
OntoLearn Reloaded: A Graph-Based
Algorithm for Taxonomy Induction

Paola Velardi∗
Sapienza University of Rome

Stefano Faralli∗
Sapienza University of Rome

Roberto Navigli∗
Sapienza University of Rome

In 2004 we published in this journal an article describing OntoLearn, one of the first systems
to automatically induce a taxonomy from documents and Web sites. Since then, OntoLearn has
continued to be an active area of research in our group and has become a reference work within
the community. In this paper we describe our next-generation taxonomy learning methodol-
ogy, which we name OntoLearn Reloaded. Unlike many taxonomy learning approaches in the
literature, our novel algorithm learns both concepts and relations entirely from scratch via the
automated extraction of terms, definitions, and hypernyms. This results in a very dense, cyclic
and potentially disconnected hypernym graph. The algorithm then induces a taxonomy from
this graph via optimal branching and a novel weighting policy. Our experiments show that we
obtain high-quality results, both when building brand-new taxonomies and when reconstructing
sub-hierarchies of existing taxonomies.

1. Introduction

Ontologies have proven useful for different applications, such as heterogeneous data
integration, information search and retrieval, question answering, and, in general, for
fostering interoperability between systems. Ontologies can be classified into three main
types (Sowa 2000), namely: i) formal ontologies, that is, conceptualizations whose cat-
egories are distinguished by axioms and formal definitions, stated in logic to support
complex inferences and computations; ii) prototype-based ontologies, which are based
on typical instances or prototypes rather than axioms and definitions in logic; iii) lexical-
ized (or terminological) ontologies, which are specified by subtype-supertype relations
and describe concepts by labels or synonyms rather than by prototypical instances.

Here we focus on lexicalized ontologies because, in order to enable natural
language applications such as semantically enhanced information retrieval and ques-
tion answering, we need a clear connection between our formal representation of the

∗ Dipartimento di Informatica, Sapienza Università di Roma, Via Salaria, 113, 00198 Roma Italy.
E-mail: {velardi,faralli,navigli}@di.uniroma1.it.

Submission received: 17 December 2011; revised submission received: 28 July 2012; accepted for publication:
10 October 2012.

doi:10.1162/COLI a 00146

© 2013 Association for Computational Linguistics

Computational Linguistics Volume 39, Number 3

domain and the language used to express domain meanings within text. And, in turn,
this connection can be established by producing full-fledged lexicalized ontologies for
the domain of interest. Manually constructing ontologies is a very demanding task,
however, requiring a large amount of time and effort, even when principled solutions
are used (De Nicola, Missikoff, and Navigli 2009). A quite recent challenge, referred
to as ontology learning, consists of automatically or semi-automatically creating a
lexicalized ontology using textual data from corpora or the Web (Gomez-Perez and
Manzano-Mancho 2003; Biemann 2005; Maedche and Staab 2009; Petasis et al. 2011). As
a result of ontology learning, the heavy requirements of manual ontology construction
can be drastically reduced.

In this paper we deal with the problem of learning a taxonomy (i.e., the backbone
of an ontology) entirely from scratch. Very few systems in the literature address this
task. OntoLearn (Navigli and Velardi 2004) was one of the earliest contributions in this
area. In OntoLearn taxonomy learning was accomplished in four steps: terminology
extraction, derivation of term sub-trees via string inclusion, disambiguation of domain
terms using a novel Word Sense Disambiguation algorithm, and combining the sub-
trees into a taxonomy. The use of a static, general-purpose repository of semantic
knowledge, namely, WordNet (Miller et al. 1990; Fellbaum 1998), prevented the system
from learning taxonomies in technical domains, however.

In this paper we present OntoLearn Reloaded, a graph-based algorithm for learning
a taxonomy from the ground up. OntoLearn Reloaded preserves the initial step of
our 2004 pioneering work (Navigli and Velardi 2004), that is, automated terminology
extraction from a domain corpus, but it drops the requirement for WordNet (thereby
avoiding dependence on the English language). It also drops the term compositionality
assumption that previously led to us having to use a Word Sense Disambiguation
algorithm—namely, SSI (Navigli and Velardi 2005)—to structure the taxonomy. Instead,
we now exploit textual definitions, extracted from a corpus and the Web in an iterative
fashion, to automatically create a highly dense, cyclic, potentially disconnected hyper-
nym graph. An optimal branching algorithm is then used to induce a full-fledged tree-
like taxonomy. Further graph-based processing augments the taxonomy with additional
hypernyms, thus producing a Directed Acyclic Graph (DAG).

Our system provides a considerable advancement over the state of the art in
taxonomy learning:

� First, excepting for the manual selection of just a few upper nodes, this
is the first algorithm that has been experimentally shown to build from
scratch a new taxonomy (i.e., both concepts and hypernym relations)
for arbitrary domains, including very technical ones for which
gold-standard taxonomies do not exist.

� Second, we tackle the problem with no simplifying assumptions: We cope
with issues such as term ambiguity, complexity of hypernymy patterns,
and multiple hypernyms.

� Third, we propose a novel algorithm to extract an optimal branching
from the resulting hypernym graph, which—after some recovery
steps—becomes our final taxonomy. Taxonomy induction is the
main theoretical contribution of the paper.

� Fourth, the evaluation is not limited, as it is in most papers, to the number
of retrieved hypernymy relations that are found in a reference taxonomy.

666

Velardi, Faralli, and Navigli OntoLearn Reloaded

Instead, we also analyze the extracted taxonomy in its entirety;
furthermore, we acquire two “brand new” taxonomies in the
domains of ARTIFICIAL INTELLIGENCE and FINANCE.

� Finally, our taxonomy-building workflow is fully implemented and
the software components are either freely available from our Web
site,1 or reproducible.

In this paper we extend our recent work on the topic (Navigli, Velardi, and Faralli
2011) as follows: i) we describe in full detail the taxonomy induction algorithm; ii) we
enhance our methodology with a final step aimed at creating a DAG, rather than a strict
tree-like taxonomical structure; iii) we perform a large-scale multi-faceted evaluation
of the taxonomy learning algorithm on six domains; and iv) we contribute a novel
methodology for evaluating an automatically learned taxonomy against a reference
gold standard.

In Section 2 we illustrate the related work. We then describe our taxonomy-
induction algorithm in Section 3. In Section 4 we present our experiments, and discuss
the results. Evaluation is both qualitative (on new ARTIFICIAL INTELLIGENCE and
FINANCE taxonomies), and quantitative (on WordNet and MeSH sub-hierarchies). Sec-
tion 5 is dedicated to concluding remarks.

2. Related Work

Two main approaches are used to learn an ontology from text: rule-based and distri-
butional approaches. Rule-based approaches use predefined rules or heuristic patterns
to extract terms and relations. These approaches are typically based on lexico-syntactic
patterns, first introduced by Hearst (1992). Instances of relations are harvested from text
by applying patterns aimed at capturing a certain type of relation (e.g., X is a kind of Y).
Such lexico-syntactic patterns can be defined manually (Berland and Charniak 1999;
Kozareva, Riloff, and Hovy 2008) or obtained by means of bootstrapping techniques
(Girju, Badulescu, and Moldovan 2006; Pantel and Pennacchiotti 2006). In the latter case,
a number of term pairs in the wanted relation are manually picked and the relation is
sought within text corpora or the Web. Other rule-based approaches learn a taxonomy
by applying heuristics to collaborative resources such as Wikipedia (Suchanek, Kasneci,
and Weikum 2008; Ponzetto and Strube 2011), also with the supportive aid of computa-
tional lexicons such as WordNet (Ponzetto and Navigli 2009).

Distributional approaches, instead, model ontology learning as a clustering or
classification task, and draw primarily on the notions of distributional similarity (Pado
and Lapata 2007; Cohen and Widdows 2009), clustering of formalized statements (Poon
and Domingos 2010), or hierarchical random graphs (Fountain and Lapata 2012). Such
approaches are based on the assumption that paradigmatically-related concepts2 appear
in similar contexts and their main advantage is that they are able to discover relations
that do not explicitly appear in the text. They are typically less accurate, however, and
the selection of feature types, notion of context, and similarity metrics vary considerably
depending on the specific approach used.

1 http://lcl.uniroma1.it/ontolearn reloaded and http://ontolearn.org.
2 Because we are concerned with lexical taxonomies, in this paper we use the words concepts and terms

interchangeably.

667

Computational Linguistics Volume 39, Number 3

Recently, Yang and Callan (2009) presented a semi-supervised taxonomy induc-
tion framework that integrates contextual, co-occurrence, and syntactic dependencies,
lexico-syntactic patterns, and other features to learn an ontology metric, calculated
in terms of the semantic distance for each pair of terms in a taxonomy. Terms are
incrementally clustered on the basis of their ontology metric scores. In their work, the
authors assume that the set of ontological concepts C is known, therefore taxonomy
learning is limited to finding relations between given pairs in C. In the experiments,
they only use the word senses within a particular WordNet sub-hierarchy so as to avoid
any lexical ambiguity. Their best experiment obtains a 0.85 precision rate and 0.32 recall
rate in replicating is-a links on 12 focused WordNet sub-hierarchies, such as PEOPLE,
BUILDING, PLACE, MILK, MEAL, and so on.

Snow, Jurafsky, and Ng (2006) propose the incremental construction of taxonomies
using a probabilistic model. In their work they combine evidence from multiple
supervised classifiers trained on very large training data sets of hyponymy and cousin
relations. Given the body of evidence obtained from all the relevant word pairs in
a lexico-syntactic relation, the taxonomy learning task is defined probabilistically as
the problem of finding the taxonomy that maximizes the probability of having that
evidence (a supervised logistic regression model is used for this). Rather than learning
a new taxonomy from scratch, however, this approach aims at attaching new concepts
under the appropriate nodes of an existing taxonomy (i.e., WordNet). The approach is
evaluated by manually assessing the quality of the single hypernymy edges connecting
leaf concepts to existing ones in WordNet, with no evaluation of a full-fledged struc-
tured taxonomy and no restriction to a specific domain. A related, weakly supervised
approach aimed at categorizing named entities, and attaching them to WordNet leaves,
was proposed by Pasca (2004). Other approaches use formal concept analysis (Cimiano,
Hotho, and Staab 2005), probabilistic and information-theoretic measures to learn tax-
onomies from a folksonomy (Tang et al. 2009), and Markov logic networks and syntactic
parsing applied to domain text (Poon and Domingos 2010).

