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We describe a probabilistic framework for acquiring selectional preferences of linguistic predi-
cates and for using the acquired representations to model the effects of context on word meaning.
Our framework uses Bayesian latent-variable models inspired by, and extending, the well-known
Latent Dirichlet Allocation (LDA) model of topical structure in documents; when applied to
predicate–argument data, topic models automatically induce semantic classes of arguments and
assign each predicate a distribution over those classes. We consider LDA and a number of
extensions to the model and evaluate them on a variety of semantic prediction tasks, demon-
strating that our approach attains state-of-the-art performance. More generally, we argue that
probabilistic methods provide an effective and flexible methodology for distributional semantics.

1. Introduction

Computational models of lexical semantics attempt to represent aspects of word mean-
ing. For example, a model of the meaning of dog may capture the facts that dogs are
animals, that they bark and chase cats, that they are often kept as pets, and so on. Word
meaning is a fundamental component of the way language works: Sentences (and larger
structures) consist of words, and their meaning is derived in part from the contributions
of their constituent words’ lexical meanings. At the same time, words instantiate a
mapping between conceptual “world knowledge” and knowledge of language.

The relationship between the meanings of an individual word and the larger
linguistic structure in which it appears is not unidirectional; while the word contributes
to the meaning of the structure, the structure also clarifies the meaning of the word.
Taken on its own a word may be vague or ambiguous, in the senses of Zwicky and
Sadock (1975); even when the word’s meaning is relatively clear it may still admit
specification of additional details that affect its interpretation (e.g., what color/breed
was the dog?). This specification comes through context, which consists of both
linguistic and extralinguistic factors but shows a strong effect of the immediate lexical
and syntactic environment—the other words surrounding the word of interest and
their syntactic relations to it.
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These diverse concerns motivate lexical semantic modeling as an important task
for all computational systems that must tackle problems of meaning. In this article
we develop a framework for modeling word meaning and how it is modulated by
contextual effects.1 Our models are distributional in the sense that their parameters
are learned from observed co-occurrences between words and contexts in corpus data.
More specifically, they are probabilistic models that associate latent variables with
automatically induced classes of distributional behavior and associate each word with
a probability distribution over those classes. This has a natural interpretation as a
model of selectional preference, the semantic phenomenon by which predicates such
as verbs or adjectives more plausibly combine with some classes of arguments than
with others. It also has an interpretation as a disambiguation model: The different latent
variable values correspond to different aspects of meaning and a word’s distribution
over those values can be modified by information coming from the context it appears
in. We present a number of specific models within this framework and demonstrate that
they can give state-of-the-art performance on tasks requiring models of preference and
disambiguation. More generally, we illustrate that probabilistic modeling is an effective
general-purpose framework for distributional semantics and a useful alternative to the
popular vector-space framework.

The main contributions of the article are as follows:

� We describe the probabilistic approach to distributional semantics,
showing how it can be applied as generally as the vector-space approach.

� We present three novel probabilistic selectional preference models and
show that they outperform a variety of previously proposed models on a
plausibility-based evaluation.

� Furthermore, the representations learned by these models correspond to
semantic classes that are useful for modeling the effect of context on
semantic similarity and disambiguation.

Section 2 presents background on distributional semantics and an overview of prior
work on selectional preference learning and on modeling contextual effects. Section 3
introduces the probabilistic latent-variable approach and details the models we use.
Section 4 presents our experimental results on four data sets. Section 5 concludes and
sketches promising research directions for the future.

2. Background and Related Work

2.1 Distributional Semantics

The distributional approach to semantics is often traced back to the so-called “distri-
butional hypothesis” put forward by mid-century linguists such as Zellig Harris and
J.R. Frith:

If we consider words or morphemes A and B to be more different in meaning than A
and C, then we will often find that the distributions of A and B are more different than
the distributions of A and C. (Harris 1954)

1 We build on previous work published in Ó Séaghdha (2010) and Ó Séaghdha and Korhonen (2011),
adding new models and evaluation experiments as well as a comprehensive exposition. In Section 4
we indicate which experimental results have previously been reported.

588
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You shall know a word by the company it keeps. (Frith 1957)

In Natural Language Processing (NLP), the term distributional semantics encompasses
a broad range of methods that identify the semantic properties of a word or other
linguistic unit with its patterns of co-occurrence in a corpus of textual data. The
potential for learning semantic knowledge from text was recognized very early in
the development of NLP (Spärck Jones 1964; Cordier 1965; Harper 1965), but it is with
the technological developments of the past twenty years that this data-driven approach
to semantics has become dominant. Distributional approaches may use a representation
based on vector spaces, on graphs, or (like this article) on probabilistic models, but
they all share the common property of estimating their parameters from empirically
observed co-occurrences.

The basic unit of distributional semantics is the co-occurrence: an observation of
a word appearing in a particular context. The definition is a general one: We may
be interested in all kinds of words, or only a particular subset of the vocabulary;
we may define the context of interest to be a document, a fixed-size window around
a nearby word, or a syntactic dependency arc incident to a nearby word. Given a
data set of co-occurrence observations we can extract an indexed set of co-occurrence
counts fw for each word of interest w; each entry fwc counts the number of times that
w was observed in context c. Alternatively, we can extract an indexed set fc for each
context.

The vector-space approach is the best-known methodology for distributional
semantics; under this conception fw is treated as a vector in R

|C|, where C is the
vocabulary of contexts. As such, fw is amenable to computations known from lin-
ear algebra. We can compare co-occurrence vectors for different words with a simi-
larity function such as the cosine measure or a dissimilarity function such as
Euclidean distance; we can cluster neighboring vectors; we can project a matrix
of co-occurrence counts onto a low-dimensional subspace; and so on. This is per-
haps the most popular approach to distributional semantics and there are many
good general overviews covering the possibilities and applications of the vector space
model (Curran 2003; Weeds and Weir 2005; Padó and Lapata 2007; Turney and Pantel
2010).

Although it is natural to view the aggregate of co-occurrence counts for a word
as constituting a vector, it is equally natural to view it as defining a probability distri-
bution. When normalized to have unit sum, fw parameterizes a discrete distribution
giving the conditional probability of observing a particular context given that we
observe w. The contents of the vector-space modeler’s toolkit generally have prob-
abilistic analogs: similarity and dissimilarity can be computed using measures from
information theory such as the Kullback–Leibler or Jensen–Shannon divergences (Lee
1999); the effects of clustering and dimensionality reduction can be achieved through
the use of latent variable models (see Section 3.2.2). Additionally, Bayesian priors on
parameter distributions provide a flexible toolbox for performing regularization and
incorporating prior information in learning. A further advantage of the probabilistic
framework is that it is often straightforward to extend existing models to account
for additional structure in the data, or to tie together parameters for shared statis-
tical strength, while maintaining guarantees of well-normalized behavior thanks to
the laws of probability. In this article we focus on selectional preference learning and
contextual disambiguation but we believe that the probabilistic approach exempli-
fied here can fruitfully be applied in any scenario involving distributional semantic
modeling.
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2.2 Selectional Preferences
2.2.1 Motivation. A fundamental concept in linguistic knowledge is the predicate, by
which we mean a word or other symbol that combines with one or more arguments
to produce a composite representation with a composite meaning (by the principle of
compositionality). The archetypal predicate is a verb; for example, transitive drink takes
two noun arguments as subject and object, with which it combines to form a basic
sentence. However, the concept is a general one, encompassing other word classes as
well as more abstract items such as semantic relations (Yao et al. 2011), semantic frames
(Erk, Padó, and Padó 2010), and inference rules (Pantel et al. 2007). The asymmetric
distinction between predicate and argument is analogous to that between context and
word in the more general distributional framework.

It is intuitive that a particular predicate will be more compatible with some semantic
argument classes than with others. For example, the subject of drink is typically an
animate entity (human or animal) and the object of drink is typically a beverage. The
subject of eat is also typically an animate entity but its object is typically a foodstuff.
The noun modified by the adjective tasty is also typically a foodstuff, whereas the
noun modified by informative is an information-bearing object. This intuition can be
formalized in terms of a predicate’s selectional preference: a function that assigns a
numerical score to a combination of a predicate and one or more arguments according
to the semantic plausibility of that combination. This score may be a probability, a rank,
a real value, or a binary value; in the last case, the usual term is selectional restriction.

Models of selectional preference aim to capture conceptual knowledge that all
language users are assumed to have. Speakers of English can readily identify that
examples such as the following are semantically infelicitous despite being syntactically
well-formed:

1. The beer drank the man.

2. Quadruplicity drinks procrastination. (Russell 1940)

3. Colorless green ideas sleep furiously. (Chomsky 1957)

4. The paint is silent. (Katz and Fodor 1963)

Psycholinguistic experiments have shown that the time course of human sentence
processing is sensitive to predicate–argument plausibility (Altmann and Kamide 1999;
Rayner et al. 2004; Bicknell et al. 2010): Reading times are faster when participants are
presented with plausible combinations than when they are presented with implausible
combinations. It has also been proposed that selectional preference violations are cues
that trigger metaphorical interpretation. Wilks (1978) gives the example My car drinks
gasoline, which must be understood non-literally since car strongly violates the subject
preference of drink and gasoline is also an unlikely candidate for something to drink.

In NLP, one motivation for modeling predicate–argument plausibility is to
investigate whether this aspect of human conceptual knowledge can be learned
automatically from text corpora. If the predictions of a computational model correlate
with judgments collected from human behavioral data, the assumption is that the
model itself shares some properties with human linguistic knowledge and is in some
sense a “good” semantic model. More practically, NLP researchers have shown that
selectional preference knowledge is useful for downstream applications, including
metaphor detection (Shutova 2010), identification of non-compositional multiword
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expressions (McCarthy, Venkatapathy, and Joshi 2007), semantic role labeling (Gildea
and Jurafsky 2002; Zapirain, Agirre, and Màrquez 2009; Zapirain et al. 2010), word
sense disambiguation (McCarthy and Carroll 2003), and parsing (Zhou et al. 2011).

2.2.2 The “Counting” Approach. The simplest way to estimate the plausibility of a
predicate–argument combination from a corpus is to count the number of times that
combination appears, on the assumptions that frequency correlates with plausibility
and that given enough data the resulting estimates will be relatively accurate. For exam-
ple, Keller and Lapata (2003) estimate predicate–argument plausibilities by submitting
appropriate queries to a Web search engine and counting the number of “hits” returned.
To estimate the frequency with which the verb drink takes beer as a direct object,
Keller and Lapata’s method uses the query <drink|drinks|drank|drunk|drinking a|the|∅
beer|beers>; to estimate the frequency with which tasty modifies pizza the query is simply
<tasty pizza|pizzas>. Where desired, these joint frequency counts can be normalized by
unigram hit counts to estimate conditional probabilities such as P(pizza|tasty).

The main advantages of this approach are its simplicity and its ability to exploit
massive corpora of raw text. On the other hand, it is hindered by the facts that only
shallow processing is possible and that even in a Web-scale corpus the probability esti-
mates for rare combinations will not be accurate. At the time of writing, Google returns
zero hits for the query <draughtsman|draughtsmen whistle|whistles|whistled|whistling>
and 1,570 hits for <onion|onions whistle|whistles|whistled|whistling>, suggesting the im-
plausible conclusion that an onion is far more likely to whistle than a draughtsman.2

Zhou et al. (2011) modify the Web query approach to better capture statistical
association by using pointwise mutual information (PMI) rather than raw co-occurrence
frequency to quantify selectional preference:

PMI(p, a) = log
P(p, a)

P(p)P(a) (1)

The role of the PMI transformation is to correct for the effect of unigram frequency: A
common word may co-occur often with another word just because it is a common word
rather than because there is a semantic association between them. However, it does not
provide a way to overcome the problem of inaccurate counts for low-probability co-
occurrences. Zhou et al.’s goal is to incorporate selectional preference features into a
parsing model and they do not perform any evaluation of the semantic quality of the
resulting predictions.

2.2.3 Similarity-Based Smoothing Methods. During the 1990s, research on language mod-
eling led to the development of various “smoothing” methods for overcoming the
data sparsity problem that inevitably arises when estimating co-occurrence counts from
finite corpora (Chen and Goodman 1999). The general goal of smoothing algorithms
is to alter the distributional profile of observed counts to better match the known
statistical properties of linguistic data (e.g., that language exhibits power-law behavior).
Some also incorporate semantic information on the assumption that meaning guides the
distribution of words in a text.

2 The analogous example given by Ó Séaghdha (2010) relates to the plausibility of a manservant or a
carrot laughing; Google no longer returns zero hits for <a|the manservant|manservants|menservants
laugh|laughs|laughed> but a frequency-based estimate still puts the probability of a carrot laughing at
200 times that of a manservant laughing (1,680 hits against 81 hits).
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One such class of methods is based on similarity-based smoothing, by which
one can extrapolate from observed co-occurrences by implementing the distributional
hypothesis: “similar” words will have similar distributional properties. A general form
for similarity-based co-occurrence estimates is

P(w2|w1) =
∑

w3∈S(w1,w2)

sim(w2, w3)∑
w′∈S(w1,w2) sim(w2, w′)

P(w3|w1) (2)

sim can be an arbitrarily chosen similarity function; Dagan, Lee, and Pereira (1999)
investigate a number of options. S(w1, w2) is a set of comparison words that may depend
on w1 or w2, or neither: Essen and Steinbiss (1992) use the entire vocabulary, whereas
Dagan, Lee, and Pereira use a fixed number of the most similar words to w2, provided
their similarity value is above a threshold t.

