWD-LSTM-MoS 62.44 0.52 (0.04) 97.73
AWD-LSTM-MoS-Cache 59.21 0.55 (0.06) 100.56
AWD-LSTM-Cache 50.39 0.53 (0.05) 123.32

Overall, the evaluation methods using other language models were not consistent.
The PCFG-based evaluation could not even clearly distinguish between the shuffled
and original data sets. Evaluation based on a neural language model could detect the
difference between the n-gram and neural language models, but it could not distinguish
quality within those categories of language models. Compared with those methods,
the Taylor exponent ζ had a clearer correlation with the perplexity of the models.
Specifically, the exponent satisfied ζ = 0.50 for all n-gram language models. It was
larger than 0.50 only for the neural language models whose perplexity was better than
that of the n-gram language models. Among the neural language models, the Taylor
exponent took high values for the AWD-LSTM family, which had better perplexity than
the GRU and QRNN models and the LSTM model without regularization.

7. Evaluation of Models

In this section, we apply the evaluation of metrics in §6.1 to discuss the scaling proper-
ties of the language models. All language models tested in the experiments satisfied
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Figure 5
Scaling properties of the AWD-LSTM-Cache model trained with WT2.

the scaling properties of vocabulary population, Zipf’s law, and Heaps’ law. These
properties are relatively easy for models to reproduce, because they concern the static
probability distribution of words.

In contrast, many of the language models failed to reproduce long memory be-
havior. The sole exception was the Simon process, which presented strong long-range
correlation, but this was not caused by burstiness, as explained in §6.1. The lack of
long memory in n-gram language models is supported by an analytical argument about
Markov models, as mentioned in §4.1. The failure of the PCFG model in our experiment
setting can be explained by its lack of inter-sentence structure.

Even among the neural language models, the simple RNN model failed to re-
produce long memory. The Taylor exponent was ζ = 0.50, and the other metrics also
indicated that the generated text did not have long-range dependence. In contrast,
the RNNs with a gating mechanism (LSTM, GRU, and QRNNs) could reproduce long
memory behavior. The Taylor exponents of the GRU and QRNN language models were
both ζ = 0.52 for WT2, which indicates the presence of long memory to a certain extent.
The LSTM language models were consistently the best at reproducing long memory
behavior of natural language text for WT2 and the PTB at both the character level and
the word level.

Figure 5 shows (a) Zipf’s law and (b) Taylor’s law results for the AWD-LSTM-
Cache model trained with WT2, which was the best performing model in terms of
perplexity. Figure 5(a) demonstrates that the Zipf’s law behavior of the data set shown
in Figure 1(a) was well recovered. Likewise, Figure 5(b) demonstrates how well the
AWD-LSTM-Cache model captured and reproduced the Taylor’s law behavior shown
in Figure 1(d). Whereas the Taylor exponent for the original data set was ζ = 0.62,
the AWD-LSTM-Cache model had a Taylor exponent of ζ = 0.59 for WT2. The data
points in Figure 1(d) were more widely scattered around the regression line than those
in Figure 5(b). Even with the well-performing neural language models, however, the
scaling properties of long memory were not fully recovered. These differences represent
gaps between the natural language text and the language model, which may indicate
room for improvement.
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Table 6
Summary of statistics for the COCO image data set.

Tokens Vocab. Vocabulary Population Long Memory
Zipf’s Heaps’s Ebeling’s Taylor’s Long Range
Law Law Method Law Correlation

f (r) ∝ r−α v(n) ∝ nβ m(l) ∝ lη σ ∝ µζ c(s) ∝ s−ξ

Image COCO (English, collection of image caption)
original data set 105,933 6,095 Yes 0.76 (0.09) 0.99 (0.03) 0.50 (0.04) No

8. Evaluation of GAN Models

Finally, we discuss the possibility of evaluating GAN-generated text with the scaling
properties. Table 6 lists the scaling properties for the COCO image data set (Lin et
al. 2014). Because current GAN models for text generation cannot produce long texts,
image captions constitute the standard data set for these GAN models. Because of the
data set used, the GAN models are limited to generating a certain text type (i.e., image
captions). In particular, as the length of the text is short, the results are readily expected
not to reproduce long memory behavior. Yet it is worthwhile to test the vocabulary
population of the GAN models to understand their capacity.

Figures 6 and 7 show Zipf’s and Taylor’s law graphs for the original data set and
the text generated by SeqGAN (Yu et al. 2017), respectively. Unlike the other language
models, GAN models for text generation had problems reproducing Zipf’s law. The tail
decay for the generated text was faster than that for the data set. The vocabulary size
of the generated text was only v(n) = 1,822 words for n = 118,264 generated words,
whereas the original text had a vocabulary size v(n) = 6,095 for n = 105,933 words.
This result indicates that the GAN model could not produce the infrequent words in
the training data set.

Figure 6
Scaling properties of captions in the COCO image data set.
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Figure 7
Scaling properties of captions generated from the COCO image data set by SeqGAN.

Table 7
BLEU scores and perplexity for eval-AWD-LSTM-based evaluation on texts generated from the
COCO image data set by different GAN models: SeqGAN (Yu et al. 2017), MaliGAN (Che et al.
2017), RankGAN (Lin et al. 2017), LeakGAN (Guo et al. 2018), and TextGAN (Zhang et al. 2017).