The work closest to ours is that presented by Kozareva and Hovy (2010). From an
initial given set of root concepts and basic level terms, the authors first use Hearst-like
lexico-syntactic patterns iteratively to harvest new terms from the Web. As a result a
set of hyponym–hypernym relations is obtained. Next, in order to induce taxonomic
relations between intermediate concepts, the Web is searched again with surface pat-
terns. Finally, nodes from the resulting graph are removed if the out-degree is below
a threshold, and edges are pruned by removing cycles and selecting the longest path
in the case of multiple paths between concept pairs. Kozareva and Hovy’s method has
some limitations, which we discuss later in this paper. Here we note that, in evalu-
ating their methodology, the authors discard any retrieved nodes not belonging to a
WordNet sub-hierarchy (they experiment on PLANTS, VEHICLES, and ANIMALS), thus
it all comes down to Yang and Callan’s (2009) experiment of finding relations between a
pre-assigned set of nodes.

In practice, none of the algorithms described in the literature was actually applied
to the task of creating a new taxonomy for an arbitrary domain of interest truly from
scratch. Instead, what is typically measured is the ability of a system to reproduce as
far as possible the relations of an already existing taxonomy (a common test is WordNet
or the Open Directory Project3), when given the set of domain concepts. Evaluating
against a gold standard is, indeed, a reasonable validation methodology. The claim to be

3 http://www.dmoz.org/.

668

Velardi, Faralli, and Navigli OntoLearn Reloaded

Figure 1
The OntoLearn Reloaded taxonomy learning workflow.

“automatically building” a taxonomy needs also to be demonstrated on new domains
for which no a priori knowledge is available, however. In an unknown domain, tax-
onomy induction requires the solution of several further problems, such as identifying
domain-appropriate concepts, extracting appropriate hypernym relations, and detect-
ing lexical ambiguity, whereas some of these problems can be ignored when evaluating
against a gold standard (we will return to this issue in detail in Section 4). In fact,
the predecessor of OntoLearn Reloaded, that is, OntoLearn (Navigli and Velardi 2004),
suffers from a similar problem, in that it relies on the WordNet taxonomy to establish
paradigmatic connections between concepts.

3. The Taxonomy Learning Workflow

OntoLearn Reloaded starts from an initially empty directed graph and a corpus for the
domain of interest (e.g., an archive of artificial intelligence papers). We also assume
that a small set of upper terms (entity, abstraction, etc.), which we take as the end
points of our algorithm, has been manually defined (e.g., from a general purpose taxon-
omy like WordNet) or is available for the domain.4 Our taxonomy-learning workflow,
summarized in Figure 1, consists of five steps:

1. Initial Terminology Extraction (Section 3.1): The first step applies a term
extraction algorithm to the input domain corpus in order to produce an
initial domain terminology as output.

2. Definition & Hypernym Extraction (Section 3.2): Candidate definition
sentences are then sought for the extracted domain terminology. For each
term t, a domain-independent classifier is used to select well-formed
definitions from the candidate sentences and extract the corresponding
hypernyms of t.

4 Although very few domain taxonomies are available, upper (core) concepts have been defined in several
domains, such as MEDICINE, ART, ECONOMY, and so forth.

669

http://www.mitpressjournals.org/action/showImage?doi=10.1162/COLI_a_00146&iName=master.img-000.jpg&w=370&h=174

Computational Linguistics Volume 39, Number 3

3. Domain Filtering (Section 3.3): A domain filtering technique is applied
to filter out those definitions that do not pertain to the domain of interest.
The resulting domain definitions are used to populate the directed graph
with hypernymy relations connecting t to the extracted hypernym h.
Steps (2) and (3) are then iterated on the newly acquired hypernyms,
until a termination condition occurs.

4. Graph Pruning (Section 3.4): As a result of the iterative phase we obtain
a dense hypernym graph that potentially contains cycles and multiple
hypernyms for most nodes. In this step we combine a novel weighting
strategy with the Chu-Liu/Edmonds algorithm (Chu and Liu 1965;
Edmonds 1967) to produce an optimal branching (i.e., a tree-like
taxonomy) of the initial noisy graph.

5. Edge Recovery (Section 3.5): Finally, we optionally apply a recovery
strategy to reattach some of the hypernym edges deleted during the
previous step, so as to produce a full-fledged taxonomy in the form
of a DAG.

We now describe in full detail the five steps of OntoLearn Reloaded.5

3.1 Initial Terminology Extraction

Domain terms are the building blocks of a taxonomy. Even though in many cases an
initial domain terminology is available, new terms emerge continuously, especially
in novel or scientific domains. Therefore, in this work we aim at fully automatizing
the taxonomy induction process. Thus, we start from a text corpus for the domain
of interest and extract domain terms from the corpus by means of a terminology
extraction algorithm. For this we use our term extraction tool, TermExtractor,6 that
implements measures of domain consensus and relevance to harvest the most relevant
terms for the domain from the input corpus.7 As a result, an initial domain terminol-
ogy T(0) is produced that includes both single- and multi-word expressions (such as,
respectively, graph and flow network). We add one node to our initially empty graph
Gnoisy = (Vnoisy, Enoisy) for each term in T(0)—that is, we set Vnoisy := T(0) and Enoisy := ∅.

In Table 1 we show an excerpt of our ARTIFICIAL INTELLIGENCE and FINANCE
terminologies (cf. Section 4 for more details). Note that our initial set of domain terms
(and, consequently, nodes) will be enriched with the new hypernyms acquired during
the subsequent iterative phase, described in the next section.

3.2 Definition and Hypernym Extraction

The aim of our taxonomy induction algorithm is to learn a hypernym graph by means of
several iterations, starting from T(0) and stopping at very general terms U, that we take
as the end point of our algorithm. The upper terms are chosen from WordNet topmost

5 A video of the first four steps of OntoLearn Reloaded is available at
http://www.youtube.com/watch?v=-k3cOEoI Dk.

6 http://lcl.uniroma1.it/termextractor.
7 TermExtractor has already been described in Sclano and Velardi (2007) and in Navigli and Velardi (2004);

therefore the interested reader is referred to these papers for additional details.

670

Velardi, Faralli, and Navigli OntoLearn Reloaded

Table 1
An excerpt of the terminology extracted for the ARTIFICIAL INTELLIGENCE and FINANCE
domains.

ARTIFICIAL INTELLIGENCE

acyclic graph parallel corpus flow network
adjacency matrix parse tree pattern matching
artificial intelligence partitioned semantic network pagerank
tree data structure pathfinder taxonomic hierarchy

FINANCE

investor shareholder open economy
bid-ask spread profit maximization speculation
long term debt shadow price risk management
optimal financing policy ratings profit margin

synsets. In other words, U contains all the terms in the selected topmost synsets. In
Table 2 we show representative synonyms of the upper-level synsets that we used for
the ARTIFICIAL INTELLIGENCE and FINANCE domains. Seeing that we use high-level
concepts, the set U can be considered domain-independent. Other choices are of course
possible, especially if an upper ontology for a given domain is already available.

For each term t ∈ T(i) (initially, i = 0), we first check whether t is an upper term (i.e.,
t ∈ U). If it is, we just skip it (because we do not aim at extending the taxonomy beyond
an upper term). Otherwise, definition sentences are sought for t in the domain corpus
and in a portion of the Web. To do so we use Word-Class Lattices (WCLs) (Navigli and
Velardi 2010, introduced hereafter), which is a domain-independent machine-learned
classifier that identifies definition sentences for the given term t, together with the
corresponding hypernym (i.e., lexical generalization) in each sentence.

For each term in our set T(i), we then automatically extract definition candidates
from the domain corpus, Web documents, and Web glossaries, by harvesting all the
sentences that contain t. To obtain on-line glossaries we use a Web glossary extraction
system (Velardi, Navigli, and D’Amadio 2008). Definitions can also be obtained via a
lightweight bootstrapping process (De Benedictis, Faralli, Navigli 2013).

Finally, we apply WCLs and collect all those sentences that are classified as defini-
tional. We show some terms with their definitions in Table 3 (first and second column,
respectively). The extracted hypernym is shown in italics.

Table 2
The set of upper concepts used in OntoLearn Reloaded for AI and FINANCE (only representative
synonyms from the corresponding WordNet synsets are shown).

ability#n#1 abstraction#n#6 act#n#2 code#n#2
communication#n#2 concept#n#1 data#n#1 device#n#1
discipline#n#1 entity#n#1 event#n#1 expression#n#6
research#n#1 instrumentality#n#1 knowledge#n#1 knowledge domain#n#1
language#n#1 methodology#n#2 model#n#1 organization#n#1
person#n#1 phenomenon#n#1 process#n#1 property#n#2
quality#n#1 quantity#n#1 relation#n#1 representation#n#2
science#n#1 system#n#2 technique#n#1 theory#n#1

671

Computational Linguistics Volume 39, Number 3

Table 3
Some definitions for the ARTIFICIAL INTELLIGENCE domain (defined term in bold, extracted
hypernym in italics).

Term Definition Weight Domain?

adjacency matrix an adjacency matrix is a zero-one matrix 1.00 �
flow network in graph theory, a flow network is a directed graph 0.57 �
flow network global cash flow network is an online company that

specializes in education and training courses in
teaching the entrepreneurship

0.14 ×

Table 4
Example definitions (defined terms are marked in bold face, their hypernyms in italics).

[In arts, a chiaroscuro]DF [is]VF [a monochrome picture]GF.
[In mathematics, a graph]DF [is]VF [a data structure]GF [that consists of . . .]REST.
[In computer science, a pixel]DF [is]VF [a dot]GF [that is part of a computer image]REST.
[Myrtales]DF [are an order of]VF [flowering plants]GF [placed as a basal group . . .]REST.

3.2.1 Word-Class Lattices. We now describe our WCL algorithm for the classification of
definitional sentences and hypernym extraction. Our model is based on a formal notion
of textual definition. Specifically, we assume a definition contains the following fields
(Storrer and Wellinghoff 2006):

� The DEFINIENDUM field (DF): this part of the definition includes the
definiendum (that is, the word being defined) and its modifiers
(e.g., “In computer science, a pixel”);

� The DEFINITOR field (VF): which includes the verb phrase used to
introduce the definition (e.g., “is”);

� The DEFINIENS field (GF): which includes the genus phrase (usually
including the hypernym, e.g., “a dot”);

� The REST field (RF): which includes additional clauses that further
specify the differentia of the definiendum with respect to its genus
(e.g., “that is part of a computer image”).

To train our definition extraction algorithm, a data set of textual definitions was
manually annotated with these fields, as shown in Table 4.8 Furthermore, the single-
or multi-word expression denoting the hypernym was also tagged. In Table 4, for each
sentence the definiendum and its hypernym are marked in bold and italics, respectively.
Unlike other work in the literature dealing with definition extraction (Hovy et al. 2003;
Fahmi and Bouma 2006; Westerhout 2009; Zhang and Jiang 2009), we covered not only
a variety of definition styles in our training set, in addition to the classic X is a Y pattern,
but also a variety of domains. Therefore, our WCL algorithm requires no re-training
when changing the application domain, as experimentally demonstrated by Navigli and
Velardi (2010). Table 5 shows some non-trivial patterns for the VF field.