While originally proposed for language modeling—the task of estimating the
probability of a sequence of words—these methods require only trivial alteration to
estimate co-occurrence probabilities for predicates and arguments, as was noted early
on by Grishman and Sterling (1993) and Dagan, Lee, and Pereira (1999). Erk (2007)
and Erk, Padó, and Padó (2010) build on this prior work to develop an “exemplar-
based” selectional preference model called EPP. In the EPP model, the set of comparison
words is the set of words observed for the predicate p in the training corpus, denoted
Seenargs(p):

SelprefEPP(a|p) =
∑

a′∈Seenargs(p)

weight(a′|p)sim(a′, a)∑
a′′∈Seenargs(p) weight(a′′|p)

(3)

The co-occurrence strength weight(a|p) may simply be normalized co-occurrence fre-
quency; alternatively a statistical association measure such as pointwise mutual in-
formation may be used. As before, sim(a, a′) may be any similarity measure defined
on members of A. One advantage of this and other similarity-based models is that
the corpus used to estimate similarity need not be the same as that used to estimate
predicate–argument co-occurrence, which is useful when the corpus labeled with these
co-occurrences is small (e.g., a corpus labeled with FrameNet frames).

2.2.4 Discriminative Models. Bergsma, Lin, and Goebel (2008) cast selectional preference
acquisition as a supervised learning problem to which a discriminatively trained classi-
fier such as a Support Vector Machine (SVM) can be applied. To produce training data
for a predicate, they pair “positive” arguments that were observed for that predicate
in the training corpus and have an association with that predicate above a speci-
fied threshold (measured by mutual information) with randomly selected “negative”
arguments of similar frequency that do not occur with the predicate or fall below
the association threshold. Given this training data, a classifier can be trained in a
standard way to predict a positive or negative score for unseen predicate–argument
pairs.

An advantage of this approach is that arbitrary sets of features can be used to
represent the training and testing items. Bergsma, Lin, and Goebel include conditional
probabilities P(a|p) for all predicates the candidate argument co-occurs with, typo-
graphic features of the argument itself (e.g., whether it is capitalized, or contains digits),
lists of named entities, and precompiled semantic classes.
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2.2.5 WordNet-Based Models. An alternative approach to preference learning models the
argument distribution for a predicate as a distribution over semantic classes provided
by a predefined lexical resource. The most popular such resource is the WordNet lexical
hierarchy (Fellbaum 1998), which provides semantic classes and hypernymic structures
for nouns, verbs, adjectives, and adverbs.3 Incorporating knowledge about the WordNet
taxonomy structure in a preference model enables the use of graph-based regularization
techniques to complement distributional information, while also expanding the cov-
erage of the model to types that are not encountered in the training corpus. On the
other hand, taxonomy-based methods build in an assumption that the lexical hierarchy
chosen is the universally “correct” one and they will not perform as well when faced
with data that violates the hierarchy or contains unknown words. A further issue faced
by these models is that the resources they rely on require significant effort to create and
will not always be available to model data in a new language or a new domain.

Resnik (1993) proposes a measure of associational strength between a predicate and
WordNet classes based on the empirical distribution of words of each class (and their
hyponyms) in a corpus. Abney and Light (1999) conceptualize the process of generating
an argument for a predicate in terms of a Markovian random walk from the hierarchy’s
root to a leaf node and choosing the word associated with that leaf node. Ciaramita
and Johnson (2000) likewise treat WordNet as defining the structure of a probabilistic
graphical model, in this case a Bayesian network. Li and Abe (1998) and Clark and Weir
(2002) both describe models in which a predicate “cuts” the hierarchy at an appropriate
level of generalization, such that all classes below the cut are considered appropriate
arguments (whether observed in data or not) and all classes above the cut are considered
inappropriate.

In this article we focus on purely distributional models that do not rely on
manually constructed lexical resources; therefore we do not revisit the models
described in this section subsequently, except as a basis for empirical comparison.
Ó Séaghdha and Korhonen (2012) do investigate a number of Bayesian preference
models that incorporate WordNet classes and structure, finding that such models
outperform previously proposed WordNet-based models and perform comparably to
the distributional Bayesian models presented here.

2.3 Measuring Similarity in Context
2.3.1 Motivation. A fundamental idea in semantics is that the meaning of a word is
disambiguated and modulated by the context in which it appears. The word body clearly
has a different sense in each of the following text fragments:

1. Depending on the present position of the planetary body in its orbital path, . . .

2. The executive body decided. . .

3. The human body is intriguing in all its forms.

In a standard word sense disambiguation experiment, the task is to map instances of
ambiguous words onto senses from a manually compiled inventory such as WordNet.
An alternative experimental method is to have a system rate the suitability of replacing
an ambiguous word with an alternative word that is synonymous or semantically

3 WordNet also contains many other kinds of semantic relations besides hypernymy but these are not
typically used for selectional preference modeling.
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similar in some contexts but not others. For example, committee is a reasonable
substitute for body in fragment 2 but less reasonable in fragment 1. An evaluation of
semantic models based on this principle was run as the English Lexical Substitution
Task in SemEval 2007 (McCarthy and Navigli 2009). The annotated data from the
Lexical Substitution Task have been used by numerous researchers to evaluate models
of lexical choice; see Section 4.5 for further details.

In this section we formalize the problem of predicting the similarity or substitutabil-
ity of a pair of words wo, ws in a given context C = {(r1, w1), (r2, w2), . . . , (rn, wn)}. When
the task is substitution, wo is the original word and ws is the candidate substitute. Our
general approach is to compute a representation Rep(wo|C) for wo in context C and
compare it with Rep(ws), our representation for wn:

sim(wo, ws|C) = sim(Rep(wo|C), Rep(ws)) (4)

where sim is a suitable similarity function for comparing the representations. This
general framework leaves open the question of what kind of representation we use for
Rep(wo|C) and Rep(ws); in Section 2.3.2 we describe representations based on vector-
space semantics and in Section 3.5 we describe representations based on latent-variable
models.

A complementary perspective on the disambiguatory power of context models is
provided by research on semantic composition, namely, how the syntactic effect of
a grammar rule is accompanied by a combinatory semantic effect. In this view, the
goal is to represent the combination of a context and an in-context word, not just to
represent the word given the context. The co-occurrence models described in this article
are not designed to scale up and provide a representation for complex syntactic struc-
tures,4 but they are applicable to evaluation scenarios that involve representing binary
co-occurrences.

2.3.2 Vector-Space Models. As described in Section 2.1, the vector-space approach to
distributional semantics casts word meanings as vectors of real numbers and uses linear
algebra operations to compare and combine these vectors. A word w is represented by
a vector vw that models aspects of its distribution in the training corpus; the elements
of this vector may be co-occurrence counts (in which case it is the same as the frequency
vector fw) or, more typically, some transformation of the raw counts.

Mitchell and Lapata (2008, 2010) present a very general vector-space framework
in which to consider the problem of combining the semantic representations of co-
occurring words. Given pre-computed word vectors vw, vw′ , their combination p is pro-
vided by a function g that may also depend on syntax R and background knowledge K:

p = g(vw, vw′ , R, K) (5)

Mitchell and Lapata investigate a number of functions that instantiate Equation (5),
finding that elementwise multiplication is a simple and consistently effective choice:

pi = vwi · vw′i (6)

4 cf. Grefenstette and Sadrzadeh (2011), Socher et al. (2011)
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Ó Séaghdha and Korhonen Probabilistic Distributional Semantics

The motivation for this “disambiguation by multiplication” is that lexical vectors are
sparse and the multiplication operation has the effect of sending entries not supported
in both vw and vw′ towards zero while boosting entries that have high weights in both
vectors.

The elementwise multiplication approach assumes that all word vectors are in
the same space. For a syntactic co-occurrence model, this is often not the case: The
contexts for a verb and a noun may have no dependency labels in common and hence
multiplying their vectors will not give useful results. Erk and Padó (2008) propose a
structured vector space approach in which each word w is associated with a set of
“expectation” vectors Rw, indexed by dependency label, in addition to its standard co-
occurrence vector vw. The expectation vector Rw(r) for word w and dependency label r
is an average over co-occurrence vectors for seen arguments of w and r in the training
corpus:

Rw(r) =
∑

w′: f (w,r,w′)>0

f (w, r, w′) · vw′ (7)

Whereas a standard selectional preference model addresses the question “which words
are probable as arguments of predicate (w, r)?”, the expectation vector (7) addresses
the question “what does a typical co-occurrence vector for an argument of the pred-
icate (w, r) look like?”. To disambiguate the semantics of word w in the context of a
predicate (w′, r′), Erk and Padó combine the expectation vector Rw′ (r′) with the word
vector vw:

vw|r′,w′ = Rw′ (r′) · vw (8)

Thater, Fürstenau, and Pinkal (2010, 2011) have built on the idea of using syntactic
vector spaces for disambiguation. The model of Thater, Fürstenau, and Pinkal (2011),
which is simpler and better-performing, sets the representation of w in the context of
(r′, w′) to be

vw|r′,w′ =
∑

w′′,r′′
αw′,r′,w′′,r′′ · weight(w′′, r′′, w) · er′′,w′′ (9)

where α quantifies the compatibility of the observed predicate (w′, r′) with the smooth-
ing predicate (w′′, r′′), weight quantifies the co-occurrence strength between (w′′, r′′)
and w, and er′′,w′′ is a basis vector for (w′′, r′′). This is a general formulation admit-
ting various choices of α and weight; the optimal configuration is found to be as
follows:

αw′,r′,w′′,r′′ =

{
sim(vw′ , vw′′ ) if r′ = r′′
0 otherwise (10)

weight(w′′, r′′, w) = PMI((w′′, r′′), w) (11)

This is conceptually very similar to the EPP selectional preference model (3) of Erk,
Padó, and Padó (2010); each entry in the vector vw|r′,w′ is a similarity-smoothed estimate
of the preference of (w′, r′) for w. EPP uses seen arguments of (w′, r′) for smoothing,
whereas Thater, Fürstenau, and Pinkal (2011) take a complementary approach and
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smooth with seen predicates for w. In order to combine the disambiguatory effects of
multiple predicates, a sum over contextualized vectors is taken:

vw|(r1,w1 ),(r2 ,w2 ),...,(rn,wn ) =
n∑

i

vw|ri,wi (12)

All the models described in this section provide a way of relating a word’s standard
co-occurrence vector to a vector representation of the word’s meaning in context. This
allows us to calculate the similarity between two in-context words or between a word
and an in-context word using standard vector similarity measures such as the cosine. In
applications where the task is to judge the appropriateness of substituting a word ws for
an observed word wo in context C = {(r1, w1), (r2, w2), . . . , (rn, wn)}, a common approach
is to compute the similarity between the contextualized vector vwo|(r1,w1 ),(r2,w2 ),...,(rn,wn )
and the uncontextualized word vector vws . It has been demonstrated empirically that
this approach yields better performance than contextualizing both vectors before the
similarity computation.

3. Probabilistic Latent Variable Models for Lexical Semantics

3.1 Notation and Terminology

We define a co-occurrence as a pair (c, w), where c is a context belonging to the vo-
cabulary of contexts C and w is a word belonging to the word vocabulary W .5 Unless
otherwise stated, the contexts considered in this article are head-lexicalized dependency
edges c = (r, wh) where r ∈ R is the grammatical relation and wh ∈ W is the head lemma.
We notate grammatical relations as ph:label:pd, where ph is the head word’s part of
speech, pd is the dependent word’s part of speech, and label is the dependency label.6

We use a coarse set of part-of-speech tags: n (noun), v (verb), j (adjective), r (adverb).
The dependency labels are the grammatical relations used by the RASP system (Briscoe
2006; Briscoe, Carroll, and Watson 2006), though in principle any dependency formalism
could be used. The assumption that predicates correspond to head-lexicalized depen-
dency edges means that they have arity one.

Given a parsed sentence, each word w in the sentence has a syntactic context set
C comprising all the dependency edges incident to w. In the sentence fragment The
executive body decided. . . , the word body has two incident edges:

The:d executive:j body:n

n:ncmod:j

�� decided:v

v:ncsubj:n

��
. . .

5 When specifically discussing selectional preferences, we will also use the terms predicate and argument
to describe a co-occurrence pair; when restricted to syntactic predicates, the former term is synonymous
with our definition of context.

6 Strictly speaking, w and wh are drawn from subsets of W that are licensed by r when r is a syntactic
relation, that is, they must have parts of speech pd and ph , respectively. Our models assume a fixed
argument vocabulary, so we can partition the training data according to part of speech; the models are
agnostic regarding the predicate vocabulary as these are subsumed by the context vocabulary. In the
interest of parsimony we leave this detail implicit in our notation.
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The context set for body is C = {(j:ncmod−1:n,executive), (v:ncsubj:n,decide)}, where
(v:ncsubj:n,decide) indicates that body is the subject of decide and (j:ncmod−1:n,executive)
denotes that it stands in an inverse non-clausal modifier relation to executive (we assume
that nouns are the heads of their adjectival modifiers).

To estimate our preference models we will rely on co-occurrence counts extracted
from a corpus of observations O. Each observation is a co-occurrence of a predicate and
an argument. The set of observations for context c is denoted O(c). The co-occurrence
frequency of context c and word w is denoted by fcw, and the total co-occurrence
frequency of c by fc =

∑
w∈W fcw.