SeqGAN MaliGAN RankGAN LeakGAN TextGAN MLE ImageCoco

BLEU-2 0.92 0.89 0.94 0.93 0.65 0.92 1.00
BLEU-3 0.75 0.70 0.80 0.82 0.65 0.68 1.00
BLEU-4 0.53 0.48 0.60 0.66 0.60 0.57 1.00
BLEU-5 0.35 0.31 0.41 0.47 0.52 0.39 1.00
eval-AWD-LSTM 179.29 272.53 132.90 146.26 129.93 176.34 44.17

On the other hand, long memory was already absent at the level of the training data
set. The Taylor exponent was ζ = 0.50 (Figure 6(b)), indicating no memory, which was
obviously expected, as the captions were shuffled and two consecutive captions had no
relation. Through learning of such training data and production caption by caption, the
generated text also had no long memory (Figure 7(b)). Indeed, long memory analysis
literally requires a model to generate a sufficiently long text to allow further quality
evaluation of natural language.

Nevertheless, other metrics would not provide a better evaluation in this case.
Table 7 lists the evaluation metrics of BLEU and perplexity by eval-AWD-LSTM for
texts generated using different GAN techniques. The BLEU scores for the GAN models
in Table 7 were extracted from Zhu et al. (2018). The perplexity scores were computed
by using the eval-AWD-LSTM model trained with the COCO image data set and the
hyperparameters for the PTB data set. The perplexity of AWD-LSTM when trained with
that data set was 65.41.

For both BLEU and perplexity, the results were inconsistent. In terms of BLEU,
the best-performing GAN model varied among RankGAN with BLEU-2, LeakGAN
with BLEU-3 and BLEU4, and TextGAN with BLEU-5. In contrast, TextGAN was the
best model in terms of eval-AWD-LSTM. In addition to these metrics, the negative

503



Computational Linguistics Volume 45, Number 3

log-likelihood of the PCFG was also not effective in evaluating the GAN models in Zhu
et al. (2018).

Although rigid quantitative evaluation is necessary for comparing GAN models,
the existing evaluation metrics are not sufficiently reliable. Therefore, further study of
evaluation metrics is necessary. The Taylor exponent may play a role in such studies
when GAN-based models become able to produce longer texts.

9. Conclusion

In this article, we have investigated the scaling properties of computational models
of natural language and analyzed whether these metrics could serve for assessing the
models. The scaling properties quantify the vocabulary population and long memory
behavior, which are universal qualities of natural language text. These metrics are
applicable to any model, even those for which the perplexity is not measurable or a
reference is not available. We tested n-gram language models, a grammatical model,
mathematical models, neural language models, and GAN models for text generation.
Among the five scaling properties introduced, the exponent of Taylor’s law showed
the most reasonable behavior. It had the clearest correlation with the perplexity of the
n-gram and neural language models.

Our analysis demonstrated that RNNs with a gating mechanism (LSTM, GRU, and
QRNNs) are the first computational models of natural language that have the capacity
to reproduce the long memory in natural language text. No other models tested in
our experiment reproduced the scaling properties of long memory. The LSTM models
were the best among the neural language models, as their long memory behavior was
closer to that of the original text as compared to the GRU and QRNN models. Yet
even the LSTM language models could not entirely recover long memory, including the
exponents of the scaling properties. This observation confirms the gap between natural
language text and language models and suggests corresponding room for improve-
ment. Our future work will include investigating other scaling properties that could
serve for evaluating language models.

Appendix A. Scaling Properties of Natural Language

This section presents the figures for the scaling properties of data sets that appear in this
paper. The presence of the scaling properties is robust to the genre and the language of
the text.

Figure A1
Scaling properties of the collected works of Shakespeare.
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Figure A2
Scaling properties of Hong Lou Meng.

Figure A3
Scaling properties of the Penn-Treebank (original).

Figure A4
Scaling properties of Wikitext-2 (original).

Figure A5
Scaling properties of captions in COCO image data set.

Appendix B. Scaling Properties of Language Model

This section presents the figures for the scaling properties of language models of WT2
in this article.
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Figure A6
Scaling properties of 3-gram language model.

Figure A7
Scaling properties of 5-gram language model.

Figure A8
Scaling properties of linear interpolation n-gram language model.

Figure A9
Scaling properties of the Katz backoff 3-gram language model.
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Figure A10
Scaling properties of Katz backoff 5-gram language model.

Figure A11
Scaling properties of Kneser-Ney 3-gram language model.

Figure A12
Scaling properties of Kneser-Ney 5-gram language model.

Figure A13
Scaling properties of hierarchical Pitman-Yor language model.
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Figure A14
Scaling properties of the PCFG constructed from PTB data set.

Figure A15
Scaling properties of Simon process. The figure of Ebeling method does not appear because of
the inappropriateness of the application.

Figure A16
Scaling properties of Pitman-Yor process. The figure of Ebeling method does not appear because
of the inappropriateness of the application.

Figure A17
Scaling properties of Simple RNN language model.
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Figure A18
Scaling properties of GRU language model.

Figure A19
Scaling properties of QRNN language model.

Figure A20
Scaling properties of LSTM without regularization language model.

Figure A21
Scaling properties of AWD-LSTM.
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Figure A22
Scaling properties of AWD-LSTM-Simon.

Figure A23
Scaling properties of AWD-LSTM-MoS.

Figure A24
Scaling properties of AWD-LSTM-MoS-Cache.

Figure A25
Scaling properties of AWD-LSTM-Cache.
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Figure A26
Scaling properties of LSTM without regularization for character-level modeling.

Figure A27
Scaling properties of AWD-LSTM for character-level modeling.

Figure A28
Scaling properties of the Seq-GAN (the model learns COCO image data set).
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