8 Available on-line at: http://lcl.uniroma1.it/wcl.

672

Velardi, Faralli, and Navigli OntoLearn Reloaded

Table 5
Some nontrivial patterns for the VF field.

is a term used to describe is a specialized form of
is the genus of was coined to describe
is a term that refers to a kind of is a special class of
can denote is the extension of the concept of
is commonly used to refer to is defined both as

Starting from the training set, the WCL algorithm learns generalized definitional
models as detailed hereafter.

Generalized sentences. First, training and test sentences are part-of-speech tagged with the
TreeTagger system, a part-of-speech tagger available for many languages (Schmid 1995).
The first step in obtaining a definitional pattern is word generalization. Depending on
its frequency we define a word class as either a word itself or its part of speech. Formally,
let T be the set of training sentences. We first determine the set F of words in T whose
frequency is above a threshold θ (e.g., the, a, an, of). In our training sentences, we replace
the defined term with the token 〈TARGET〉 (note that 〈TARGET〉 ∈ F).

Given a new sentence s = t1, t2, . . . , tn, where ti is the i-th token of s, we generalize
its words ti to word classes t′i as follows:

t′i =

{
ti if ti ∈ F
POS(ti) otherwise

that is, a word ti is left unchanged if it occurs frequently in the training corpus (i.e.,
ti ∈ F); otherwise it is replaced with its part of speech (POS(ti)). As a result we obtain a
generalized sentence s′. For instance, given the first sentence in Table 4, we obtain the
corresponding generalized sentence: “In NNS, a 〈TARGET〉 is a JJ NN,” where NN and
JJ indicate the noun and adjective classes, respectively. Generalized sentences are dou-
bly beneficial: First, they help reduce the annotation burden, in that many differently
lexicalized sentences can be caught by a single generalized sentence; second, thanks
to their reduction of the definition variability, they allow for a higher-recall definition
model.

Star patterns. Let T again be the set of training sentences. In this step we associate a
star pattern σ(s) with each sentence s ∈ T . To do so, let s ∈ T be a sentence such that
s = t1, t2, . . . , tn, where ti is its i-th token. Given the set F of most frequent words in T ,
the star pattern σ(s) associated with s is obtained by replacing with * all the tokens ti
∈ F,
that is, all the tokens that are non-frequent words. For instance, given the sentence “In
arts, a chiaroscuro is a monochrome picture,” the corresponding star pattern is “In *, a
〈TARGET〉 is a *,” where 〈TARGET〉 is the defined term.

Sentence clustering. We then cluster the sentences in our training set T on the basis of
their star pattern. Formally, let Σ = (σ1, . . . ,σm) be the set of star patterns associated
with the sentences in T . We create a clustering C = (C1, . . . , Cm) such that Ci = {s ∈ T :
σ(s) = σi}, that is, Ci contains all the sentences whose star pattern is σi.

As an example, assume σ3 = “In *, a 〈TARGET〉 is a *.” The first three sentences
reported in Table 4 are all grouped into cluster C3. We note that each cluster Ci contains

673

Computational Linguistics Volume 39, Number 3

sentences whose degree of variability is generally much lower than for any pair of
sentences in T belonging to two different clusters.

Word-class lattice construction. The final step consists of the construction of a WCL for
each sentence cluster, using the corresponding generalized sentences. Given such a
cluster Ci ∈ C, we apply a greedy algorithm that iteratively constructs the WCL.

Let Ci = {s1, s2, . . . , s|Ci|} and consider its first sentence s1 = t1, t2, . . . , tn. Initially, we
create a directed graph G = (V, E) such that V = {t1, . . . , tn} and E = {(t1, t2), (t2, t3), . . . ,
(tn−1, tn)}. Next, for each j = 2, . . . , |Ci|, we determine the alignment between sentence sj
and each sentence sk ∈ Ci such that k < j according to the following dynamic program-
ming formulation (Cormen, Leiserson, and Rivest 1990, pages 314–319):

Ma,b = max {Ma−1,b−1 + Sa,b, Ma,b−1, Ma−1,b}, (1)

where a ∈ {0, . . . , |sk|} and b ∈ {0, . . . , |sj|}, Sa,b is a score of the matching between the
a-th token of sk and the b-th token of sj, and M0,0, M0,b and Ma,0 are initially set to 0 for
all values of a and b.

The matching score Sa,b is calculated on the generalized sentences s′k and s′j as
follows:

Sa,b =

{
1 if t′k,a = t′j,b
0 otherwise

where t′k,a and t′j,b are the a-th and b-th tokens of s′k and s′j , respectively. In other words, the
matching score equals 1 if the a-th and the b-th tokens of the two generalized sentences
have the same word class.

Finally, the alignment score between sk and sj is given by M|sk|,|sj|, which calculates
the minimal number of misalignments between the two token sequences. We repeat this
calculation for each sentence sk (k = 1, . . . , j− 1) and choose the one that maximizes its
alignment score with sj. We then use the best alignment to add sj to the graph G: We add
to the set of nodes V the tokens of s′j for which there is no alignment to s′k and we add to
E the edges (t′1, t′2), . . . , (t′|sj|−1, t′|sj|).

Example. Consider the first three definitions in Table 4. Their star pattern is “In *,
a 〈TARGET〉 is a *.” The corresponding WCL is built as follows: The first part-
of-speech tagged sentence, “In/IN arts/NN , a/DT 〈TARGET〉/NN is/VBZ a/DT
monochrome/JJ picture/NN,” is considered. The corresponding generalized sentence is
“In NN1 , a 〈TARGET〉 is a JJ NN2.” The initially empty graph is thus populated with one
node for each word class and one edge for each pair of consecutive tokens, as shown in
Figure 2a. Note that we use a rectangle to denote the hypernym token NN2 . We also add
to the graph a start node �and an end node �©, and connect them to the corresponding
initial and final sentence tokens. Next, the second sentence, “In mathematics, a graph
is a data structure that consists of...,” is aligned to the first sentence. The alignment
is perfect, apart from the NN3 node corresponding to “data.” The node is added to
the graph together with the edges “a”→ NN3 and NN3 → NN2 (Figure 2b, node and
edges in bold). Finally, the third sentence in Table 4, “In computer science, a pixel is a
dot that is part of a computer image,” is generalized as “In NN4 NN1 , a 〈TARGET〉
is a NN2.” Thus, a new node NN4 is added, corresponding to “computer” and new

674

Velardi, Faralli, and Navigli OntoLearn Reloaded

Figure 2
The Word-Class Lattice construction steps on the first three sentences in Table 4. We show in
bold the nodes and edges added to the lattice graph as a result of each sentence alignment step.
The support of each word class is reported beside the corresponding node.

edges are added that connect node “In” to NN4 and NN4 to NN1. Figure 2c shows the
resulting lattice.

Variants of the WCL model. So far we have assumed that our WCL model learns lattices
from the training sentences in their entirety (we call this model WCL-1). We also consid-
ered a second model that, given a star pattern, learns three separate WCLs, one for each
of the three main fields of the definition, namely: definiendum (DF), definitor (VF), and
definiens (GF). We refer to this latter model as WCL-3. Note that our model does not
take into account the REST field, so this fragment of the training sentences is discarded.
The reason for introducing the WCL-3 model is that, whereas definitional patterns are
highly variable, DF, VF, and GF individually exhibit a lower variability, thus WCL-3
improves the generalization power.

Once the learning process is over, a set of WCLs is produced. Given a test sentence
s, the classification phase for the WCL-1 model consists of determining whether there
exists a lattice that matches s. In the case of WCL-3, we consider any combination of
definiendum, definitor, and definiens lattices. Given that different combinations might
match, for each combination of three WCLs we calculate a confidence score as follows:

score(s, lDF, lVF, lGF) = coverage · log2(support + 1) (2)

where s is the candidate sentence, lDF, lVF, and lGF are three lattices (one for
each definition field), coverage is the fraction of sentence tokens covered by the

675

Computational Linguistics Volume 39, Number 3

third lattice, and support is the total number of sentences in the corresponding star
pattern.

WCL-3 selects, if any, the combination of the three WCLs that best fits the sentence
in terms of coverage and support from the training set. In fact, choosing the most
appropriate combination of lattices impacts the performance of hypernym extraction.
Given its higher performance (Navigli and Velardi 2010), in OntoLearn Reloaded we
use WCL-3 for definition classification and hypernym extraction.

3.3 Domain Filtering and Creation of the Hypernym Graph

The WCLs described in the previous section are used to identify definitional sentences
and harvest hypernyms for the terms obtained as a result of the terminology extraction
phase. In this section we describe how to filter out non-domain definitions and create a
dense hypernym graph for the domain of interest.

Given a term t, the common case is that several definitions are found for it (e.g.,
the flow network example provided at the beginning of this section). Many of these
will not pertain to the domain of interest, however, especially if they are obtained
from the Web or if they define ambiguous terms. For instance, in the COMPUTER
SCIENCE domain, the cash flow definition of flow network shown in Table 3 was not
pertinent. To discard these non-domain sentences, we weight each definition candidate
d(t) according to the domain terms that are contained therein using the following
formula:

DomainWeight(d(t)) =
|Bd(t) ∩D|
|Bd(t)|

(3)

where Bd(t) is the bag of content words in the definition candidate d(t) and D is given
by the union of the initial terminology T(0) and the set of single words of the terms in
T(0) that can be found as nouns in WordNet. For example, given T(0) = { greedy algo-
rithm, information retrieval, minimum spanning tree }, our domain terminology D = T(0) ∪
{ algorithm, information, retrieval, tree }. According to Equation (3), the domain weight
of a definition is normalized by the total number of content words in the definition, so
as to penalize longer definitions. Domain filtering is performed by keeping only those
definitions d(t) whose DomainWeight(d(t)) ≥ θ, where θ is an empirically tuned thresh-
old.9 In Table 3 (third column), we show some values calculated for the corresponding
definitions (the fourth column reports a check mark �if the domain weight is above
the threshold, an × otherwise). Domain filtering performs some implicit form of Word
Sense Disambiguation (Navigli 2009), as it aims at discarding senses of hypernyms
which do not pertain to the domain.

Let Ht be the set of hypernyms extracted with WCLs from the definitions of term t
which survived this filtering phase. For each t ∈ T(i), we add Ht to our graph Gnoisy =
(Vnoisy, Enoisy), that is, we set Vnoisy := Vnoisy ∪Ht. For each t, we also add a directed
edge (h, t)10 for each hypernym h ∈ Ht, that is, we set Enoisy := Enoisy ∪ {(h, t)}. As a result

9 Empirically set to 0.38, as a result of tuning on several data sets of manually annotated definitions in
different domains.