3.2 Modeling Assumptions
3.2.1 Bayesian Modeling. The Bayesian approach to probabilistic modeling (Gelman et al.
2003) is characterized by (1) the use of prior distributions over model parameters to
encode the modeler’s expectations about the values they will take; and (2) the explicit
quantification of uncertainty by maintaining posterior distributions over parameters
rather than point estimates.7

As is common in NLP, the data we are interested in modeling are drawn from a
discrete sample space (e.g., the vocabulary of words or a set of semantic classes). This
leads to the use of a categorical or multinomial distribution for the data likelihood. This
distribution is parameterized by a unit-sum vector θθθ with length |K| where K is the
sample space. The probability that an observation o takes value k is then:

o ∼ Multinomial(θθθ) (13)

P(o = k|θθθ) = θk (14)

The value of θθθ must typically be learned from data. The maximum likelihood estimate
(MLE) sets θk proportional to the number of times k was observed in a set of observa-
tions O, where each observation oi ∈ K:

θMLE
k =

fk
|O| (15)

Although simple, such an approach has significant limitations. Because a linguistic
vocabulary contains a large number of items that individually have low probability
but together account for considerable total probability mass, even a large corpus is
unlikely to give accurate estimates for low-probability types (Evert 2004). Items that
do not appear in the training data will be assigned zero probability of appearing in
unseen data, which is rarely if ever a valid assumption. Sparsity increases further when
the sample space contains composite items (e.g., context-words pairs).

The standard approach to dealing with the shortcomings of MLE estimation in
language modeling is to “smooth” the distribution by taking probability mass from
frequent types and giving it to infrequent types. The Bayesian approach to smoothing
is to place an appropriate prior on θθθ and apply Bayes’ Theorem:

P(θθθ|O) =
P(O|θθθ)P(θθθ)∫
P(O|θθθ)P(θθθ)dθθθ

(16)

7 However, the second point is often relaxed in application contexts where the posterior mean is used for
inference (e.g., Section 3.4.2).
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A standard choice for the prior distribution over the parameters of a discrete distribu-
tion is the Dirichlet distribution:

θθθ ∼ Dirichlet(ααα) (17)

P(θθθ|ααα) =
Γ(
∑

k αk)∏
k Γ(αk)

∏

k

θ
αk−1
k (18)

Here, ααα is a |K|-length vector where each αk > 0. One effect of the Dirichlet prior is that
setting the sum

∑
k αk to a small value will encode the expectation that the parameter

vector θθθ is likely to distribute its mass more sparsely. The Dirichlet distribution is a
conjugate prior for multinomial and categorical likelihoods, in the sense that the poste-
rior distribution P(θθθ|O) in Equation (16) is also a Dirichlet distribution when P(O|θθθ) is
multinomial or categorical and P(θθθ) is Dirichlet:

θθθ ∼ Dirichlet(fO ⊕ααα) (19)

where ⊕ indicates elementwise addition of the observed count vector fO to the Dirichlet
parameter vector ααα. Furthermore, the conjugacy property allows us to do a number of
important computations in an efficient way. In many applications we are interested in
predicting the distribution over values K for a “new” observation given a set of prior
observations O while retaining our uncertainty about the model parameters. We can
average over possible values of θθθ, weighted according to their probability P(θθθ|O,α) by
“integrating out” the parameter and still retain a simple closed-form expression for the
posterior predictive distribution:

P(o|O|+1 = k|O,α) =
∫

P(o|O|+1 = k|θθθ)P(θθθ|O,α)dθθθ (20)

=
fk + αk

|O|+∑
k′ αk′

(21)

Expression (21) is central to the implementation of collapsed Gibbs samplers for
Bayesian models such as latent Dirichlet allocation (Section 3.3). For mathematical
details of these derivations, see Heinrich (2009).

Other priors commonly used for discrete distributions in NLP include the Dirichlet
process and the Pitman–Yor process (Goldwater, Griffiths, and Johnson 2011). The
Dirichlet process provides similar behavior to the Dirichlet distribution prior but is
“non-parametric” in the sense of varying the size of its support according to the data;
in the context of mixture modeling, a Dirichlet process prior allows the number of
mixture components to be learned rather than fixed in advance. The Pitman–Yor process
is a generalization of the Dirichlet process that is better suited to learning power-
law distributions. This makes it particularly suitable for language modeling where the
Dirichlet distribution or Dirichlet process would not produce a long enough tail due to
their preference for sparsity (Teh 2006). On the other hand, Dirichlet-like behavior may
be preferable in semantic modeling, where we expect, for example, predicate–class and
class–argument distributions to be sparse.

3.2.2 The Latent Variable Assumption. In probabilistic modeling, latent variables are
random variables whose values are not provided by the input data. As a result, their
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values must be inferred at the same time as the model parameters on the basis of the
training data and model structure. The latent variable concept is a very general one that
is used across a wide range of probabilistic frameworks, from hidden Markov models
to neural networks. One important application is in mixture models, where the data
likelihood is assumed to have the following form:

P(x) =
∑

z

P(x|z)P(z) (22)

Here the latent variables z index mixture components, each of which is associated
with a distribution over observations x, and the resulting likelihood is an average of
the component distributions weighted by the mixing weights P(z). The set of possible
values for z is the set of components Z. When |Z| is small relative to the size of the
training data, this model has a clustering effect in the sense that the distribution learned
for P(x|z) is informed by all datapoints assigned to component z.

In a model of two-way co-occurrences each observation consists of two discrete
variables c and w, drawn from vocabularies C and W , respectively.

P(w|c) =
∑

z

P(w|z)P(z|c) (23)

The idea of compressing the observed co-occurrence data through a small layer of
latent variables shares the same basic motivations as other, not necessarily probabilistic,
dimensionality reduction techniques such as Latent Semantic Analysis or Non-negative
Matrix Factorization. An advantage of probabilistic models is their flexibility, both in
terms of learning methods and model structures. For example, the models considered
in this article can potentially be extended to multi-way co-occurrences and to hierarchi-
cally defined contexts that cannot easily be expressed in frameworks that require the
input to be a |C| × |W| co-occurrence matrix.

To the best of our knowledge, latent variable models were first applied to co-
occurrence data in the context of noun clustering by Pereira, Tishby, and Lee (1993).
They suggest a factorization of a noun n’s distribution over verbs v as

P(v|n) =
∑

z

P(v|z)P(z|n) (24)

which is equivalent to Equation (23) when we take n as the predicate and v as the
argument, in effect defining an inverse selectional preference model. Pereira, Tishby,
& Lee also observe that given certain assumptions Equation (24) can be written more
symmetrically as

P(v, n) =
∑

z

P(v|z)P(n|z)P(z) (25)

The distributions P(v|z), P(n|z), and P(z) are estimated by an optimization procedure
based on Maximum Entropy. Rooth et al. (1999) propose a much simpler Expectation
Maximization (EM) procedure for estimating the parameters of Equation (25).
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3.3 Bayesian Models for Binary Co-occurrences

Combining the latent variable co-occurrence model (23) with the use of Dirichlet priors
naturally leads to Latent Dirichlet Allocation (LDA) (Blei, Ng, and Jordan 2003). Often
described as a “topic model,” LDA is a model of document content that assumes each
document is generated from a mixture of multinomial distributions or “topics.” Topics
are shared across documents and correspond to thematically coherent patterns of word
usage. For example, one topic may assign high probability to the words finance, fund,
bank, and invest, whereas another topic may assign high probability to the words football,
goal, referee, and header. LDA has proven to be a very successful model with many
applications and extensions, and the topic modeling framework remains an area of
active research in machine learning.

Although originally conceived for modeling document content, LDA can be ap-
plied to any kind of discrete binary co-occurrence data. The original application of
LDA is essentially a latent-variable model of document–word co-occurrence. Adapting
LDA for selectional preference modeling was suggested independently by Ó Séaghdha
(2010) and Ritter, Mausam, and Etzioni (2010). Conceptually the shift is straightforward
and intuitive: Documents become contexts and words become argument words. The
selectional preference probability P(w|c) is modeled as

P(w|c) =
∑

z

P(z|c)P(w|z) (26)

Figure 1 sketches the “generative story” according to which LDA generates
arguments for predicates and also presents a plate diagram indicating the dependencies
between variables in the model. Table 1 illustrates the semantic representation induced
by a 600-topic LDA model trained on predicate–noun co-occurrences extracted from
the British National Corpus (for more details of this training data, see Section 4.1). The
“semantic classes” are actually distributions over all nouns in the vocabulary rather
than a hard partitioning; therefore we present the eight most probable words for each.
We also present the contexts most frequently associated with each class. Whereas a

for topic z ∈ {1 . . . |Z|} do
(Draw a distribution over words)
ΦΦΦz ∼ Dirichlet(βββ)

end for
for context c ∈ {1 . . . |C|} do

(Draw a distribution over classes)
θθθc ∼ Dirichlet(ααα)
for observation oi ∈ O(c) do

(Draw a class)
zi ∼ Multinomial(θθθc)
(Draw a word)
wi ∼ Multinomial(ΦΦΦzi

)
end for

end for

α θ

z

w Φ

β

O(c)
C

Z

Figure 1
Generative story and plate diagram for LDA; descriptive comments (in parentheses) precede
each sampling step.
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Table 1
Sample semantic classes learned by an LDA syntactic co-occurrence model with |Z| = 600
trained on BNC co-occurrences.

Class 1

Words: attack, raid, assault, campaign, operation, incident, bombing
Object of: launch, carry, follow, suffer, lead, mount, plan, condemn
Subject of: happen, come, begin, cause, continue, take, follow
Modifies: raid, furnace, shelter, victim, rifle, warning, aircraft
Modified by: heart, bomb, air, terrorist, indecent, latest, further, bombing
Prepositional: on home, on house, by force, target for, hospital after, die after

Class 2

Words: line, axis, section, circle, path, track, arrow, curve
Object of: draw, follow, cross, dot, break, trace, use, build, cut
Subject of: divide, run, represent, follow, indicate, show, join, connect
Modifies: manager, number, drawing, management, element, treatment
Modified by: straight, railway, long, cell, main, front, production, product
Prepositional: on map, by line, for year, line by, point on, in fig, angle to

Class 3

Words: test, examination, check, testing, exam, scan, assessment, sample
Object of: pass, carry, use, fail, perform, make, sit, write, apply
Subject of: show, reveal, confirm, prove, consist, come, take, detect, provide
Modifies: result, examination, score, case, ban, question, board, paper, kit
Modified by: blood, medical, final, routine, breath, fitness, driving, beta
Prepositional: subject to, at end, success in, on part, performance on

Class 4

Words: university, college, school, polytechnic, institute, institution, library
Object of: enter, attend, leave, visit, become, found, involve, close, grant
Subject of: offer, study, make, become, develop, win, establish, undertake
Modifies: college, student, library, course, degree, department, school
Modified by: university, open, technical, city, education, state, technology
Prepositional: student at, course at, study at, lecture at, year at

Class 5

Words: fund, reserve, eyebrow, revenue, awareness, conservation, alarm
Object of: raise, set, use, provide, establish, allocate, administer, create
Subject of: raise, rise, shoot, lift, help, remain, set, cover, hold
Modifies: manager, asset, raiser, statement, management, commissioner
Modified by: nature, pension, international, monetary, national, social, trust
Prepositional: for nature, contribution to, for investment, for development

topic model trained on document–word co-occurrences will find topics that reflect
broad thematic commonalities, the model trained on syntactic co-occurrences finds
semantic classes that capture a much tighter sense of similarity: Words assigned high
probability in the same topic tend to refer to entities that have similar properties, that
perform similar actions, and have similar actions performed on them. Thus Class 1 is
represented by attack, raid, assault, campaign, and so on, forming a coherent semantic
grouping. Classes 2, 3, and 4 correspond to groups of tests, geometric objects, and
public/educational institutions, respectively. Class 5 has been selected to illustrate a
potential pitfall of using syntactic co-occurrences for semantic class induction: fund,
revenue, eyebrow, and awareness hardly belong together as a coherent conceptual class.
The reason, it seems, is that they are all entities that can be (and in the corpus, are)
raised. This class has also conflated different (but related) senses of reserve and as a
result the modifier nature is often associated with it.

An alternative approach is suggested by the model used by Pereira, Tishby, and
Lee (1993) and Rooth et al. (1999) that is formalized in Equation (25). This model can
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(Draw a distribution over topics)
θθθ ∼ Dirichlet(ααα)
for topic z ∈ {1 . . . |Z|} do

(Draw a distribution over words)
ΦΦΦz ∼ Dirichlet(βββ)
(Draw a distribution over contexts)
ΨΨΨz ∼ Dirichlet(γγγ)

end for
for observation oi ∈ O do

(Draw a topic)
zi ∼ Multinomial(θθθ)
(Draw a word)
wi ∼ Multinomial(ΦΦΦzi

)
(Draw a context)
ci ∼ Multinomial(ΨΨΨzi )

end for

α θ

z

wc Φ

β

Ψ

γ

O ZZ

Figure 2
Generative story and plate diagram for ROOTH-LDA.

be “Bayesianized” by placing Dirichlet priors on the component distributions; adapting
Equation (25) to our notation, the resulting joint distribution over contexts and words is

P(c, w) =
∑

z

P(c|z)P(w|z)P(z) (27)

The generative story and plate diagram for this model, which was called ROOTH-LDA
in Ó Séaghdha (2010), are given in Figure 2. Whereas LDA induces classes of arguments,
ROOTH-LDA induces classes of predicate–argument interactions. Table 2 illustrates
some classes learned by ROOTH-LDA from BNC verb–object co-occurrences. One class
shows that a cost, number, risk, or expenditure can plausibly be increased, reduced, cut, or
involved; another shows that a house, building, home, or station can be built, left, visited, or
used. As with LDA, there are some over-generalizations; the fact that an eye or mouth can
be opened, closed, or shut does not necessarily entail that it can be locked or unlocked.

For many predicates, the best description of their argument distributions is one that
accounts for general semantic regularities and idiosyncratic lexical patterns. This sug-
gests the idea of combining a distribution over semantic classes and a predicate-specific

Table 2
Sample semantic classes learned by a Rooth-LDA model with |Z| = 100 trained on BNC
verb–object co-occurrences.

Class 1 Class 2 Class 3 Class 4

increase cost open door build house spend time
reduce number close eye leave building work day

cut risk shut mouth visit home wait year
involve expenditure lock window use station come hour
control demand slam gate enter church waste night

estimate pressure unlock shop include school take week
limit rate keep fire see plant remember month
cover power round book run office end life
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distribution over arguments. One way of doing this is through the model depicted
in Figure 3, which we call LEX-LDA; this model defines the selectional preference
probability P(w|c) as

P(w|c) = σcPlex(w|c) + (1 − σc )Pclass(w|c) (28)

= σcPlex(w|c) + (1 − σc )
∑

z

P(w|z)P(z|c) (29)

where σc is a value between 0 and 1 that can be interpreted as a measure of argument
lexicalization or as the probability that an observation for context c is drawn from the
lexical distribution Plex or the class-based distribution Pclass. Pclass has the same form as
the LDA preference model. The value of σc will vary across predicates according to how
well their argument preference can be fit by the class-based models; a predicate with
high σc will have idiosyncratic argument patterns that are best learned by observing
that predicate’s co-occurrences in isolation. In many cases this may reflect idiomatic or
non-compositional usages, though it is also to be expected that σc will correlate with
frequency; given sufficient data for a context, smoothing becomes less important. As
an example we trained the LEX-LDA model on BNC verb-object co-occurrences and
estimated posterior mean values for σc for all verbs occurring more than 100 times and
taking at least 10 different object argument types. The verbs with highest and lowest
values are listed in Table 3. Although almost anything can be discussed or highlighted,

for topic z ∈ {1 . . . |Z|} do
(Draw a distribution over words)
ΦΦΦz ∼ Dirichlet(βββ)

end for
for context c ∈ {1 . . . |C|} do

(Draw a distribution over topics)
θθθc ∼ Dirichlet(ααα)
(Draw a distribution over words)
ΞΞΞc ∼ Dirichlet(κκκ)
(Draw a lexicalization probability)
σc ∼ Beta(λ0, λ1)
for observation oi ∈ O(c) do

(Draw a lexicalization indicator)
si ∼ Bernoulli(σc )
if si = 0 then

(Draw a topic)
zi ∼ Multinomial(θθθc)
(Draw a word)
wi ∼ Multinomial(ΦΦΦzi

)
else

(Draw a word)
wi ∼ Multinomial(ΞΞΞc)

end if
end for

end for

α θ

z s

w

β

Φ

σ Ξ

κλ1λ0

O(c)
C

Z

Figure 3
Generative story and plate diagram for LEX-LDA.
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Table 3
BNC verbs with lowest and highest estimated lexicalization values σc for their object arguments,
as well as the arguments with highest Plex(w|c) for high-lexicalization verbs.

Lowest σc Highest σc Top lexicalized arguments

discuss 1.2 × 10−4 pose 0.872 problem, threat, question, challenge, risk
highlight 4.6 × 10−4 wreak 0.864 havoc, vengeance, revenge, damage
consume 5.4 × 10−4 adjourn 0.857 case, hearing, meeting, inquest, trial
emphasize 5.8 × 10−4 reap 0.857 benefit, rewards, harvest, advantage
assert 6.5 × 10−4 exert 0.851 influence, pressure, effect, control, force
contrast 6.5 × 10−4 retrace 0.847 step, route, footstep, path, journey
obscure 6.8 × 10−4 solve 0.847 problem, mystery, equation, crisis, case
document 6.8 × 10−4 sip 0.839 coffee, tea, drink, wine, champagne
debate 6.9 × 10−4 answer 0.826 question, call, phone, door, query
safeguard 8.0 × 10−4 incur 0.823 cost, expense, loss, expenditure, liability

verbs such as pose and wreak have very lexicalized argument preferences. The semantic
classes learned by LEX-LDA are broadly comparable to those learned by LDA, though
it is less likely to mix classes on the basis of a single argument lexicalization; whereas
the LDA class in row 5 of Table 1 is distracted by the high-frequency collocations
nature reserve and raise eyebrow, LEX-LDA models trained on the same data can explain
these through lexicalization effects and separate out body parts, conservation areas, and
investments in different classes.

3.4 Parameter and Hyperparameter Learning
3.4.1 Learning Methods. A variety of methods are available for parameter learning in
Bayesian models. The two standard approaches are variational inference, in which
an approximation to the true distribution over parameters is estimated exactly, and
sampling, in which convergence to the true posterior is guaranteed in theory but rarely
verifiable in practice. In some cases the choice of approach is guided by the model, but
often it is a matter of personal preference; for LDA, there is evidence that equivalent
levels of performance can be achieved through variational learning and sampling given
appropriate parameterization (Asuncion et al. 2009). In this article we use learning
methods based on Gibbs sampling, following Griffiths and Steyvers (2004). The basic
idea of Gibbs sampling is to iterate through the corpus one observation at a time,
updating the latent variable value for each observation according to the conditional
probability distribution determined by the current observed and latent variable values
for all other observations. Because the likelihoods are multinomials with Dirichlet
priors, we can integrate out their parameters using Equation (21).

For LDA, the conditional probability that the latent variable for the ith observation
is assigned value z is computed as

P(zi = z|z−i, ci, wi) ∝ ( fzci
+ αz)

fzwi
+ β

fz + |W|β (30)

where z−i is the set of current assignments for all observations other than the ith, fz
is the number of observations in that set assigned latent variable z, fzci

is the number
of observations with context ci assigned latent variable z, and fzwi

is the number of
observations with word wi assigned latent variable z.
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For ROOTH-LDA we make a similar calculation:

P(zi = z|z−i, ci, wi) ∝ ( fz + αz)
fzwi

+ β

fz + |W|β
fzci

+ β

fz + |C|γ (31)

For LEX-LDA the lexicalization variables si must also be sampled for each token.
We “block” the sampling for zi and si to improve convergence. The Gibbs sampling
distribution is

P(si = 0, zi = z|z−i, s−i, ci, wi) ∝ ( fci,s=0 + λ0)
fzci

+ αz

fci,s=0 +
∑

z′ αz′

fzwi
+ β

fz + |W|β (32)

P(si = 1, zi = ∅|z−i, s−i, ci, wi) ∝ ( fci,s=1 + λ1)
fciwi,s=1 + κ

fci,s=1 + |W|κ (33)

P(si = 0, zi = ∅|z−i, s−i, ci, wi) = 0 (34)

P(si = 1, zi �= ∅|z−i, s−i, ci, wi) = 0 (35)

where ∅ indicates that no topic is assigned. The fact that topics are not assigned for all
tokens means that LEX-LDA is less useful in situations that require representational
power they afford—for example, the contextual similarity paradigm described in
Section 3.5.

A naive implementation of the sampler will take time linear in the number of topics
and the number of observations to complete one iteration. Yao, Mimno, and McCallum
(2009) present a new sampling algorithm for LDA that yields a considerable speedup by
reformulating Equation (30) to allow caching of intermediate values and an intelligent
sorting of topics so that in many cases only a small number of topics need be iterated
though before assigning a topic to an observation. In this article we use Yao, Mimno,
& McCallum’s algorithm for LDA, as well as a transformation of the ROOTH-LDA and
LEX-LDA samplers that can be derived in an analogous fashion.

3.4.2 Inference. As noted previously, the Gibbs sampling procedure is guaranteed to
converge to the true posterior after a finite number of iterations; however, this number
is unknown and it is difficult to detect convergence. In practice, we run the sampler
for a hopefully sufficient number of iterations and perform inference based on the
final sampling state (assignments of all z and s variables) and/or a set of intermediate
sampling states.

In the case of the LDA model, the selectional preference probability P(w|c) is
estimated using posterior mean estimates of θc and Φz:

P(w|c) =
∑

z

P(z|c)P(w|z) (36)

P(z|c) =
fzc + αz

fc +
∑

z′ αz′
(37)

P(w|z) =
fzw + β

fz + |W|β (38)
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For ROOTH-LDA, the joint probability P(c, w) is given by

P(c, w) =
∑

z

P(c|z)P(w|z)P(z) (39)

P(z) =
fz + αz

|O|+∑
z′ αz′

(40)

P(w|z) =
fzw + β

fz + |W|β (41)

P(c|z) =
fzc + γ

fz + |C|γ (42)

For LEX-LDA, P(w|c) is given by

P(w|c) = P(σ = 1|c)Plex(w|c) + P(σ = 0|c)Pclass(w|c) (43)

P(σ = 1|c) =
fc,s=1 + λ1

fc + λ0 + λ1
(44)

P(σ = 0|c) = 1 − P(σ = 1|c) (45)

Plex(w|c) =
fwc,s=1 + κ

fc,s=1 + |W|κ (46)

Pclass(w|c) =
∑

z

P(z|c)P(w|z) (47)

P(z|c) =
fzc + αz

fc,s=0 +
∑

z′ αz′
(48)

P(w|z) =
fzw + β

fz + |W|β (49)

Given a sequence or chain of sampling states S1, . . . , Sn, we can predict a value for
P(w|c) or P(c, w) using these equations and the set of latent variable assignments at a
single state Si. As the sampler is initialized randomly and will take time to find a good
area of the search space, it is standard to wait until a number of iterations have passed
before using any samples for prediction. States S1, . . . , Sb from this burn-in period are
discarded.

For predictive stability it can be beneficial to average over predictions computed
from more than one sampling state; for example, we can produce an averaged estimate
of P(w|c) from a set of states S:

P(w|c) = 1
|S|

∑

Si∈S

PSi (w|c) (50)

It is also possible to average over states drawn from multiple chains. However,
averaging of any kind can only be performed on quantities whose interpretation does
not depend on the sampling state itself. For example, we cannot average over estimates
of P(z1|c) drawn from different samples as the topic called z1 in one iteration is not
identical to the topic called z1 in another; even within the same chain, the meaning of
a topic will often change gradually from state to state.
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3.4.3 Choosing |Z|. In the “parametric” latent variable models used here the number
of topics or semantic classes, |Z|, must be fixed in advance. This brings significant
efficiency advantages but also the problem of choosing an appropriate value for |Z|. The
more classes a model has, the greater its capacity to capture fine distinctions between
entities. However, this finer granularity inevitably comes at a cost of reduced general-
ization. One approach is to choose a value that works well on training or development
data before evaluating held-out test items. Results in lexical semantics are often reported
over the entirety of a data set, meaning that if we wish to compare those results we
cannot hold out any portion. If the method is relatively insensitive to the parameter it
may be sufficient to choose a default value. Rooth et al. (1999) suggest cross-validating
on the training data likelihood (and not on the ultimate evaluation measure). An alter-
native solution is to average the predictions of models trained with different choices
of |Z|; this avoids the need to pick a default and can give better results than any one
value as it integrates contributions at different levels of granularity. As mentioned in
Section 3.4.2 we must take care when averaging predictions to compute with quan-
tities that do not rely on topic identity—for example, estimates of P(a|p) can safely be
combined whereas estimates of P(z1|p) cannot.

3.4.4 Hyperparameter Estimation. Although the likelihood parameters can be integrated
out, the parameters for the Dirichlet and Beta priors (often referred to as “hyperparame-
ters”) cannot and must be specified either manually or automatically. The value of these
parameters affects the sparsity of the learned posterior distributions. Furthermore, the
use of an asymmetric prior (where not all its parameters have equal value) implements
an assumption that some observation values are more likely than others before any
observations have been made. Wallach, Mimno, and McCallum (2009) demonstrate that
the parameterization of the Dirichlet priors in an LDA model has a material effect
on performance, recommending in conclusion a symmetric prior on the “emission”
likelihood P(w|z) and an asymmetric prior on the document topic likelihoods P(z|d). In
this article we follow these recommendations and, like Wallach, Mimno, and McCallum,
we optimize the relevant hyperparameters using a fixed point iteration to maximize
the log evidence (Minka 2003; Wallach 2008).

3.5 Measuring Similarity in Context with Latent-Variable Models

The representation induced by latent variable selectional preference models also allows
us to capture the disambiguatory effect of context. Given an observation of a word in
a context, we can infer the most probable semantic classes to appear in that context
and we can also infer the probability that a class generated the observed word. We
can also estimate the probability that the semantic classes suggested by the observation
would have licensed an alternative word. Taken together, these can be used to estimate
in-context semantic similarity. The fundamental intuitions are similar to those behind
the vector-space models in Section 2.3.2, but once again we are viewing them from the
perspective of probabilistic modeling.

The basic idea is that we identify the similarity between an observed term wo and an
alternative term ws in context C with the similarity between the probability distribution
over latent variables associated with wo and C and the probability distribution over
latent variables associated with ws:

sim(wo, ws|C) = sim(P(z|wo, C), P(z|ws)) (51)
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This assumes that we can associate a distribution over the same set of latent variables
with each context item c ∈ C. As noted in Section 2.3.2, previous research has found that
conditioning the representation of both the observed term and the candidate substitute
on the context gives worse performance than conditioning the observed term alone; we
also found a similar effect. Dinu and Lapata (2010) present a specific version of this
framework, using a window-based definition of context and the assumption that the
similarity given a set of contexts is the product of the similarity value for each context:

simDL10(wo, ws|C) =
∏

c∈C

sim(P(z|wo, c), P(z|ws)) (52)

In this article we generalize to syntactic as well as window-based contexts and also
derive a well-motivated approach to incorporating multiple contexts inside the prob-
ability model; in Section 4.5 we show that both innovations contribute to improved
performance on a lexical substitution data set.