10 In what follows, (h, t) or h→ t reads “t is-a h.”

676

Velardi, Faralli, and Navigli OntoLearn Reloaded

of this step, the graph contains our domain terms and their hypernyms obtained from
domain-filtered definitions. We now set:

T(i+1) :=
⋃

t∈T(i)

Ht \
i⋃

j=1

T(j) (4)

that is, the new set of terms T(i+1) is given by the hypernyms of the current set of terms
T(i) excluding those terms that were already processed during previous iterations of
the algorithm. Next, we move to iteration i + 1 and repeat the last two steps, namely,
we perform definition/hypernym extraction and domain filtering on T(i+1). As a result
of subsequent iterations, the initially empty graph is increasingly populated with new
nodes (i.e., domain terms) and edges (i.e., hypernymy relations).

After a given number of iterations K, we obtain a dense hypernym graph Gnoisy
that potentially contains more than one connected component. Finally, we connect all
the upper term nodes in Gnoisy to a single top node �. As a result of this connecting
step, only one connected component of the noisy hypernym graph—which we call
the backbone component—will contain an upper taxonomy consisting of upper
terms in U.

The resulting graph Gnoisy potentially contains cycles and multiple hypernyms for
the vast majority of nodes. In order to eliminate noise and obtain a full-fledged taxon-
omy, we perform a step of graph pruning, as described in the next section.

3.4 Graph Pruning

At the end of the iterative hypernym harvesting phase, described in Sections 3.2 and 3.3,
the result is a highly dense, potentially disconnected, hypernymy graph (see Section 4
for statistics concerning the experiments that we performed). Wrong nodes and edges
might stem from errors in any of the definition/hypernym extraction and domain filter-
ing steps. Furthermore, for each node, multiple “good” hypernyms can be harvested.
Rather than using heuristic rules, we devised a novel graph pruning algorithm, based
on the Chu-Liu/Edmonds optimal branching algorithm (Chu and Liu 1965; Edmonds
1967), that exploits the topological graph properties to produce a full-fledged taxonomy.
The algorithm consists of four phases (i.e., graph trimming, edge weighting, optimal
branching, and pruning recovery) that we describe hereafter with the help of the noisy
graph in Figure 3a, whose grey nodes belong to the initial terminology T(0) and whose
bold node is the only upper term.

3.4.1 Graph Trimming. We first perform two trimming steps. First, we disconnect “false”
roots, i.e., nodes which are not in the set of upper terms and with no incoming edges
(e.g., image in Figure 3a). Second, we disconnect “false” leaves, namely, leaf nodes which
are not in the initial terminology and with no outgoing edges (e.g., output in Figure 3a).
We show the disconnected components in Figure 3b.

3.4.2 Edge Weighting. Next, we weight the edges in our noisy graph Gnoisy. A policy based
only on graph connectivity (e.g., in-degree or betweenness, see Newman [2010] for a
complete survey) is not sufficient for taxonomy learning.11 Consider again the graph in

11 As also remarked by Kozareva and Hovy (2010), who experimented with in-degree.

677

Computational Linguistics Volume 39, Number 3

Figure 3
A noisy graph excerpt (a), its trimmed version (b), and the final taxonomy resulting from
pruning (c).

Figure 3: In choosing the best hypernym for the term token sequence, a connectivity-based
measure might select collection rather than list, because the former reaches more nodes.
In taxonomy learning, however, longer hypernymy paths should be preferred (e.g., data
structure→ collection→ list→ token sequence is better than data structure→ collection→
token sequence).

We thus developed a novel weighting policy aimed at finding the best trade-off
between path length and the connectivity of traversed nodes. It consists of three steps:

i) Weight each node v by the number of nodes belonging to the initial
terminology that can be reached from v (potentially including v itself).12

Let w(v) denote the weight of v (e.g., in Figure 3b, node collection reaches
list and token sequence, thus w(collection) = 2, whereas w(graph) = 3).
All weights are shown in the corresponding nodes in Figure 3b.

ii) For each node v, consider all the paths from an upper root r to v.
Let Γ(r, v) be the set of such paths. Each path p ∈ Γ(r, v) is weighted
by the cumulative weight of the nodes in the path, namely:

ω(p) =
∑
v′∈p

w(v′) (5)

iii) Assign the following weight to each incoming edge (h, v) of v (i.e., h is one
of the direct hypernyms of v):

w(h, v) = max
r∈U

max
p∈Γ(r,h)

ω(p) (6)

This formula assigns to edge (h, v) the value ω(p) of the highest-weighting
path p from h to any upper root ∈ U. For example, in Figure 3b, w(list) = 2,
w(collection) = 2, w(data structure) = 5. Therefore, the set of paths Γ(data
structure, list) = { data structure→ list, data structure→ collection→ list },
whose weights are 7 (w(data structure) + w(list)) and 9 (w(data structure) +
w(collection) + w(list)), respectively. Hence, according to Formula 6, w(list,
token sequence) = 9. We show all edge weights in Figure 3b.

12 Nodes in a cycle are visited only once.

678

Velardi, Faralli, and Navigli OntoLearn Reloaded

3.4.3 Optimal Branching. Next, our goal is to move from a noisy graph to a tree-like
taxonomy on the basis of our edge weighting strategy. A maximum spanning tree
algorithm cannot be applied, however, because our graph is directed. Instead, we need
to find an optimal branching, that is, a rooted tree with an orientation such that every
node but the root has in-degree 1, and whose overall weight is maximum. To this end,
we first apply a pre-processing step: For each (weakly) connected component in the
noisy graph, we consider a number of cases, aimed at identifying a single “reasonable”
root node to enable the optimal branching to be calculated. Let R be the set of candidate
roots, that is, nodes with no incoming edges. We perform the following steps:

i) If |R| = 1 then we select the only candidate as root.

ii) Else if |R| > 1, if an upper term is in R, we select it as root, else we choose
the root r ∈ R with the highest weight w according to the weighting
strategy described in Section 3.4.2. We also disconnect all the unselected
roots, that is, those in R \ {r}.

iii) Else (i.e., if |R| = 0), we proceed as for step (ii), but we search candidates
within the entire connected component and select the highest weighting
node. In contrast to step (ii), we remove all the edges incoming to the
selected node.

This procedure guarantees not only the selection but also the existence of a single
root node for each component, from which the optimal branching algorithm can start.
We then apply the Chu-Liu/Edmonds algorithm (Chu and Liu 1965; Edmonds 1967) to
each component Gi = (Vi, Ei) of our directed weighted graph Gnoisy in order to find an
optimal branching. The algorithm consists of two phases: a contraction phase and an
expansion phase. The contraction phase is as follows:

1. For each node which is not a root, we select the entering edge with the
highest weight. Let S be the set of such |Vi| − 1 edges;

2. If no cycles are formed in S, go to the expansion phase. Otherwise,
continue;

3. Given a cycle in S, contract the nodes in the cycle into a pseudo-node k,
and modify the weight of each edge entering any node v in the cycle from
some node h outside the cycle, according to the following equation:

w(h, k) = w(h, v) + (w(x(v), v)−minv(w(x(v), v))) (7)

where x(v) is the predecessor of v in the cycle and w(x(v), v) is the weight
of the edge in the cycle which enters v;

4. Select the edge entering the cycle which has the highest modified weight
and replace the edge which enters the same real node in S by the new
selected edge;

5. Go to step 2 with the contracted graph.

The expansion phase is applied if pseudo-nodes have been created during step 3.
Otherwise, this phase is skipped and Ti = (Vi, S) is the optimal branching of component

679

Computational Linguistics Volume 39, Number 3

Gi (i.e., the i-th component of Gnoisy). During the expansion phase, pseudo-nodes are
replaced with the original cycles. To break the cycle, we select the real node v into which
the edge selected in step 4 enters, and remove the edge entering v belonging to the
cycle. Finally, the weights on the edges are restored. For example, consider the cycle
in Figure 4a. Nodes pagerank, map, and rank are contracted into a pseudo-node, and
the edges entering the cycle from outside are re-weighted according to Equation (7).
According to the modified weights (Figure 4b), the selected edge, that is, (table, map),
is the one with weight w = 13. During the expansion phase, the edge (pagerank, map) is
eliminated, thus breaking the cycle (Figure 4c).

The tree-like taxonomy resulting from the application of the Chu-Liu/Edmonds
algorithm to our example in Figure 3b is shown in Figure 3c.

3.4.4 Pruning Recovery. The weighted directed graph Gnoisy input to the Chu-Liu/
Edmonds algorithm might contain many (weakly) connected components. In this case,
an optimal branching is found for each component, resulting in a forest of taxonomy
trees. Although some of these components are actually noisy, others provide an impor-
tant contribution to the final tree-like taxonomy. The objective of this phase is to recover
from excessive pruning, and re-attach some of the components that were disconnected
during the optimal branching step. Recall from Section 3.3 that, by construction, we
have only one backbone component, that is, a component which includes an upper tax-
onomy. Our aim is thus to re-attach meaningful components to the backbone taxonomy.
To this end, we apply Algorithm 1. The algorithm iteratively merges non-backbone trees
to the backbone taxonomy tree T0 in three main steps:

� Semantic reconnection step (lines 7–9 in Algorithm 1): In this step we
reuse a previously removed “noisy” edge, if one is available, to reattach a
non-backbone component to the backbone. Given a root node rTi of a
non-backbone tree Ti (i > 0), if an edge (v, rTi) existed in the noisy graph
Gnoisy (i.e., the one obtained before the optimal branching phase), with
v ∈ T0, then we connect the entire tree Ti to T0 by means of this edge.

Figure 4
A graph excerpt containing a cycle (a); Edmonds’ contraction phase: a pseudo-node enclosing
the cycle with updated weights on incoming edges (b); and Edmonds’ expansion phase: the
cycle is broken and weights are restored (c).

680

Velardi, Faralli, and Navigli OntoLearn Reloaded

Algorithm 1 PruningRecovery(G, Gnoisy)

Require: G is a forest
1: repeat
2: Let F := {T0, T1, . . . , T|F|} be the forest of trees in G = (V, E)
3: Let T0 ∈ F be the backbone taxonomy
4: E′ ← E
5: for all T in F \ {T0} do
6: rT ← rootOf (T)
7: if ∃v ∈ T0 s.t. (v, rT) ∈ Gnoisy then
8: E← E ∪ {(v, rT)}
9: break

10: else
11: if out-degree(rT) = 0 then
12: if ∃v ∈ T0 s.t. v is the longest right substring of rT then
13: E := E ∪ {(v, rT)}
14: break
15: else
16: E← E \ {(rT, v) : v ∈ V}
17: break
18: until E = E′

� Reconnection step by lexical inclusion (lines 11–14): Otherwise, if Ti is a
singleton (the out-degree of rTi is 0) and there exists a node v ∈ T0 such
that v is the longest right substring of rTi by lexical inclusion,13 we connect
Ti to the backbone tree T0 by means of the edge (v, rTi).