The distributions we use for prediction are as follows. Given an LDA latent variable
preference model that generates words given a context, it is straightforward to calculate
the distribution over latent variables conditioned on an observed context–word pair:

PC→T(z|wo, c) =
P(wo|z)P(z|c)∑
z′ P(wo|z′)P(z′|c)

(53)

Given a set of multiple contexts C, each of which has an opinion about the distribution
over latent variables, this becomes

P(z|wo, C) =
P(wo|z)P(z|C)∑
z′ P(wo|z′)P(z′|C)

(54)

P(z|C) =
∏

c∈C P(z|c)∑
z′
∏

c∈C P(z′|c)
(55)

The uncontextualized distribution P(z|ws) is not given directly by the LDA model. It
can be estimated from relative frequencies in the Gibbs sampling state; we use an
unsmoothed estimate.8 We denote this model C → T to note that the target word is
generated given the context.

Where the context–word relationship is asymmetric (as in the case of syntactic
dependency contexts), we can alternatively learn a model that generates contexts given
a target word; we denote this model T → C:

PT→C(z|wo, c) =
P(z|wo)P(c|z)∑
z′ P(z′|wo)P(c|z′) (56)

Again, we can generalize to non-singleton context sets:

P(z|wo, C) =
P(z|wo)P(C|z)∑
z′ P(z′|wo)P(C|z′) (57)

8 In the notation of Section 3.4, this estimate is given by fzws
fws

.
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where

P(C|z) =
∏

c∈C

P(c|z) (58)

Equation (57) has the form of a “product of experts” model (Hinton 2002), though
unlike many applications of such models we train the experts independently and thus
avoid additional complexity in the learning process. The uncontextualized distribution
P(z|ws) is an explicit component of the T → C model.

An analogous definition of similarity can be derived for the ROOTH-LDA model.
Here there is no asymmetry as the context and target are generated jointly. The distri-
bution over topics for a context c and target word wo is given by

PROOTH-LDA (z|wo, c) =
P(wo, c|z)P(z)∑
z′ P(wo, c|z′)P(z′)

(59)

while calculating the uncontextualized distribution P(z|ws) requires summing over the
set of possible contexts C’:

PROOTH-LDA (z|ws) =
P(z)

∑
c′∈C′ P(ws, c|z)∑

z′ P(z′)
∑

c′∈C′ P(ws, c|z′) (60)

Because the interaction classes learned by ROOTH-LDA are specific to a relation type,
this model is less applicable than LDA to problems that involve a rich context set C.

Finally, we must choose a measure of similarity between probability distributions.
The information theory literature has provided many such measures; in this article we
use the Bhattacharyya coefficient (Bhattacharyya 1943):

simbhatt(Px(z), Py(z)) =
∑

z

√
Px(z)Py(z) (61)

One could alternatively use similarities derived from probabilistic divergences such
as the Jensen–Shannon Divergence or the L1 distance (Lee 1999; Ó Séaghdha and
Copestake 2008).

3.6 Related Work

As related earlier, non-Bayesian mixture or latent-variable approaches to co-occurrence
modeling were proposed by Pereira, Tishby, and Lee (1993) and Rooth et al. (1999).
Blitzer, Globerson, and Pereira (2005) describe a co-occurrence model based on a
different kind of distributed latent-variable architecture similar to that used in the
literature on neural language models. Brody and Lapata (2009) use the clustering effects
of LDA to perform word sense induction. Vlachos, Korhonen, and Ghahramani (2009)
use non-parametric Bayesian methods to cluster verbs according to their co-occurrences
with subcategorization frames. Reisinger and Mooney (2010, 2011) have also
investigated Bayesian methods for lexical semantics in a spirit similar to that adopted
here. Reisinger and Mooney (2010) describe a “tiered clustering” model that, like LEX-
LDA, mixes a cluster-based preference model with a predicate-specific distribution over
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words; however, their model does not encourage sharing of classes between different
predicates. Reisinger and Mooney (2011) propose a very interesting variant of the latent-
variable approach in which different kinds of contextual behavior can be explained
by different “views,” each of which has its own distribution over latent variables; this
model can give more interpretable classes than LDA for higher settings of |Z|.

Some extensions of the LDA topic model incorporate local as well as document
context to explain lexical choice. Griffiths et al. (2004) combine LDA and a hidden
Markov model (HMM) in a single model structure, allowing each word to be drawn
from either the document’s topic distribution or a latent HMM state conditioned on the
preceding word’s state; Moon, Erk, and Baldridge (2010) show that combining HMM
and LDA components can improve unsupervised part-of-speech induction. Wallach
(2006) also seeks to capture the influence of the preceding word, while at the same time
generating every word from inside the LDA model; this is achieved by conditioning
the distribution over words on the preceding word type as well as on the chosen
topic. Boyd-Graber and Blei (2008) propose a “syntactic topic model” that makes topic
selection conditional on both the document’s topic distribution and on the topic of the
word’s parent in a dependency tree. Although these models do represent a form of
local context, they either use a very restrictive one-word window or a notion of syntax
that ignores lexical or dependency-label effects; for example, knowing that the head of
a noun is a verb is far less informative than knowing that the noun is the direct object
of eat.

More generally, there is a connection between the models developed here and
latent-variable models used for parsing (e.g., Petrov et al. 2006). In such models
each latent state corresponds to a “splitting” of a part-of-speech label so as to pro-
duce a finer-grained grammar and tease out intricacies of word–rule “co-occurrence.”
Finkel, Grenager, and Manning (2007) and Liang et al. (2007) propose a non-parametric
Bayesian treatment of state splitting. This is very similar to the motivation behind an
LDA-style selectional preference model. One difference is that the parsing model must
explain the parse tree structure as well as the choice of lexical items; another is that in the
selectional preference models described here each head–dependent relation is treated
as an independent observation (though this could be changed). These differences allow
our selectional preference models to be trained efficiently on large corpora and, by fo-
cusing on lexical choice rather than syntax, to home in on purely semantic information.
Titov and Klementiev (2011) extend the idea of latent-variable distributional modeling
to do “unsupervised semantic parsing” and reason about classes of semantically similar
lexicalized syntactic fragments.

4. Experiments

4.1 Training Corpora

In our experiments we use two training corpora:

BNC the written component of the British National Corpus,9 comprising around
90 million words. The corpus was tagged for part of speech, lemmatized, and
parsed with the RASP toolkit (Briscoe, Carroll, and Watson 2006).

9 http://www.natcorp.ox.ac.uk/.
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COORDINATION:

Cats and

c:conj:n

��

c:conj:n

��dogs run

v:ncsubj:n

��
⇒ Cats and dogs��

n:and:n

�� run
��

v:ncsubj:n

��

PREDICATION:

The cat is

v:ncsubj:n

��

v:xcomp:j

��
fierce ⇒ The cat

n:ncmod:j

��
is fierce

PREPOSITIONS:

The cat

n:ncmod:i

��
in

i:dobj:n

��the hat ⇒ The cat

n:prep in:n

��
in the hat

Figure 4
Dependency graph preprocessing.

WIKI a Wikipedia dump of over 45 million sentences (almost 1 billion words) tagged,
lemmatized, and parsed with the C+C toolkit10 and the fast CCG parser described
by Clark et al. (2009).

Although two different parsers were used, they both have the ability to output gram-
matical relations in the RASP format and hence they are interoperable for our purposes
as downstream users. This allows us to construct a combined corpus by simply concate-
nating the BNC and WIKI corpora.

In order to train our selectional preference models, we extracted word–context
observations from the parsed corpora. Prior to extraction, the dependency graph for
each sentence was transformed using the preprocessing steps illustrated in Figure 4.
We then filtered for semantically discriminative information by ignoring all words with
part of speech other than common noun, verb, adjective, and adverb. We also ignored
instances of the verbs be and have and discarded all words containing non-alphabetic
characters and all words with fewer than three characters.11

As mentioned in Section 2.1, the distributional semantics framework admits flex-
ibility in how the practitioner defines the context of a word w. We investigate two
possibilities in this article:

Syn The context of w is determined by the syntactic relations r and words w′ incident
to it in the sentence’s parse tree, as illustrated in Section 3.1.

10 http://svn.ask.it.usyd.edu.au/trac/candc.
11 An exception was made for the word PC as it appears in the Keller and Lapata (2003) data set used

for evaluation.

611



Computational Linguistics Volume 40, Number 3

Win5 The context of w is determined by the words appearing within a window of five
words on either side of it. There are no relation labels, so there is essentially just
one relation r to consider.

Training topic models on a data set with very large “documents” leads to tractability
issues. The window-based approach is particularly susceptible to an explosion in the
number of extracted contexts, as each token in the data can contribute 2 × W word–
context observations, where W is the window size. We reduced the data by applying
a simple downsampling technique to the training corpora. For the WIKI/Syn corpus,
all word–context counts were divided by 5 and rounded to the nearest integer. For
the WIKI/Win5 corpus we divided all counts by 70; this number was suggested by
Dinu and Lapata (2010), who used the same ratio for downsampling the similarly sized
English Gigaword Corpus. Being an order of magnitude smaller, the BNC required
less pruning; we divided all counts in the BNC/Win5 by 5 and left the BNC/Syn
corpus unaltered. Type/token statistics for the resulting sets of observations are given
in Table 4.

4.2 Evaluating Selectional Preference Models

Various approaches have been suggested in the literature for evaluating selectional
preference models. One popular method is “pseudo-disambiguation,” in which a sys-
tem must distinguish between actually occurring and randomly generated predicate–
argument combinations (Pereira, Tishby, and Lee 1993; Chambers and Jurafsky 2010).
In a similar vein, probabilistic topic models are often evaluated by measuring the
probability they assign to held-out data; held-out likelihood has also been used for
evaluation in a task involving selectional preferences (Schulte im Walde et al. 2008).
These two approaches take a “language modeling” approach in which model quality
is identified with the ability to predict the distribution of co-occurrences in unseen text.
Although this metric should certainly correlate with the semantic quality of the model, it
may also be affected by frequency and other idiosyncratic aspects of language use unless
tightly controlled. In the context of document topic modeling, Chang et al. (2009) find
that a model can have better predictive performance on held-out data while inducing
topics that human subjects judge to be less semantically coherent.

In this article we choose to evaluate models by comparing system predictions
with semantic judgments elicited from human subjects. These judgments take various
forms. In Section 4.3 we use judgments of how plausible it is that a given predicate
takes a given word as its argument. In Section 4.4 we use judgments of similarity

Table 4
Type and token counts for the BNC and BNC+WIKI corpora.

BNC BNC+WIKI

Tokens Types Contexts Tokens Types Contexts

Nouns 18,723,082 122,999 316,237 54,145,216 106,448 514,257
Verbs 7,893,462 18,494 57,528 20,082,658 16,673 82,580
Adjectives 4,385,788 73,684 37,163 11,536,424 88,488 57,531
Adverbs 1,976,837 7,124 14,867 3,017,936 4,056 18,510

Window5 28,329,238 88,265 102,792 42,828,094 139,640 143,443

612
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between pairs of predicate–argument combinations. In Section 4.5 we use judgments
of substitutability for a target word as disambiguated by its sentential context. Taken
together, these different experimental designs provide a multifaceted analysis of model
quality.

4.3 Predicate–Argument Plausibility
4.3.1 Data. For the plausibility-based evaluation we use a data set of human judgments
collected by Keller and Lapata (2003). This comprises data for three grammatical re-
lations: verb–object, adjective–noun, and noun–noun modification. For each relation,
30 predicates were selected; each predicate was paired with three noun arguments
from different predicate–argument frequency bands in the BNC as well as three noun
arguments that were not observed for that predicate in the BNC. In this way two
subsets (Seen and Unseen) of 90 items each were assembled for each predicate. Human
plausibility judgments were elicited from a large number of subjects; these numeri-
cal judgments were then normalized, log-transformed, and averaged in a Magnitude
Estimation procedure.

Predicate Seen Unseen

dredge channel 0.1875 legend –0.3221
dredge canal 0.2388 sheet –0.2486
dredge rubbish –0.1999 survivor –0.2077

Following Keller and Lapata (2003), we evaluate our models by measuring
the correlation between system predictions and the human judgments. Keller and
Lapata use Pearson’s correlation coefficient r; we additionally use Spearman’s rank
correlation coefficient ρ for a non-parametric evaluation. Each system prediction is
log-transformed before calculating the correlation to improve the linear fit to the gold
standard.

4.3.2 Methods. We evaluate the LDA, ROOTH-LDA, and LEX-LDA latent-variable pref-
erence models, trained on predicate–argument pairs (c, w) extracted from the BNC.
We use a default setting |Z| = 100 for the number of classes; in our experiments we
have observed that our Bayesian models are relatively robust to the choice of |Z|. We
average predictions of the joint probability P(c, w) over three independent samples, each
of which is obtained by sampling P(c, w) every 50 iterations after a burn-in period of
200 iterations. ROOTH-LDA gives joint probabilities by definition (25), but LDA and
LEX-LDA are defined in terms of conditional probabilities (24). There are two options
for training these models:

P → A: Model the distribution P(w|c) over arguments for each predicate.
A → P: Model the distribution P(c|w) over predicates for each argument.

As the descriptions suggest, the definition of “predicate” and “argument” is arbitrary;
it is equally valid to talk of the selectional preference of a noun for verbs taking it as
a direct object as it is to talk of the preference of a verb for nouns taking it as a direct
object. We expect both configurations to perform comparably on average, though there
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may be linguistic or conceptual reasons why one configuration is better than the other
for specific classes of co-occurrence.