� Decomposition step (lines 15–17): Otherwise, if the component Ti is not a
singleton (i.e., if the out-degree of the root node rTi is > 0) we disconnect
rTi from Ti. At first glance, it might seem counterintuitive to remove edges
during pruning recovery. Reconnecting by lexical inclusion within a
domain has already been shown to perform well in the literature (Vossen
2001; Navigli and Velardi 2004), but we want to prevent any cascading
errors on the descendants of the root node, and at the same time free up
other pre-existing “noisy” edges incident to the descendants.

These three steps are iterated on the newly created components, until no change
is made to the graph (line 18). As a result of our pruning recovery phase we return the
enriched backbone taxonomy. We show in Figure 5 an example of pruning recovery that
starts from a forest of three components (including the backbone taxonomy tree on top,
Figure 5a). The application of the algorithm leads to the disconnection of a tree root,
that is, ordered structure (Figure 5a, lines 15–17 of Algorithm 1), the linking of the trees
rooted at token list and binary search tree to nodes in the backbone taxonomy (Figures 5b
and 5d, lines 7–9), and the linking of balanced binary tree to binary tree thanks to lexical
inclusion (Figure 5c, lines 11–14 of the algorithm).

13 Similarly to our original OntoLearn approach (Navigli and Velardi 2004), we define a node’s string
v = wnwn−1 . . .w2w1 to be lexically included in that of a node v′ = w′

mw′
m−1 . . .w′

2w′
1 if m > n and

wj = w′
j for each j ∈ {1, . . . , n}.

681

Computational Linguistics Volume 39, Number 3

Figure 5
An example starting with three components, including the backbone taxonomy tree on the
top and two other trees on the bottom (a). As a result of pruning recovery, we disconnect ordered
structure (a); we connect token sequence to token list by means of a “noisy” edge (b); we connect
binary tree to balanced binary tree by lexical inclusion (c); and finally binary tree to binary search
tree by means of another “noisy” edge (d).

3.5 Edge Recovery

The goal of the last phase was to recover from the excessive pruning of the optimal
branching phase. Another issue of optimal branching is that we obtain a tree-like tax-
onomic structure, namely, one in which each node has only one hypernym. This is not
fully appropriate in taxonomy learning, because systematic ambiguity and polysemy
often require a concept to be paradigmatically related to more than one hypernym. In
fact, a more appropriate structure for a conceptual hierarchy is a DAG, as in WordNet.
For example, two equally valid hypernyms for backpropagation are gradient descent search

682

Velardi, Faralli, and Navigli OntoLearn Reloaded

procedure and training algorithm, so two hypernym edges should correctly be incident to
the backpropagation node.

We start from our backbone taxonomy T0 obtained after the pruning recovery
phase described in Section 3.4.4. In order to obtain a DAG-like taxonomy we apply
the following step: for each “noisy” edge (v, v′) ∈ Enoisy such that v, v′ are nodes in T0
but the edge (v, v′) does not belong to the tree, we add (v, v′) to T0 if:

i) it does not create a cycle in T0;

ii) the absolute difference between the length of the shortest path from v to
the root rT0 and that of the shortest path from v′ to rT0 is within an interval
[m, M]. The aim of this constraint is to maintain a balance between the
height of a concept in the tree-like taxonomy and that of the hypernym
considered for addition. In other words, we want to avoid the connection
of an overly abstract concept with an overly specific one.

In Section 4, we experiment with three versions of our OntoLearn Reloaded algo-
rithm, namely: one version that does not perform edge recovery (i.e., which learns a
tree-like taxonomy [TREE], and two versions that apply edge recovery (i.e., which learn
a DAG) with different intervals for constraint (ii) above (DAG[1, 3] and DAG[0, 99]; note
that the latter version virtually removes constraint (ii)). Examples of recovered edges
will be presented and discussed in the evaluation section.

3.6 Complexity

We now perform a complexity analysis of the main steps of OntoLearn Reloaded. Given
the large number of steps and variables involved we provide a separate discussion of
the main costs for each individual step, and we omit details about commonly used data
structures for access and storage, unless otherwise specified. Let Gnoisy = (Vnoisy, Enoisy)
be our noisy graph, and let n = |Vnoisy| and m = |Enoisy|.

1. Terminology extraction: Assuming a part-of-speech tagged corpus as
input, the cost of extracting candidate terms by scanning the corpus with a
maximum-size window is in the order of the word size of the input
corpus. Thus, the application of statistical measures to our set of candidate
terms has a computational cost that is on the order of the square of the
number of term candidates (i.e., the cost of calculating statistics for each
pair of terms).

2. Definition and hypernym extraction: In the second step, we first retrieve
candidate definitions from the input corpus, which costs on the order of
the corpus size.14 Each application of a WCL classifier to an input
candidate sentence s containing a term t costs on the order of the word
length of the sentence, and we have a constant number of such classifiers.
So the cost of this step is given by the sum of the lengths of the candidate
sentences in the corpus, which is lower than the word size of the corpus.

14 Note that this corpus consists of both free text and Web glossaries (cf. Section 3.2).

683

Computational Linguistics Volume 39, Number 3

3. Domain filtering and creation of the graph: The cost of domain filtering
for a single definition is in the order of its word length, so the running time
of domain filtering is in the order of the sum of the word size of the
acquired definitions. As for the hypernym graph creation, using an
adjacency-list representation of the graph Gnoisy, the dynamic addition of a
newly acquired hypernymy edge costs O(n), an operation which has to be
repeated for each (hypernymy, term) pair.

4. Graph pruning, consisting of the following steps:
� Graph trimming: This step requires O(n) time in order to identify

false leaves and false roots by iterating over the entire set of nodes.
� Edge weighting: i) We perform a DFS (O(n + m)) to weight all the

nodes in the graph; ii) we collect all paths from upper roots to any
given node, totalizing O(n!) paths in the worst case (i.e., in a
complete graph). In real domains, however, the computational cost
of this step will be much lower. In fact, over our six domains, the
average number of paths per node ranges from 4.3 (n = 2107,
ANIMALS) to 3175.1 (n = 2616, FINANCE domain): In the latter,
worst case, in practice, the number of paths is in the order of n, thus
the cost of this step, performed for each node, can be estimated by
O(n2) running time; iii) assigning maximum weights to edges costs
O(m) if in the previous step we keep track of the maximum value
of paths ending in each node h (see Equation (6)).

� Optimal branching: Identifying the connected components of our
graph costs O(n + m) time, identifying root candidates and
selecting one root per component costs O(n), and finally applying
the Chu-Liu/Edmonds algorithm costs O(m · log2n) for sparse
graphs, O(n2) for dense ones, using Tarjan’s implementation
(Tarjan 1977).

5. Pruning recovery: In the worst case, m iterations of Algorithm 1 will be
performed, each costing O(n) time, thus having a total worst-case cost of
O(mn).

6. Edge recovery: For each pair of nodes in T0 we perform i) the
identification of cycles (O(n + m)) and ii) the calculation of the shortest
paths to the root (O(n + m)). By precomputing the shortest path for each
node, the cost of this step is O(n(n + m)) time.

Therefore, in practice, the computational complexity of OntoLearn Reloaded is
polynomial in the main variables of the problem, namely, the number of words in the
corpus and nodes in the noisy graph.

4. Evaluation

Ontology evaluation is a hard task that is difficult even for humans, mainly because
there is no unique way of modeling the domain of interest. Indeed several different
taxonomies might model a particular domain of interest equally well. Despite this
difficulty, various evaluation methods have been proposed in the literature for assessing

684

Velardi, Faralli, and Navigli OntoLearn Reloaded

the quality of a taxonomy. These include Brank, Mladenic, and Grobelnik (2006) and
Maedche, Pekar, and Staab (2002):

a) automatic evaluation against a gold standard;

b) manual evaluation performed by domain experts;

c) structural evaluation of the taxonomy;

d) application-driven evaluation, in which a taxonomy is assessed on the
basis of the improvement its use generates within an application.

Other quality indicators have been analyzed in the literature, such as accuracy,
completeness, consistency (Völker et al. 2008), and more theoretical features (Guarino
and Welty 2002) like essentiality, rigidity, and unity. Methods (a) and (b) are by far the
most popular ones. In this section, we will discuss in some detail the pros and cons of
these two approaches.

Gold standard evaluation. The most popular approach for the evaluation of lexicalized
taxonomies (adopted, e.g., in Snow, Jurafsky, and Ng 2006; Yang and Callan 2009;
and Kozareva and Hovy 2010) is to attempt to reconstruct an existing gold standard
(Maedche, Pekar, and Staab 2002), such as WordNet or the Open Directory Project.
This method is applicable when the set of taxonomy concepts are given, and the
evaluation task is restricted to measuring the ability to reproduce hypernymy links
between concept pairs. The evaluation is far more complex when learning a specialized
taxonomy entirely from scratch, that is, when both terms and relations are unknown.
In reference taxonomies, even in the same domain, the granularity and cotopy15 of an
abstract concept might vary according to the scope of the taxonomy and the expertise
of the team who created it (Maedche, Pekar, and Staab 2002). For example, both the
terms chiaroscuro and collage are classified under picture, image, icon in WordNet, but in
the Art & Architecture Thesaurus (AA&T)16 chiaroscuro is categorized under perspective
and shading techniques whereas collage is classified under image-making processes and
techniques. As long as common-sense, non-specialist knowledge is considered, it is still
feasible for an automated system to replicate an existing classification, because the
Web will provide abundant evidence for it. For example, Kozareva and Hovy (2010,
K&H hereafter) are very successful at reproducing the WordNet sub-taxonomy for
ANIMALS, because dozens of definitional patterns are found on the Web that classify,
for example, lion as a carnivorous feline mammal, or carnivorous, or feline. As we show
later in this section, however, and as also suggested by the previous AA&T example,
finding hypernymy patterns in more specialized domains is far more complex. Even in
simpler domains, however, it is not clear how to evaluate the concepts and relations not
found in the reference taxonomy. Concerning this issue, Zornitsa Kozareva comments
that: “When we gave sets of terms to annotators and asked them to produce a taxonomy,
people struggled with the domain terminology and produced quite messy organization.
Therefore, we decided to go with WordNet and use it as a gold truth” (personal
communication). Accordingly, K&H do not provide an evaluation of the nodes and
relations other than those for which the ground truth is known. This is further clarified
in a personal communication: “Currently we do not have a full list of all is-a outside

15 The cotopy of a concept is the set of its hypernyms and hyponyms.
16 http://www.getty.edu/vow/AATHierarchy.

685

Computational Linguistics Volume 39, Number 3

WordNet. [...] In the experiments, we work only with the terms present in WordNet
[...] The evaluation is based only on the WordNet relations. However, the harvesting
algorithm extracts much more. Currently, we do not know how to evaluate the Web
taxonomization.”