To convert conditional probabilities to joint probabilities we multiply by a relative-
frequency (MLE) estimate of the probability of the conditioning term:

PP→A = P(w|c)P(c) (62)

PA→P = P(c|w)P(w) (63)

As well as evaluating P → A and A → P implementations of LDA and LEX-LDA,
we can evaluate a combined model P ↔ A that simply averages the two sets of
predictions; this removes the arbitrariness involved in choosing one direction or the
other.

For comparison, we report the performance figures given by Keller and Lapata
for their search-engine method using AltaVista and Google12 as well as a number of
alternative methods that we have reimplemented and trained on identical data:

BNC (MLE) A maximum-likelihood estimate proportional to the co-occurrence fre-
quency f (c, w) in the parsed BNC.

BNC (KN) BNC relative frequencies smoothed with modified Kneser-Ney (Chen and
Goodman 1999).

Resnik The WordNet-based association strength of Resnik (1993). We used WordNet
version 2.1 as the method requires multiple roots in the hierarchy for good
performance.

Clark/Weir The WordNet-based method of Clark and Weir (2002), using WordNet 3.0.
This method requires that a significance threshold α and significance test be
chosen; we investigated a variety of settings and report performance for α = 0.9
and Pearson’s χ2 test, as this combination consistently gave the best results.

Rooth-EM Rooth et al. (1999)’s latent-variable model without priors, trained with EM.
As for the Bayesian models, we average the predictions over three iterations. This
method is very sensitive to the number of classes; as proposed by Rooth et al.,
we choose the number of classes from the range (20, 25, . . . , 50) through 5-fold
cross-validation on a held-out log-likelihood measure.

EPP The vector-space method of Erk, Padó, and Padó (2010), as described in Sec-
tion 2.2.3. We used the cosine similarity measure for smoothing as it performed
well in Erk, Padó, & Padó’s experiments.

Disc A discriminative model inspired by Bergsma, Lin, and Goebel (2008) (see Sec-
tion 2.2.4). In order to get true probabilistic predictions, we used a logistic regres-
sion classifier with L1 regularization rather than a Support Vector Machine.13

We train one classifier per predicate in the Keller and Lapata data set. Following
Bergsma, Lin, and Goebel, we generate pseudonegative instances for each
predicate by sampling noun arguments that either do not co-occur with it or have
a negative PMI association. Again following Bergsma, Lin, and Goebel, we use
a ratio of two pseudonegative instances for each positive instance and require
pseudonegative arguments to be in the same frequency quintile as the matched

12 Keller and Lapata only report Pearson’s r correlations; as we do not have their per-item predictions we
cannot calculate Spearman’s ρ correlations or statistical significance scores.

13 We used the logistic regression implementation provided by LIBLINEAR (Fan et al. 2008), available at
http://www.csie.ntu.edu.tw/~cjlin/liblinear.

614
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observed argument. The features used for each data instance, corresponding
to an argument, are: the conditional probability of the argument co-occurring
with each predicate in the training data; and string-based features capturing the
length and initial and final character n-grams of the argument word.14 We also
investigate whether our LDA model can be used to provide additional features
for the discriminative model, by giving the index of the most probable class
maxz P(z|c, w); results for this system are labeled Disc+LDA.

In order to test statistical significance of performance differences we use a test for
correlated correlation coefficients proposed by Meng, Rosenthal, and Rubin (1992). This
is more appropriate than a standard test for independent correlation coefficients as it
takes into account the strength of correlation between two sets of system outputs as
well as each output’s correlation with the gold standard. Essentially, if the two sets of
system outputs are correlated there is less chance that their difference will be deemed
significant. As we have no a priori reason to believe that one model will perform better
than another, all tests are two-tailed.

4.3.3 Results. Results on the Keller and Lapata (2003) plausibility data set are presented
in Table 5.15 For common combinations (the Seen data) it is clear that relative corpus
frequency is a reliable indicator of plausibility, especially when Web-scale resources are
available. The BNC MLE estimate outperforms the best selectional preference model
on three out of six Seen evaluations, and the AltaVista and Google estimates from
Keller and Lapata (2003) outperforms the best selectional preference model on every
applicable Seen evaluation. For the rarer Unseen combinations, however, MLE esti-
mates are not sufficient and the latent-variable selectional preference models frequently
outperform even the Web-based predictions. The results for BNC(KN) improve on the
MLE estimates for the Unseen data but do not match the models that have a semantic
component.

It is clear from Table 5 that the new Bayesian latent-variable models outperform
the previously proposed selectional preference models under almost every evaluation.
Among the latent-variable models there is no one clear winner, and small differences
in performance are as likely to arise through random sampling variation as through
qualitative differences between models. That said, ROOTH-LDA and LEX-LDA do score
higher than LDA in a majority of cases. As expected, the bidirectional P ↔ A models
tend to perform at around the midpoint of the P → A and A → P models, though they
can also exceed both; this suggests that they are a good choice when there is no intuitive
reason to choose one direction over the other.

Table 6 aggregates comparisons for all combinations of the six data sets and two
evaluation measures. As before, all the Bayesian latent-variable models achieve a
roughly similar level of performance, consistently outperforming the models selected
from the literature and frequently reaching statistical significance (p < 0.05). These
results confirm that LDA-style models can be considered the current state of the art
for selectional preference modeling.

14 Bergsma, Lin, and Goebel (2008) also use features extracted from gazetteers. However, they observe that
additional features only give a small improvement over co-occurrence features alone. We do not use such
features here but hypothesize that the improvement would be even smaller in our experiments as the
data do not contain proper nouns.

15 Results for LDAP→A and ROOTH-LDA were previously published in Ó Séaghdha (2010).
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Table 5
Results (Pearson r and Spearman ρ correlations) on Keller and Lapata’s (2003) plausibility data.
Asterisks denote performance figures that are taken from the source paper; all other figures are
drawn from our own (re)implementation trained on identical data.

Verb–object Noun–noun Adjective–noun

Seen Unseen Seen Unseen Seen Unseen

r ρ r ρ r ρ r ρ r ρ r ρ

AltaVista* .641 – .551 – .700 – .578 – .650 – .480 –
Google* .624 – .520 – .692 – .595 – .641 – .473 –
BNC (MLE) .620 .614 .196 .222 .544 .604 .114 .125 .543 .622 .135 .102
BNC (KN) .615 .614 .327 .350 .543 .594 .485 .523 .510 .619 .179 .173

Resnik .384 .473 .469 .470 .242 .187 .152 .037 .309 .388 .311 .280
Clark/Weir .489 .546 .312 .365 .441 .521 .543 .576 .440 .476 .271 .242
ROOTH-EM .455 .487 .479 .520 .503 .491 .586 .625 .514 .463 .395 .355
EPP .541 .562 .403 .436 .382 .465 .377 .398 .401 .400 .260 .195

Disc .318 .318 .376 .354 .331 .294 .258 .250 .188 .274 .303 .327
Disc+LDA .328 .338 .473 .476 .308 .285 .266 .292 .228 .308 .333 .368

LDAP→A .504 .541 .558 .603 .615 .641 .636 .666 .594 .558 .468 .459
LDAA→P .514 .555 .448 .469 .623 .652 .648 .688 .547 .583 .465 .458
LDAP↔A .513 .546 .530 .542 .619 .645 .653 .697 .593 .570 .467 .445

ROOTH-LDA .520 .548 .564 .605 .607 .622 .691 .722 .575 .599 .501 .469

LEX-LDAP→A .570 .600 .601 .662 .511 .537 .677 .706 .600 .627 .465 .451
LEX-LDAA→P .568 .572 .523 .542 .532 .568 .659 .703 .545 .623 .513 .477
LEX-LDAP↔A .575 .589 .560 .599 .553 .563 .669 .698 .572 .629 .517 .497

Human* .604 – .640 – .641 – .570 – .630 – .550 –

Table 6
Aggregate comparisons for the Keller and Lapata (2003) plausibility data set between
latent-variable models (rows) and previously proposed selectional preference models (columns).
Cell entries give the number of evaluations (out of 12) in which the latent-variable model
outperformed the alternative method and the number in which the improvement was
statistically significant.

Resnik Clark/Weir ROOTH-EM EPP Disc

LDAP→A 12/5 11/8 12/6 10/5 12/4
LDAA→P 10/4 12/8 10/5 10/3 12/4
LDAP↔A 12/4 11/9 12/6 10/5 12/5

ROOTH-LDA 12/6 12/7 12/7 10/5 12/5

LEX-LDAP→A 12/5 11/8 12/6 12/5 12/5
LEX-LDAA→P 10/4 12/8 10/5 12/5 12/6
LEX-LDAP↔A 12/4 11/9 12/6 12/5 12/5
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One way of performing error analysis for a given result is to decompose the cor-
relation coefficient into a sum of per-item “pseudo-coefficients.” For Pearson’s r, the
contribution for the ith item is

ri =
(xi − μx)(yi − μy)

√∑
j(xj − μx)2

√∑
j(yj − μy)2

(64)

Spearman’s ρ is equivalent to the r correlation between ranks and so a similar quantity
can be computed. Table 7 illustrates the items with highest and lowest contributions
for one evaluation (Spearman’s ρ on the Keller and Lapata Unseen data set). We have
attempted to identify general factors that predict the difficulty of an item by measuring
rank correlation between the per-item pseudo-coefficients and various corpus statis-
tics. However, it has proven difficult to isolate reliable patterns. One finding is that
arguments with high corpus frequency tend to incur larger errors for the P → A latent-
variable models and ROOTH-LDA, whereas predicates with high corpus frequency tend
to incur smaller errors; with the A → P the effect is lessened but not reversed, suggesting
that part of the effect may be inherent in the data set rather than in the prediction model.

4.4 Predicate–Argument Similarity
4.4.1 Data. Mitchell and Lapata (2008, 2010) collected human judgments of similarity
between pairs of predicates and arguments corresponding to minimal sentences.
Mitchell and Lapata’s explicit aim was to facilitate evaluation of general semantic
compositionality models but their data sets are also suitable for evaluating predicate–
argument representations.

Mitchell and Lapata (2008) used the BNC to extract 4 attested subject nouns for each
of 15 verbs, yielding 60 reference combinations. Each verb–noun tuple was matched
with two verbs that are synonyms of the reference verb in some contexts but not in

Table 7
Most- and least-accurately predicted items for the LDAP→A models using per-item Spearman’s ρ
pseudo-coefficients on the unseen data set, with gold and predicted rank values.

Item ri Gold Pred Item ri Gold Pred

influence worker 0.030 3 2 spend life –0.012 63 1
originate miner 0.029 89 86 rank pc –0.012 21 75
undergo container 0.027 90 83 deduct stage –0.011 79 25
litter surface 0.027 7 3 sponsor embassy –0.010 23 73
injure pilot 0.026 2 9 spend error –0.007 80 30

desk tomato 0.028 87 87 guitar conviction –0.012 82 25
pupil morale 0.026 3 9 towel fee –0.011 11 65
landlord committee 0.025 12 1 workshop victim –0.007 18 60
restoration specialist 0.025 1 12 opera recommendation –0.006 6 54
cable manager 0.024 7 8 valuation afternoon –0.005 70 32

superb character 0.032 2 1 tremendous newspaper –0.014 13 72
scientific document 0.032 1 2 continuous clinic –0.012 75 21
valid silk 0.031 89 89 lazy promoter –0.012 24 79
naughty protocol 0.026 84 87 unfair coalition –0.012 20 73
exciting can 0.026 87 84 lazy shadow –0.010 74 24
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Table 8
Sample items from the Mitchell and Lapata (2008) data set.

shoulder slump 6, 7, 5, 5, 6, 5, 5, 7, 5, 5, 7, 5, 6, 6, 5, 6, 6, 6, 7, 5,
7, 6, 6, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 7shoulder slouch

shoulder slump 2, 5, 4, 4, 3, 3, 2, 3, 2, 1, 3, 3, 6, 5, 3, 2, 1, 1, 1, 7,
4, 4, 6, 3, 5, 6shoulder decline

Table 9
Sample items from the Mitchell and Lapata (2010) data set.

stress importance 6, 7, 7, 5, 5, 7, 7, 7, 6, 5, 6, 7, 3, 7, 7, 6, 7, 7emphasize need

ask man 3, 1, 4, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1stretch arm

football club 7, 6, 7, 6, 6, 5, 5, 3, 6, 6, 4, 5, 4, 6, 2, 7, 5, 5league match

education course 7, 7, 5, 5, 7, 5, 5, 7, 7, 4, 6, 2, 5, 6, 6, 7, 7, 4training program

others. In this way, Mitchell and Lapata created a data set of 120 pairs of predicate–
argument combinations. Similarity judgments were obtained from human subjects for
each pair on a Likert scale of 1–7. Examples of the resulting data items are given in
Table 8. Mitchell and Lapata use six subjects’ ratings as a development data set for
setting model parameters and the remaining 54 subjects’ ratings for testing. In this
article we use the same split.

Mitchell and Lapata (2010) adopt a similar approach to data collection with the dif-
ference that instead of keeping arguments constant across combinations in a pair, both
predicates and arguments vary across comparand combinations. They also consider a
range of grammatical relations: verb–object, adjective–noun, and noun–noun modifica-
tion. Human subjects rated similarity between predicate–argument combinations on a
1–7 scale as before; examples are given in Table 9. Inspection of the data suggests that
the subjects’ annotation may conflate semantic similarity and relatedness; for example,
football club and league match are often given a high similarity score. Mitchell and Lapata
again split the data into development and testing sections, the former comprising 54
subjects’ ratings and the latter comprising 108 subjects’ ratings.

Turney (2012) reports, on the basis of personal communication, that Mitchell and
Lapata (2010) used an involved evaluation procedure that is not described in their
original paper; for each grammatical relation, the annotators are partitioned in three
groups and the Spearman’s ρ correlation computed for each group is combined by av-
eraging.16 The analogous approach for the Mitchell and Lapata (2008) data set calculates
a single ρ value by pairing of each annotator-item score with the system prediction for
the appropriate item. Let s be the sequence of system predictions for |I| items and ya

16 We do not compare against the system of Turney (2012) as Turney uses a different experimental design
based on partitioning by phrases rather than annotators.
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be the scores assigned by annotator a ∈ A to those |I| items. Then the “concatenated”
correlation ρcat is calculated as follows:17

ycat = (ya1i1 , ya1i2 , . . . , ya1i|I| , ya2i1 . . . , ya|A|i|I| ) (65)

scat = (s1, s2, . . . , s|I|, s1, . . . , s|I|) (66)

ρcat = ρ(scat, ycat) (67)

The length of the ycat and scat sequences is equal to the total number of annotator-item
scores. For the Mitchell and Lapata (2010) data set, a ρcat value is calculated for each
of the three annotator groups and these are then averaged. As Turney observes, this
approach seems to have the effect of underestimating model quality relative to the inter-
annotator agreement figure, which is calculated as average intersubject correlation.
Therefore, in addition to Mitchell and Lapata’s ρcat evaluation, we also perform an
evaluation that computes the average correlation ρave between the system output and
each individual annotator:

ρave =
1
|A|

∑

a∈A

ρ(s, ya) (68)

4.4.2 Models. For the Mitchell and Lapata (2008) data set we train the following models
on the BNC corpus:

LDA An LDA selectional preference model of verb–subject co-occurrence with simi-
larity computed as described in Section 3.5. Similarity predictions sim(n, o|c) are
averaged over five runs. We consider three models of context–target interaction,
which in this case corresponds to verb–subject interaction:
LDAC→T Target generation is conditioned on the context, as in equation (53).
LDAT→C Context generation is conditioned on the target, as in equation (56).
LDAC↔T An average of the predictions made by LDAC→T and LDAT→C.
As before, we consider a default setting of |Z| = 100. As well as presenting results
for an average over all predictors we investigate whether the choice of predictors
can be optimized by using the development data to select the best subset of
predictors.

Mult Pointwise multiplication (6) using Win5 co-occurrences.

We also compare against the best figures reported in previous studies; these also used
the BNC for training and so should be directly comparable:

M+L08 The best-performing system of Mitchell and Lapata (2008), combining an addi-
tive and a multiplicative model and using window-based co-occurrences.

SVS The best-performing system of Erk and Padó (2008); the Structured Vector Space
model (8), parameterized to use window-based co-occurrences and raising the
expectation vector values (7) to the 20th power (this parameter was optimized
on the development data).

17 In practice the sequence of items is not the same for every annotator and the sequence of predictions s
must be changed accordingly.
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Table 10
Results (ρave averaged across annotators) for the Mitchell and Lapata (2008) similarity data set.

Model No Optimization Optimized on Dev

|Z| = 100
LDAC→T 0.34 0.35
LDAT→C 0.39 0.41
LDAC↔T 0.39 0.41

Mult 0.15 –

Human* 0.40 –

For the Mitchell and Lapata (2010) data set we train the following models, again on
the BNC corpus:

ROOTH-LDA/Syn A ROOTH-LDA model trained on the appropriate set of syntactic
co-occurrences (verb–object, noun–noun modification, or adjective–noun), with
the topic distribution calculated as in Equation (59).

LDA/Win5 An LDA model trained on the Win5 window-based co-occurrences. Be-
cause all observations are modeled using the same latent classes, the distributions
P(z|o, c) (Equation (53)) for each word in the pair can be combined by taking a
normalized product.

Combined This model averages the similarity prediction of the ROOTH-LDA/Syn and
LDA/Win5 models.

Mult Pointwise multiplication (6) using Win5 co-occurrences.

We report results for an average over all predictors as well as for the subset that per-
forms best on the development data. We also list results that were reported by Mitchell
and Lapata:

M+L10/Mult A multiplicative model (6) using a vector space based on window co-
occurrences in the BNC.

M+L10/Best The best result for each grammatical relation from any of the semantic
spaces and combination methods tested by Mitchell and Lapata. Some of these
methods require parameters to be set through optimization on the development
set.18

4.4.3 Results. Results for the Mitchell and Lapata (2008) data set are presented in
Tables 10 and 11.19 The LDA preference models clearly outperform the previous state
of the art of ρcat = 0.27 (Erk and Padó 2008), with the best simple average of predictors
scoring ρcat = 0.38, ρave = 0.41, and the best optimized combination scoring ρcat = 0.39,
ρave = 0.41. This is comparable to the average level of agreement between human judges
estimated by Mitchell and Lapata’s to be ρave = 0.40. Optimizing on the development
data consistently gave better performance than averaging over all predictors, though
in most cases the differences are small.

18 Ultimately, however, none of the combination methods needing optimization outperform the
parameter-free methods in Mitchell and Lapata’s results.

19 The results in Table 10 were previously published in Ó Séaghdha and Korhonen (2011).
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Table 11
Results (ρcat) for the Mitchell and Lapata (2008) similarity data set.

Model No Optimization Optimized on Dev

|Z| = 100
LDAC→T 0.28 0.32
LDAT→C 0.38 0.39
LDAC↔T 0.33 0.38

Mult 0.13 –
SVS* 0.27 –
M+L08* 0.19 –

Human* 0.40 –

Table 12
Results (ρave averaged across annotators) for the Mitchell and Lapata (2010) similarity data set.

Model No Optimization Optimized on Dev

V–Obj N–N Adj–N V–Obj N–N Adj–N

LDA/Win5 0.41 0.56 0.46 0.42 0.58 0.49
ROOTH-LDA/Syn 0.42 0.46 0.51 0.42 0.47 0.52
Combined 0.44 0.56 0.53 0.46 0.58 0.55

Mult/Win5 0.34 0.33 0.34 – – –

Human* 0.55 0.49 0.52 – – –

Results for the Mitchell and Lapata (2010) data set are presented in Tables 12 and
Table 13.20 Again the latent-variable models perform well, comfortably outperforming
the Mult baseline, and with just one exception the Combined models surpass Mitchell
and Lapata’s reported results. Combining the syntactic co-occurrence model ROOTH-
LDA/Syn and the window-based model LDA/Win5 consistently gives the best perfor-
mance, suggesting that the human ratings in this data set are sensitive to both strict
similarity and a looser sense of relatedness. As Turney (2012) observes, the average-ρcat-
per-group approach of Mitchell and Lapata leads to lower performance figures than
averaging across annotators; with the latter approach (Table 12) the ρave correlation
values approach the level of human interannotator agreement for two of the three
relations: noun–noun and adjective–noun modification.

4.5 Lexical Substitution
4.5.1 Data. The data set for the English Lexical Substitution Task (McCarthy and Navigli
2009) consists of 2,010 sentences sourced from Web pages. Each sentence features one of
205 distinct target words that may be nouns, verbs, adjectives, or adverbs. The sentences
have been annotated by human judges to suggest semantically acceptable substitutes
for their target words. Table 14 gives example sentences and annotations for the target
verb charge. For the original shared task the data was divided into development and test

20 These results were not previously published.
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Table 13
Results (ρcat averaged across groups) for the Mitchell and Lapata (2010) similarity data set.

Model No Optimization Optimized on Dev

V–Obj N–N Adj–N V–Obj N–N Adj–N

LDA/Win5 0.37 0.51 0.42 0.37 0.53 0.44
ROOTH-LDA/Syn 0.37 0.42 0.45 0.37 0.43 0.47
Combined 0.39 0.51 0.47 0.41 0.53 0.48

Mult/Win5 0.31 0.30 0.30 – – –

M+L10/Mult* 0.37 0.49 0.46 – – –
M+L10/Best* 0.40 0.49 0.46 0.40 0.49 0.46

Human* 0.55 0.49 0.52 – – –

Table 14
Example sentences for the verb charge from the English Lexical Substitution Task.

Commission is the amount charged to execute a trade.
levy (2), impose (1), take (1), demand (1)

Annual fees are charged on a pro-rata basis to correspond with the standardized renewal date
in December.
levy (2), require (1), impose (1), demand (1)

Meanwhile, George begins obsessive plans for his funeral. . . George, suspicious, charges to
her room to confront them.
run (2), rush (2), storm (1), dash (1)

Realizing immediately that strangers have come, the animals charge them and the horses
began to fight.
attack (5), rush at (1)

sections; in this article we follow subsequent work using parameter-free models and
use the whole data set for testing.

The gold standard substitute annotations contain a number of multiword terms
such as rush at and generate electricity. As it is impossible for a standard lexical distri-
butional model to reason about such terms, we remove these substitutes from the gold
standard.21 We remove entirely the 17 sentences that have only multiword substitutes
in the gold standard, as well as 7 sentences for which no gold annotations are provided.
This leaves 1,986 sentences.

The original Lexical Substitution Task asked systems to propose substitutes from
an unrestricted English vocabulary, though in practice all participants used lexical
resources to constrain the set of substitutes considered. Most subsequent researchers
using the Lexical Substitution data to evaluate models of contextual meaning have
adopted a slightly different experimental design, in which systems are asked to rank
only the list of attested substitutes for the target word in each sentence. For example,

21 Thater, Fürstenau, and Pinkal (2010, 2011) and Dinu and Lapata (2010) similarly remove multiword
paraphrases (Georgiana Dinu, p.c.).
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the list of substitute candidates for an instance of charge is the union of the substitute
lists in the gold standard for every sentence containing charge as a target word: levy,
impose, take, demand, require, impose, run, rush, storm, dash, attack,. . . . Evaluation of system
predictions for a given sentence then involves comparing the ranking produced by the
system with the implicit ranking produced by annotators, assuming that any candidates
not attested for the sentence appear with frequency 0 at the bottom of the ranking.
Dinu and Lapata (2010) use Kendall’s τb, a standard rank correlation measure that is
appropriate for data containing tied ranks. Thater, Fürstenau, and Pinkal (2010, 2011)
use Generalized Average Precision (GAP), a precision-like measure originally proposed
by Kishida (2005) for information retrieval:

GAP =

∑n
i=1 I(xi)

∑i
k=1 xk

i
∑R

j=1 I(yj)
∑j

l=1 yl
j

(69)

where x1, . . . , xn are the ranked candidate scores provided by the system, y1, . . . , yR are
the ranked scores in the gold standard and I(x) is an indicator function with value 1 if
x > 0 and 0 otherwise.

In this article we report both τb and GAP scores, calculated individually for each
sentence and averaged. The open-vocabulary design of the original Lexical Substitution
Task facilitated the use of other evaluation measures such as “precision out of ten”: the
proportion of the first 10 words in a system’s ranked substitute list that are contained
in the gold standard annotation for that sentence. This measure is not appropriate
in the constrained-vocabulary scenario considered here; when there are fewer than
10 candidate substitutes for a target word, the precision will always be 1.

4.5.2 Models. We apply both window-based and syntactic models of similarity in context
to the lexical substitution data set; we expect the latter to give more accurate predictions
but to have incomplete coverage when a test sentence is not fully and correctly parsed
or when the test lexical items were not seen in the appropriate contexts in training.22 We
therefore also average the predictions of the two model types in the hope of attaining
superior performance with full coverage.

The models we train on the BNC and combined BNC + WIKI corpora are as follows:

Win5 An LDA model using 5-word-window contexts (so |C| ≤ 10) and similarity
P(z|o, C) computed according to Equation (54).

C → T An LDA model using syntactic co-occurrences with similarity computed accord-
ing to Equation (54).

T → C An LDA model using syntactic co-occurrences with similarity computed accord-
ing to Equation (57).

T ↔ C A model averaging the predictions of the C → T and T → C models.
Win5 + C → T, Win5 + T → C, Win5 + T ↔ C A model averaging the predictions of

Win5 and the appropriate syntactic model.
TFP11 The vector-space model of Thater, Fürstenau, and Pinkal (2011). We report fig-

ures with and without backoff to lexical similarity between target and substitute
words in the absence of a syntax-based prediction.

22 An LDA model cannot make an informative prediction of P(z|o, C) if word o was never seen entering
into at least one (unlexicalized) syntactic relation in C. Other syntactic models such as that of Thater,
Fürstenau, and Pinkal (2011) face analogous restrictions.
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Table 15
Results on the English Lexical Substitution Task data set; boldface denotes best performance at
full coverage for each corpus.

BNC BNC + Wikipedia

GAP τb %Coverage GAP τb %Coverage

Win5 44.5 0.17 100.0 44.8 0.17 100.0
C → T 46.8 0.20 86.4 48.7 0.21 86.5
T → C 47.2 0.21 86.4 49.3 0.22 86.5
T ↔ C 48.2 0.22 86.4 49.1 0.23 86.5

Win5 + C → T 46.0 0.18 100.0 48.7 0.21 100.0
Win5 + T → C 48.6 0.21 100.0 49.3 0.22 100.0
Win5 + T ↔ C 48.1 0.20 100.0 49.5 0.23 100.0

Baseline:
No Context 43.8 0.16 100.0 43.7 0.15 100.0
No Similarity 39.7 0.14 100.0 40.3 0.14 100.0

TFP11:
No Backoff 46.8 0.20 84.8 47.7 0.22 84.9
+Backoff 46.4 0.19 98.1 47.3 0.21 98.2

We also consider two baseline LDA models:

No Context A model that ranks substitutes n by computing the Bhattacharyya similar-
ity between their topic distributions P(z|n) and the target word topic distribution
P(z|o).

No Similarity A model that ranks substitutes n by their context-conditioned probabil-
ity P(n|C) only; this is essentially a language-modeling approach using syntactic
“bigrams.”