To conclude, gold standard evaluation has some evident drawbacks:

� When both concepts and relations are unknown, it is almost impossible to
replicate a reference taxonomy accurately.

� In principle, concepts not in the reference taxonomy can be either wrong
or correct; therefore the evaluation is in any case incomplete.

Another issue in gold standard evaluation is the definition of an adequate evalu-
ation metric. The most common measure used in the literature to compare a learned
with a gold-standard taxonomy is the overlapping factor (Maedche, Pekar, and Staab
2002). Given the set of is-a relations in the two taxonomies, the overlapping factor
simply computes the ratio between the intersection and union of these sets. Therefore
the overlapping factor gives a useful global measure of the similarity between the
two taxonomies. It provides no structural comparison, however: Errors or differences
in grouping concepts in progressively more general classes are not evidenced by this
measure.

Comparison against a gold standard has been analyzed in a more systematic way
by Zavitsanos, Paliouras, and Vouros (2011) and Brank, Mladenic, and Grobelnik (2006).
They propose two different strategies for escaping the “naming” problem that we have
outlined. Zavitsanos, Paliouras, and Vouros (2011) propose transforming the ontology
concepts and their properties into distributions over the term space of the source data
from which the ontology has been learned. These distributions are used to compute
pairwise concept similarity between gold standard and learned ontologies.

Brank, Mladenic, and Grobelnik (2006) exploit the analogy between ontology learn-
ing and unsupervised clustering, and propose OntoRand, a modified version of the
Rand Index (Rand 1971) for computing the similarity between ontologies. Morey and
Agresti (1984) and Carpineto and Romano (2012), however, demonstrated a high de-
pendency of the Rand Index (and consequently of OntoRand itself) upon the number of
clusters, and Fowlkes and Mallows (1983) show that the Rand Index has the undesirable
property of converging to 1 as the number of clusters increases, even in the unrealistic
case of independent clusterings. These undesired outcomes have also been experienced
by Brank, Mladenic, and Grobelnik (2006, page 5), who note that “the similarity of an
ontology to the original one is still as high as 0.74 even if only the top three levels of
the ontology have been kept.” Another problem with the OntoRand formula, as also
remarked in Zavitsanos, Paliouras, and Vouros (2011), is the requirement of comparing
ontologies with the same set of instances.

Manual evaluation. Comparison against a gold standard is important because it repre-
sents a sort of objective evaluation of an automated taxonomy learning method. As
we have already remarked, however, learning an existing taxonomy is not particularly
interesting in itself. Taxonomies are mostly needed in novel, often highly technical do-
mains for which there are no gold standards. For a system to claim to be able to acquire
a taxonomy from the ground up, manual evaluation seems indispensable. Nevertheless,
none of the taxonomy learning systems surveyed in Section 2 performs such evaluation.
Furthermore, manual evaluation should not be limited to an assessment of the acquired

686

Velardi, Faralli, and Navigli OntoLearn Reloaded

hypernymy relations “in isolation,” but must also provide a structural assessment
aimed at identifying common phenomena and the overall quality of the taxonomic
structure. Unfortunately, as already pointed out, manual evaluation is a hard task.
Deciding whether or not a concept belongs to a given domain is more or less feasible
for a domain expert, but assessing the quality of a hypernymy link is far more complex.
On the other hand, asking a team of experts to blindly reconstruct a hierarchy, given a
set of terms, may result in the “messy organization” reported by Zornitsa Kozareva. In
contrast to previous approaches to taxonomy induction, OntoLearn Reloaded provides
a natural solution to this problem, because is-a links in the taxonomy are supported by
one or more definition sentences from which the hypernymy relation was extracted. As
shown later in this section, definitions proved to be a very helpful feature in supporting
manual analysis, both for hypernym evaluation and structural assessment.

The rest of this section is organized as follows. We first describe the experimen-
tal set-up (Section 4.1): OntoLearn Reloaded is applied to the task of acquiring six
taxonomies, four of which attempt to replicate already existing gold standard sub-
hierarchies in WordNet17 and in the MeSH medical ontology,18 and the other two are
new taxonomies acquired from scratch. Next, we present a large-scale multi-faceted
evaluation of OntoLearn Reloaded focused on three of the previously described eval-
uation methods, namely: comparison against a gold standard, manual evaluation, and
structural evaluation. In Section 4.2 we introduce a novel measure for comparing an
induced taxonomy against a gold standard one. Finally, Section 4.3 is dedicated to a
manual evaluation of the six taxonomies.

4.1 Experimental Set-up

We now provide details on the set-up of our experiments.

4.1.1 Domains. We applied OntoLearn Reloaded to the task of acquiring six taxonomies:
ANIMALS, VEHICLES, PLANTS, VIRUSES, ARTIFICIAL INTELLIGENCE, and FINANCE.
The first four taxonomies were used for comparison against three WordNet sub-
hierarchies and the viruses sub-hierarchy of MeSH. The ANIMALS, VEHICLES, and
PLANTS domains were selected to allow for comparison with K&H, who experimented
on the same domains. The ARTIFICIAL INTELLIGENCE and FINANCE domains are ex-
amples of taxonomies truly built from the ground up, for which we provide a thorough
manual evaluation. These domains were selected because they are large, interdisci-
plinary, and continuously evolving fields, thus representing complex and specialized
use cases.

4.1.2 Definition Harvesting. For each domain, definitions were sought in Wikipedia and
in Web glossaries automatically obtained by means of a Web glossary extraction system
(Velardi, Navigli, and D’Amadio 2008). For the ARTIFICIAL INTELLIGENCE domain we
also used a collection consisting of the entire IJCAI proceedings from 1969 to 2011 and
the ACL archive from 1979 to 2010. In what follows we refer to this collection as the “AI
corpus.” For FINANCE we used a combined corpus from the freely available collection
of Journal of Financial Economics from 1995 to 2012 and from Review Of Finance from 1997
to 2012 for a total of 1,575 papers.

17 http://wordnet.princeton.edu.
18 http://www.nlm.nih.gov/mesh/.

687

Computational Linguistics Volume 39, Number 3

4.1.3 Terminology. For the ANIMALS, VEHICLES, PLANTS, and VIRUSES domains, the
initial terminology was a fragment of the nodes of the reference taxonomies,19 sim-
ilarly to, and to provide a fair comparison with, K&H. For the AI domain instead,
the initial terminology was selected using our TermExtractor tool20 on the AI corpus.
TermExtractor extracted over 5,000 terms from the AI corpus, ranked according to a
combination of relevance indicators related to the (direct) document frequency, domain
pertinence, lexical cohesion, and other indicators (Sclano and Velardi 2007). We manu-
ally selected 2,218 terms from the initial set, with the aim of eliminating compounds
like order of magnitude, empirical study, international journal, that are frequent but not
domain relevant. For similar reasons a manual selection of terms was also applied to the
terminology automatically extracted for the FINANCE domain, obtaining 2,348 terms21

from those extracted by TermExtractor. An excerpt of extracted terms was provided in
Table 1.

4.1.4 Upper Terms. Concerning the selection of upper terms U (cf. Section 3.2), again
similarly to K&H, we used just one concept for each of the four domains focused
upon: ANIMALS, VEHICLES, PLANTS, and VIRUSES. For the AI and FINANCE domains,
which are more general and complex, we selected from WordNet a core taxonomy of
32 upper concepts U (resulting in 52 terms) that we used as a stopping criterion for
our iterative definition/hypernym extraction and filtering procedure (cf. Section 3.2).
The complete list of upper concepts was given in Table 2. WordNet upper concepts are
general enough to fit most domains, and in fact we used the same set U for AI and
FINANCE. Nothing, however, would have prevented us from using a domain-specific
core ontology, such as the CRM-CIDOC core ontology for the domain of ART AND
ARCHITECTURE.22

4.1.5 Algorithm Versions and Structural Statistics. For each of the six domains we ran the
three versions of our algorithm: without pruning recovery (TREE), with [1, 3] recovery
(DAG[1, 3]), and with [0, 99] recovery (DAG[0, 99]), for a total of 18 experiments. We
remind the reader that the purpose of the recovery process was to reattach some of the
edges deleted during the optimal branching step (cf. Section 3.5).

Figure 6 shows an excerpt of the AI tree-like taxonomy under the node data structure.
Notice that, even though the taxonomy looks good overall, there are still a few errors,
such as “neuron is a neural network” and overspecializations like “network is a digraph.”
Figure 7 shows a sub-hierarchy of the FINANCE tree-like taxonomy under the concept
value.

In Table 6 we give the structural details of the 18 taxonomies extracted for our six
domains. In the table, edge and node compression refers to the number of surviving
nodes and edges after the application of optimal branching and recovery steps to the
noisy hypernymy graph. To clarify the table, consider the case of VIRUSES, DAG[1, 3]:
we started with 281 initial terms, obtaining a noisy graph with 1,174 nodes and 1,859
edges. These were reduced to 297 nodes (i.e., 1,174–877) and 339 edges (i.e., 1,859–1,520)
after pruning and recovery. Out of the 297 surviving nodes, 222 belonged to the initial

19 For ANIMALS, VEHICLES, and PLANTS we used precisely the same seeds as K&H.
20 http://lcl.uniroma1.it/termextractor.
21 These dimensions are quite reasonable for large technical domains: as an example, The Economist’s

glossary of economic terms includes on the order of 500 terms (http://www.economist.com/
economics-a-to-z/).

22 http://cidoc.mediahost.org/standard crm(en)(E1).xml.

688

Velardi, Faralli, and Navigli OntoLearn Reloaded

Figure 6
An excerpt of the ARTIFICIAL INTELLIGENCE taxonomy.

terminology; therefore the coverage over the initial terms is 0.79 (222/281). This means
that, for some of the initial terms, either no definitions were found, or the definition
was rejected in some of the processing steps. The table also shows, as expected, that the
term coverage is much higher for “common-sense” domains like ANIMALS, VEHICLES,
and PLANTS, is still over 0.75 for VIRUSES and AI, and is a bit lower for FINANCE
(0.65). The maximum and average depth of the taxonomies appears to be quite variable,
with VIRUSES and FINANCE at the two extremes. Finally, Table 6 reports in the last
column the number of glosses (i.e., domain definitional sentences) obtained in each
run. We would like to point out that providing textual glosses for the retrieved domain
hypernyms is a novel feature that has been lacking in all previous approaches to
ontology learning, and which can also provide key support to much-needed manual
validation and enrichment of existing semantic networks (Navigli and Ponzetto 2012).

4.2 Evaluation Against a Gold Standard

In this section we propose a novel, general measure for the evaluation of a learned
taxonomy against a gold standard. We borrow the Brank, Mladenic, and Grobelnik

689

Computational Linguistics Volume 39, Number 3

Figure 7
An excerpt of the FINANCE taxonomy.

(2006) idea of exploiting the analogy with unsupervised clustering but, rather than
representing the two taxonomies as flat clusterings, we propose a measure that takes
into account the hierarchical structure of the two analyzed taxonomies. Under this
perspective, a taxonomy can be transformed into a hierarchical clustering by replacing
each label of a non-leaf node (e.g., perspective and shading techniques) with the transitive
closure of its hyponyms (e.g., cangiatismo, chiaroscuro, foreshortening, hatching).

4.2.1 Evaluation Model. Techniques for comparing clustering results have been surveyed
in Wagner and Wagner (2007), although the only method for comparing hierarchical
clusters, to the best of our knowledge, is that proposed by Fowlkes and Mallows (1983).
Suppose that we have two hierarchical clusterings H1 and H2, with an identical set of n
objects. Let k be the maximum depth of both H1 and H2, and Hi

j a cut of the hierarchy,
where i ∈ {0, . . . , k} is the cut level and j ∈ {1, 2} selects the clustering of interest. Then,
for each cut i, the two hierarchies can be seen as two flat clusterings Ci

1 and Ci
2 of the n

concepts. When i = 0 the cut is a single cluster incorporating all the objects, and when
i = k we obtain n singleton clusters. Now let:

� n11 be the number of object pairs that are in the same cluster in both Ci
1

and Ci
2;

� n00 be the number of object pairs that are in different clusters in both Ci
1

and Ci
2;

� n10 be the number of object pairs that are in the same cluster in Ci
1 but

not in Ci
2;

690

Velardi, Faralli, and Navigli OntoLearn Reloaded

Table 6
Structural evaluation of three versions of our taxonomy-learning algorithm on six different
domains.

Experiment Term Coverage Depth |V| |E| V Compress. E Compress. Glosses

A
I

TREE 75.51% 12 max 2,387 2,386 43.00% 67.31% 1,249
(1,675/2,218) 6.00 avg (1,801/4,188) (4,915/7,301)

DAG [1,3] 75.51% 19 max 2,387 3,554 43.00% 51.32% 2,081
(1,675/2,218) 8.27 avg (1,801/4,188) (3,747/7,301)

DAG [0,99] 75.51% 20 max 2,387 3,994 43.00% 45.29% 2,439
(1,675/2,218) 8.74 avg (1,801/4,188) (3,307/7,301)

FI
N

A
N

C
E

TREE 65.20% 14 max 2,038 2,037 22.09% 47.99% 1,064
(1,533/2,348) 6.83 avg (578/2,616) (1,880/3,917)

DAG [1,3] 65.20% 38 max 2,038 2,524 22.09% 35.56% 1,523
(1,533/2,348) 18.82 avg (578/2,616) (1,393/3,917)

DAG [0,99] 65.20% 65 max 2,038 2,690 22.09% 31.32% 1,677
(1,533/2,348) 33.54 avg (578/2,616) (1,227/3,917)

V
IR

U
SE

S

TREE 79.00% 5 max 297 296 74.70% 84.07% 172
(222/281) 2.13 avg (877/1,174) (1,563/1,859)

DAG [1,3] 79.00% 5 max 297 339 74.70% 81.76% 212
(222/281) 2.20 avg (877/1,174) (1,520/1,859)

DAG [0,99] 79.00% 5 max 297 360 74.70% 80.63% 233
(222/281) 2.32 avg (877/1,174) (1,563/1,859)

A
N

IM
A

LS

TREE 93.56% 10 max 900 899 57.28% 66.96% 724
(640/684) 4.35 avg (1,207/2,107) (1,822/2,721)

DAG [1,3] 93.56% 16 max 900 1,049 57.28% 61.44% 872
(640/684) 5.21 avg (1,207/2,107) (1,672/2,721)

DAG [0,99] 93.56% 16 max 900 1,116 57.28% 58.98% 939
(640/684) 5.39 avg (1,207/2,107) (1,605/2,721)

PL
A

N
T

S

TREE 96.57% 19 max 710 709 72.69% 84.53% 638
(535/554) 5.85 avg (1,890/2,600) (3,877/4,586)

DAG [1,3] 96.57% 19 max 710 922 72.69% 79.89% 851
(535/554) 6.65 avg (1,890/2,600) (3,664/4,586)

DAG [0,99] 96.57% 19 max 710 1,242 72.69% 72.91% 1,171
(535/554) 6.54 avg (1,890/2,600) (3,344/4,586)

V
EH

IC
LE

S

TREE 95.72% 8 max 169 168 71.50% 80.48% 150
(112/117) 3.44 avg (424/593) (693/861)

DAG [1,3] 95.72% 8 max 169 200 71.50% 76.77% 182
(112/117) 3.94 avg (424/593) (661/861)

DAG [0,99] 95.72% 10 max 169 231 71.50% 73.17% 213
(112/117) 4.48 avg (424/593) (630/861)

� n01 be the number of object pairs that are in the same cluster in Ci
2 but not

in Ci
1;

The generalized Fowlkes and Mallows (F&M) measure of cluster similarity for the
cut i (i ∈ {0, . . . , k}), as reformulated by Wagner and Wagner (2007), is defined as:

Bi
1,2 =

ni
11√

(ni
11 + ni

10) · (ni
11 + ni

01)
. (8)

Note that the formula can be interpreted as the geometric mean of precision and
recall of an automated method in clustering the same concept pairs as in a gold-standard

691

Computational Linguistics Volume 39, Number 3

clustering. This formula has a few undesirable properties: first, the value of Bi
1,2 gets

close to its maximum 1.0 as we approach the root of the hierarchy (i = 0); second, the
two hierarchies need to have the same maximum depth k; third, the hierarchies need to
have the same number of initial objects and a crisp classification.

In order to apply the F&M measure to the task of comparing a learned and a gold-
standard taxonomy, we need to mitigate these problems. Equation (8) copes with the
third problem without modifications. In fact, if the sets of objects in H1 and H2 are
different, the integers n10 and n01 can be considered as also including objects that belong
to one hierarchy and not to the other. In this case, the value of B0

1,2 will provide a measure
of the overlapping objects in the learned taxonomy and the gold standard one. In order
to take into account multiple (rather than crisp) classifications, again, there is no need
to change the formula, which is still meaningful if an object is allowed to belong to
more than one cluster. As before, mismatches between H1 and H2 would result in higher
values of n10 and n01 and lower Bi

1,2.
A more serious problem with Equation (8) is that the lower the value of i, the higher

the value of the formula, whereas, ideally, we would like to reward similar clusterings
when the clustering task is more difficult and fine-grained, that is, for cuts that are close
to the leaf nodes. To assign a reward to “early” similarity values, we weight the values
of Bi

1,2 with a coefficient i+1
k . We can then compute a cumulative measure of similarity

with the following formula:

B1,2 =

∑k−1
i=0

i+1
k Bi

1,2∑k−1
i=0

i+1
k

=

∑k−1
i=0

i+1
k Bi

1,2
k+1

2

. (9)

Finally, to solve the problem of different depths of the two hierarchies, we define a
policy that penalizes a learned taxonomy that is less structured than the gold standard
one, and rewards—or at least does not penalize—the opposite case.

As an example, consider Figure 8, which shows two taxonomies H1 and H2, with
non-identical sets of objects {a, b, c, d, e, f} and {a, b, c, d, e, g}. In the figure each edge is
labeled by its distance from the root node (the value i in the F&M formula). Notice that
H1 and H2 have multiple classifications (i.e., multiple hypernyms in our case) for the
object e, thus modeling the common problem of lexical ambiguity and polysemy. Let
us suppose that H1 is the learned taxonomy, and H2 the gold standard one. We start
comparing the clusterings at cut 0 and stop at cut kr − 1, where kr is the depth of the

Figure 8
Two hierarchical clusters of n non-identical objects.

692

Velardi, Faralli, and Navigli OntoLearn Reloaded

gold standard taxonomy. This means that if the learned taxonomy is less structured
we replicate the cut kl − 1 for kr − kl times (where kl is the maximum depth of the
learned taxonomy), whereas if it is more structured we stop at cut kr − 1. In contrast to
previous evaluation models, our aim is to reward (instead of penalize) more structured
taxonomies provided they still match the gold standard one.

Table 7 shows the cuts from 0 to 3 of H1 and H2 and the values of Bi
1,2. For i = 2 the

B value is 0, if H2 is the learned taxonomy, and is not defined, if H2 is the gold standard.
Therefore, when computing the cumulative Equation (9), we obtain the desired effect of
penalizing less the structured learned taxonomies. Note that, when the two hierarchies
have different depths, the value k− 1 in Equation (9) is replaced by kr − 1.

Finally, we briefly compare our evaluation approach with the OntoRand index,
introduced by Brank, Mladenic, and Grobelnik (2006). The Rand Index measures the
similarity between two clusterings Cl and Cr by the formula:

R(Cl, Cr) = 2(n11 + n00)
n(n− 1) (10)

where n11, n00, and n have the same meaning described earlier. In Brank, Mladenic,
and Grobelnik (2006), a clustering is obtained from an ontology by associating each
ontology instance to its concept. The set of clusters is hence represented by the set of
leaf concepts in the hierarchy, namely, according to our notation, the clustering Ck−1

i . In
order to take into account the hierarchical structure, they define the OntoRand formula.
This measure, rather than summing up to 1 or 0, depending on whether or not two
given instances i and j belong to the same cluster in the compared ontologies, returns a
real number in [0, 1] depending upon the distance between i and j in terms of common
ancestors. In other terms, if i and j do not belong to the same concept but have a very
close common ancestor, the OntoRand measure returns a value still close to 1.

Our measure has several advantages over the OntoRand index:

i) It allows for a comparison at different levels of depth of the hierarchy,
and the cumulative similarity measure penalizes the contribution of the
highest cuts of the hierarchy.

ii) It does not require that the two hierarchies have the same depth, nor that
they have the same number of leaf nodes.

iii) The measure can be extended to lattices (e.g., it is not required that each
object belongs precisely to one cluster).

Table 7
Application of the evaluation method to the hierarchies of Figure 8. The values of Bi

1,2 are shown
both when H1 and H2 are the learned taxonomy (penultimate and last column, respectively).

i C1 C2 n11 n10 n01 H1 H2

Bi
1,2

0 {a,b,c,d,e,f} {a,b,c,d,e,g} 10 5 5 0.67 0.67
1 {a,b,c,d,e},{e,f} {a,b,c,d,e},{e},{g} 10 1 0 0.95 0.95
2 {a,b},{c,d},{e},{f} {a},{b},{c},{d},{e},{g} 0 2 0 n.a. 0
3 {a},{b},{c},{d},{e},{f} {a},{b},{c},{d},{e},{g} 0 0 0 n.a. n.a.