We report baseline results for the T ↔ C syntactic model, but performance is similar
with other co-occurrence types.

Predictions for the LDA models are averaged over five runs for each setting of |Z|
in the range {600, 800, 1000, 1200}. In order to test statistical significance of differences
between models we use stratified shuffling (Yeh 2000).23

4.5.3 Results. Table 15 presents results on the Lexical Substitution Task data set.24 As
expected, the window-based LDA models attain good coverage but worse performance
than the syntactic models. The combined model Win5 + T ↔ C trained on BNC+WIKI
gives the best scores (GAP = 49.5, τb = 0.23). Every combined model gives a statistically
significant improvement (p < 0.01) over the corresponding window-based Win5 model.
Our TFP11 reimplementation of Thater, Fürstenau, and Pinkal (2011) has slightly less
than complete coverage, and performs worse than almost all combined LDA models.
To compute statistical significance we only use the sentences for which TFP11 made
predictions; for both the BNC and BNC+WIKI corpora, the Win5 + T ↔ C model

23 We use the software package provided by Sebastian Padó at
http://www.nlpado.de/~sebastian/sigf.html.

24 Results for the LDA models were reported in Ó Séaghdha and Korhonen (2011).

624
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gives a statistically significant (p < 0.05) improvement over TFP11 for both GAP and
τb, while Win5 + T → C gives a significant improvement for GAP and τb on the BNC
training corpus. The no-context and no-similarity baselines are clearly worse than the
full models; this difference is statistically significant (p < 0.01) for both training corpora
and all models.

Table 16 breaks performance down across the four parts of speech used in the
data set. Verbs appear to present the most difficult substitution questions and also
demonstrate the greatest beneficial effect of adding syntactic disambiguation to the
basic Win5 model. The full Win5 + T ↔ C outperforms our reimplementation of Thater,
Fürstenau, and Pinkal (2011) on all parts of speech for the GAP statistic and on verbs and
adjectives for τb, scoring a tie on nouns and adverbs. Table 16 also lists results reported
by Dinu and Lapata (2010) and Thater, Fürstenau, and Pinkal (2010, 2011) for their
models trained on the English Gigaword Corpus. This corpus is of comparable size to
the BNC+WIKI corpus, but we note that the results reported by Thater, Fürstenau, and
Pinkal (2011) are better than those attained by our reimplementation, suggesting that
uncontrolled factors such as choice of corpus, parser, or dependency representation may
be responsible. Thater, Fürstenau, and Pinkal’s (2011) results remain the best reported
for this data set; our Win5 + T ↔ C results are better than Dinu and Lapata (2010) and
Thater, Fürstenau, and Pinkal (2010) in this uncontrolled setting.

5. Conclusion

In this article we have shown that the probabilistic latent-variable framework provides
a flexible and effective toolbox for distributional modeling of lexical meaning and gives
state-of-the-art results on a number of semantic prediction tasks. One useful feature of
this framework is that it induces a representation of semantic classes at the same time
as it learns about selectional preference distributions. This can be viewed as a kind of
coarse-grained sense induction or as a kind of concept induction. We have demonstrated
that reasoning about these classes leads to an accurate method for calculating semantic
similarity in context. By applying our models we attain state-of-the-art performance
on a range of evaluations involving plausibility prediction, in-context similarity, and

Table 16
Performance by part of speech, with additional results from Thater, Fürstenau, and Pinkal (2010,
2011) and Dinu and Lapata (2010).

Nouns Verbs Adjectives Adverbs Overall

GAP τb GAP τb GAP τb GAP τb GAP τb

Win5/BNC+WIKI 46.0 0.16 38.9 0.14 44.0 0.18 54.0 0.22 44.8 0.17
Win5 + T ↔ C 50.7 0.22 45.1 0.20 48.8 0.24 55.9 0.24 49.5 0.23

TFP11 (+Backoff) 48.9 0.22 42.5 0.17 46.0 0.22 55.2 0.24 47.3 0.21

TFP10* (Model 1) 46.4 – 45.9 – 39.4 – 48.2 – 44.6 –
TFP10* (Model 2) 42.5 – – – 43.2 – 51.4 – – –

TFP11* (+Backoff) 52.9 – 48.8 – 51.1 – 55.3 – 51.7 –

DL10* (LDA) – 0.16 – 0.14 – 0.17 – 0.21 – 0.16
DL10* (NMF) – 0.15 – 0.14 – 0.16 – 0.26 – 0.16
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lexical substitution. The three models we have investigated—LDA, ROOTH-LDA and
LEX-LDA—all perform at a similar level for predicting plausibility, but in other cases
the representation induced by one model may be more suitable than the others.

In future work, we anticipate that the same intuitions may lead to similarity accu-
rate methods for other tasks where disambiguation is required; an obvious candidate
would be traditional word sense disambiguation, perhaps in combination with the
probabilistic WordNet-based preference models of Ó Séaghdha and Korhonen (2012).
More generally, we expect that latent-variable models will prove useful in applications
where other selectional preference models have been applied, for example, metaphor
interpretation and semantic role labeling.

A second route for future work is to enrich the semantic representations that are
learned by the model. As previously mentioned, probabilistic generative models are
modular in the sense that they can be integrated in larger models. Bayesian methods
for learning tree structures could be applied to learn taxonomies of semantic classes
(Blei, Griffiths, and Jordan 2010; Blundell, Teh, and Heller 2010). Borrowing ideas
from Bayesian hierarchical language modeling (Teh 2006), one could build a model of
selectional preference and disambiguation in the context of arbitrarily long dependency
paths, relaxing our current assumption that only the immediate neighbors of a target
word affect its meaning. Our class-based preference model also suggests an approach
to identifying regular polysemy alternation by finding class co-occurrences that repeat
across words, offering a fully data-driven alternative to polysemy models based on
WordNet (Boleda, Padó, and Utt 2012). In principle, any structure that can be reasoned
about probabilistically, from syntax trees to coreference chains or semantic relations, can
be coupled with a selectional preference model to incorporate disambiguation or lexical
smoothing in a task-oriented architecture.
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Padó, Sebastian and Mirella Lapata. 2007.
Dependency-based construction of
semantic space models. Computational
Linguistics, 33(2):161–199.

Pantel, Patrick, Rahul Bhagat, Bonaventura
Coppola, Timothy Chklovski, and Eduard
Hovy. 2007. ISP: Learning inferential
selectional preferences. In Proceedings of
NAACL-07, pages 564–571, Rochester, NY.

Pereira, Fernando, Naftali Tishby, and Lillian
Lee. 1993. Distributional clustering of
English words. In Proceedings of the 31st
Annual Meeting of the Association for
Computational Linguistics (ACL-93),
pages 183–190, Columbus, OH.

Petrov, Slav, Leon Barrett, Romain Thibaux,
and Dan Klein. 2006. Learning accurate,
compact, and interpretable tree
annotation. In Proceedings of the 21st
International Conference on Computational
Linguistics and 44th Annual Meeting of the
Association for Computational Linguistics
(COLING-ACL-06), pages 433–440, Sydney.

Rayner, Keith, Tessa Warren, Barbara J.
Juhasz, and Simon P. Liversedge. 2004. The
effect of plausibility on eye movements in
reading. Journal of Experimental Psychology:
Learning Memory and Cognition,
30(6):1,290–1,301.

Reisinger, Joseph and Raymond Mooney.
2010. A mixture model with sharing for
lexical semantics. In Proceedings of the 2010
Conference on Empirical Methods in Natural
Language Processing (EMNLP-10),
pages 1,173–1,182, Cambridge, MA.

Reisinger, Joseph and Raymond Mooney.
2011. Cross-cutting models of lexical
semantics. In Proceedings of the 2011
Conference on Empirical Methods in Natural
Language Processing (EMNLP-11),
pages 1,405–1,415, Edinburgh.

Resnik, Philip. 1993. Selection and Information:
A Class-Based Approach to Lexical
Relationships. Ph.D. thesis, University of
Pennsylvania.

Ritter, Alan, Mausam, and Oren Etzioni.
2010. A latent Dirichlet allocation method
for selectional preferences. In Proceedings of
the 48th Annual Meeting of the Association
for Computational Linguistics (ACL-10),
pages 424–434, Uppsala.

Rooth, Mats, Stefan Riezler, Detlef Prescher,
Glenn Carroll, and Franz Beil. 1999.
Inducing a semantically annotated lexicon
via EM-based clustering. In Proceedings of
the 37th Annual Meeting of the Association
for Computational Linguistics (ACL-99),
pages 104–111, College Park, MD.

Russell, Bertrand. 1940. An Inquiry into
Meaning and Truth. George Allen and
Unwin, London.

Schulte im Walde, Sabine, Christian Hying,
Christian Scheible, and Helmut Schmid.

629

http://www.mitpressjournals.org/action/showLinks?crossref=10.1037%2F0033-2909.111.1.172
http://www.mitpressjournals.org/action/showLinks?system=10.1162%2Fcoli.2007.33.2.161
http://www.mitpressjournals.org/action/showLinks?system=10.1162%2Fcoli.2007.33.2.161
http://www.mitpressjournals.org/action/showLinks?crossref=10.1037%2F0278-7393.30.6.1290
http://www.mitpressjournals.org/action/showLinks?crossref=10.1037%2F0278-7393.30.6.1290
http://www.mitpressjournals.org/action/showLinks?crossref=10.1111%2Fj.1551-6709.2010.01106.x


Computational Linguistics Volume 40, Number 3

2008. Combining EM training and the
MDL principle for an automatic
verb classification incorporating
selectional preferences. In Proceedings
of ACL-08: HLT, pages 496–504,
Columbus, OH.

Shutova, Ekaterina. 2010. Automatic
metaphor interpretation as a paraphrasing
task. In Proceedings of Human Language
Technologies: The 2010 Annual Conference
of the North American Chapter of the
Association for Computational Linguistics
(NAACL-HLT-10), pages 1,029–1,037,
Los Angeles, CA.

Socher, Richard, Eric H. Huang, Jeffrey
Pennington, Andrew Y. Ng, and
Christopher D. Manning. 2011. Dynamic
pooling and unfolding recursive
autoencoders for paraphrase detection.
In Proceedings of the 25th Annual
Conference on Neural Information Processing
Systems (NIPS-11), pages 801–809,
Granada.

Spärck Jones, Karen. 1964. Synonymy and
Semantic Classification. Ph.D. thesis,
University of Cambridge.

Teh, Yee Whye. 2006. A hierarchical Bayesian
language model based on Pitman-Yor
processes. In Proceedings of the 21st
International Conference on Computational
Linguistics and 44th Annual Meeting of the
Association for Computational Linguistics
(COLING-ACL-06), pages 985–992,
Sydney.

Thater, Stefan, Hagen Fürstenau, and
Manfred Pinkal. 2010. Contextualizing
semantic representations using
syntactically enriched vector models.
In Proceedings of the 48th Annual Meeting
of the Association for Computational
Linguistics (ACL-10), pages 948–957,
Uppsala.

Thater, Stefan, Hagen Fürstenau, and
Manfred Pinkal. 2011. Word meaning in
context: A simple and effective vector
model. In Proceedings of the 5th International
Joint Conference on Natural Language
Processing (IJCNLP-11), pages 1,134–1,143,
Hyderabad.

Titov, Ivan and Alexandre Klementiev.
2011. A Bayesian model for unsupervised
semantic parsing. In Proceedings of the
49th Annual Meeting of the Association
for Computational Linguistics,
pages 1,445–1,455, Portland, OR.

Turney, Peter D. 2012. Domain and function:
A dual-space model of semantic relations
and compositions. Journal of Artificial
Intelligence Research, 44:533–585.

Turney, Peter D. and Patrick Pantel. 2010.
From frequency to meaning: Vector
space models of semantics. Journal
of Artificial Intelligence Research,
37:141–188.

Vlachos, Andreas, Anna Korhonen, and
Zoubin Ghahramani. 2009. Unsupervised
and constrained Dirichlet process mixture
models for verb clustering. In Proceedings
of the EACL-09 Workshop on Geometrical
Models of Natural Language Semantics
(GEMS-09), pages 74–82, Athens.

Wallach, Hanna, David Mimno, and
Andrew McCallum. 2009. Rethinking
LDA: Why priors matter. In Proceedings
of the 23rd Annual Conference on Neural
Information Processing Systems(NIPS-09),
pages 1,973–1,981, Vancouver.

Wallach, Hanna M. 2006. Topic modeling:
Beyond bag-of-words. In Proceedings of the
23rd International Conference on Machine
Learning (ICML-06), pages 977–984,
Pittsburgh, PA.

Wallach, Hanna M. 2008. Structured topic
models for language. Ph.D. thesis,
University of Cambridge.

Weeds, Julie and David Weir. 2005.
Co-occurrence retrieval: A flexible
framework for lexical distributional
similarity. Computational Linguistics,
31(4):439–476.

Wilks, Yorick. 1978. Making preferences
more active. Artificial Intelligence,
11:197–225.

Yao, Limin, Aria Haghighi, Sebastian Riedel,
and Andrew McCallum. 2011. Structured
relation discovery using generative
models. In Proceedings of EMNLP-11,
pages 1,456–1,466, Edinburgh.

Yao, Limin, David Mimno, and Andrew
McCallum. 2009. Efficient methods for
topic model inference on streaming
document collections. In Proceedings of the
15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining
(KDD-09), pages 937–946, Paris.

Yeh, Alexander. 2000. More accurate
tests for the statistical significance of
result differences. In Proceedings of the
18th Conference on Computational
Linguistics (COLING-00), pages 947–953,
Saarbrücken.
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