693

Computational Linguistics Volume 39, Number 3

iv) It is not dependent, as the Rand Index is, on the number n00, the value of
which has the undesirable effect of producing an ever higher similarity as
the number of singleton clusters grows (Morey and Agresti 1984).

4.2.2 Results. This section presents the results of the F&M evaluation model for gold
standard evaluation, therefore we focus on four domains and do not consider AI and
FINANCE. The three WordNet sub-hierarchies are also compared with the taxonomies
automatically created by Kozareva and Hovy (2010) in the same domains, kindly made
available by the authors. It is once more to be noted that Kozareva and Hovy, during hy-
pernym extraction, reject all the nodes not belonging to WordNet, whereas we assume
no a-priori knowledge of the domain, apart from adopting the same set of seed terms
used by K&H.

Figure 9 shows, for each domain (ANIMALS, PLANTS, VEHICLES, and VIRUSES), and
for each cut level of the hierarchy, a plot of Bi

1,2 values multiplied by the penalty factor.
As far as the comparison with K&H is concerned, we notice that, though K&H obtain
better performance in general, OntoLearn has higher coverage over the domain, as is
shown by the highest values for i = 0, and has a higher depth of the derived hierarchy,
especially with DAG[0, 99]. Another recurrent phenomenon is that K&H curves grace-
fully degrade from the root to the leaf nodes, possibly with a peak in the intermediate
levels, whereas OntoLearn has a hollow in the mid-high region (see the region 4–6 for
ANIMALS and 1–2 for the other three hierarchies) and often a relative peak in the lowest

Figure 9
Gold standard evaluation of our three versions of OntoLearn Reloaded against WordNet
(ANIMALS, PLANTS, and VEHICLES) and MeSH (VIRUSES). A comparison with K&H is also
shown for the first three domains.

694

Velardi, Faralli, and Navigli OntoLearn Reloaded

levels. In the manual evaluation section we explain this phenomenon, which also occurs
in the ARTIFICIAL INTELLIGENCE taxonomy.

The generally decreasing values of Bi
1,2 in Figure 9 show that, as expected, mim-

icking the clustering criteria of a taxonomy created by a team of experts proves very
difficult at the lowest levels, while performance grows at the highest levels. At the
lowest taxonomy levels there are two opposing phenomena: overgeneralization and
overspecialization. For example, macaque has monkey as a direct hypernym in WordNet,
and we find short-tailed monkey as a direct hypernym of macaque. An opposite case is
ganoid, which is a taleostan in WordNet and simply a fish in our taxonomy. The first
case does not reward the learned taxonomy (though, unlike for the overlapping factor
[Maedche, Pekar, and Staab 2002], it does not cause a penalty), whereas the second is
quite penalizing. More of these examples will be provided in Section 4.3.

Finally, in Table 8 we show the cumulative B1,2 values for the four domains, ac-
cording to Equation (9). Here, except for the VEHICLES domain, the unconstrained
DAG[0, 99] performs best.

4.3 Manual Evaluation

This section is dedicated to the manual assessment of the learned ontologies. The
section is divided in three parts: Section 4.3.1 is concerned with the human validation of
hypernymy relations, Section 4.3.2 examines the global learned taxonomic structure in
the search for common phenomena across the six domains, and finally Section 4.3.3 in-
vestigates the possibility of enhancing our hypernymy harvesting method with K&H’s
Hearst-like patterns, applying their method to the AI domain and manually evaluating
the extracted hypernyms.

4.3.1 Hypernym Evaluation. To reduce subjectivity in taxonomy evaluation, we asked
three annotators, only one of whom was a co-author, to validate, for each of the three
experiments of each of the six domains, a random sample of hypernymy relations. For
each relation the definition(s) supporting the relation were also provided. This was
especially helpful for domains like VIRUSES, but also PLANTS and ANIMALS, in which
the annotators were not expert. The size of each random sample was 300 for the (larger)
AI and FINANCE domains and 100 for the others.

Each evaluator was asked to tag incorrect relations, regardless of whether the error
was due to the selection of non-domain definitions (e.g., for VEHICLES: “a driver is a
golf club with a near vertical face that is used for hitting long shots from the tee”), to
a poor definition (e.g., for AI: “a principle is a fundamental essence, particularly one
producing a given quality”) or to a wrong selection of the hypernym. As an example of
the latter, in the PLANTS domain, we extracted the hypernym species from the sentence:
“geranium is a genus of 422 species of flowering annual, biennial, and perennial plants

Table 8
Values of B1,2 for the domains of VIRUSES, ANIMALS, PLANTS, and VEHICLES.

Experiment VIRUSES ANIMALS PLANTS VEHICLES

TREE 0.093 0.064 0.059 0.065
DAG [1,3] 0.101 0.062 0.072 0.069
DAG [0,99] 0.115 0.097 0.080 0.103
K&H n.a. 0.067 0.068 0.158

695

Computational Linguistics Volume 39, Number 3

Table 9
Precision of hypernym edges on six domains (calculated on a majority basis) and inter-annotator
agreement on the corresponding sample of relations.

Experiment # of Sample Precision κ

AI
TREE 300 80.3% [241/300] 0.45
DAG [1,3] 300 73.6% [221/300] 0.42
DAG [0,99] 300 73.0% [219/300] 0.41

FINANCE
TREE 300 93.6% [281/300] 0.40
DAG [1,3] 300 93.0% [279/300] 0.43
DAG [0,99] 300 92.6% [278/300] 0.41

VIRUSES
TREE 100 99.0% [99/100] 0.49
DAG [1,3] 100 99.0% [99/100] 0.39
DAG [0,99] 100 99.0% [99/100] 0.32

ANIMALS
TREE 100 92.0% [92/100] 0.53
DAG [1,3] 100 92.0% [92/100] 0.36
DAG [0,99] 100 90.0% [90/100] 0.56

PLANTS
TREE 100 89.0% [89/100] 0.49
DAG [1,3] 100 85.0% [85/100] 0.53
DAG [0,99] 100 97.0% [97/100] 0.26

VEHICLES
TREE 100 92.0% [92/100] 0.64
DAG [1,3] 100 92.0% [92/100] 0.49
DAG [0,99] 100 91.0% [91/100] 0.44

κ Interpretation

< 0 Poor agreement
0.01–0.20 Slight agreement
0.21–0.40 Fair agreement
0.41–0.60 Moderate agreement
0.61–0.80 Substantial agreement
0.81–1.00 Almost perfect agreement

that are commonly known as the cranesbills” since, in the WCL verb set, we have “is
a * species of” and “is a * genus of”, but not the concatenation of these two patterns.
Annotators could mark with ? a hyponym–hypernym pair for which they felt uncertain.
Though it would have been useful to distinguish between the different types of error,
we found that regarding many error types there was, anyway, very low inter-annotator
agreement. Indeed the annotation task would appear to be intrinsically complex and
controversial. In any case, an assessment of the definition and hypernym extraction
tasks in isolation was already provided by Navigli and Velardi (2010).

Table 9 summarizes the results. Precision of each classification was computed on a
majority basis, and we used Fleiss’ kappa statistics (Fleiss 1971) to measure the inter-
annotator agreement. In general, the precision is rather good, though it is lower for the
AI domain, probably due to its high “vitality” (many new terms continuously arise, and
for some of them it is difficult to find good quality definitions). In general, precision is
higher in focused domains (VIRUSES, ANIMALS, PLANTS, and VEHICLES) than in wide-
range domains (AI and FINANCE). The former domains, however, have just one quite

696

Velardi, Faralli, and Navigli OntoLearn Reloaded

“narrow” upper concept (virus for VIRUSES, etc.), whereas AI and FINANCE have several
upper concepts (e.g., person or abstraction), and furthermore they are less focused. This
means that there is an inherently higher ambiguity and this may be seen as justifying
the lower performance. In Table 9 we also note that TREE structures achieve in general a
higher precision, except for PLANTS, whereas the DAG has the advantage of improving
recall (see also Section 4.2.2).

Note that high precision here does not contradict the results shown in Section 4.2.2:
In this case, each single relation is evaluated in isolation, therefore overgenerality or
overspecificity do not imply a penalty, provided the relation is judged to be correct.

Furthermore, global consistency is not considered here: for example, distance metric
learning ← parametric technique, and eventually ends up in technique, whereas belief
network learning← machine learning algorithm ends up in algorithm and then in procedure.
In isolation, these hypernymy patterns are acceptable, but within a taxonomic structure
one would like to see a category node grouping all terms denoting machine learning
algorithms. This behavior should be favored by the node weighting strategy described
in Section 3.4, aimed at attracting nodes with multiple hypernyms towards the most
populated category nodes. As in the previous example, however, there are category
nodes that are almost equally “attractive” (e.g., algorithm and technique), and, further-
more, the taxonomy induction algorithm can only select among the set of hypernyms
extracted during the harvesting phase. Consequently, when no definition suggests that
distance metric learning is a hyponym of machine learning algorithm, or of any other
concept connected to machine learning algorithm, there is no way of grouping distance
metric learning and belief network learning in the desired way. This task must be postponed
to manual post-editing.

Concerning the kappa statistics, we note that the values range from moderate to
substantial in most cases. These numbers are apparently low, but the task of evaluating
hypernymy relations is quite a complex one. Similar kappa values were obtained in
Yang and Callan (2008) in a human-guided ontology learning task.

4.3.2 Structural Assessment. In addition to the manual evaluation summarized in
Table 9, a structural assessment was performed to identify the main sources of error.
To this end, one of the authors analyzed the full AI and FINANCE taxonomies and a
sample of the other four domains in search of recurring errors. In general, our optimal
branching algorithm and weighting schema avoids many of the problems highlighted in
well-known studies on taxonomy acquisition from dictionaries (Ide and Véronis 1993),
like circularity, over-generalization, and so forth. There are new problems to be faced,
however.

The main sources of error are the following:

� Ambiguity of terms, especially at the intermediate levels
� Low quality of definitions
� Hypernyms described by a clause rather than by a single- or multi-word

expression
� Lack of an appropriate WCL to analyze the definition
� Difficulty of extracting the correct hypernym string from phrases with

identical syntactic structure

We now provide examples for each of these cases.

697

Computational Linguistics Volume 39, Number 3

Figure 10
Error distribution of the TREE version of our algorithm on the ARTIFICIAL INTELLIGENCE
domain.

Ambiguity. Concerning ambiguity of terms, consider Figures 10 and 11, which show the
distribution of errors at the different levels of the learned AI and FINANCE taxonomies
for the TREE experiment. The figures provide strong evidence that most errors are
located in the intermediate levels of the taxonomy. As we move from leaf nodes to
the upper ontology, the extracted terms become progressively more general and con-
sequently more ambiguous. For these terms the domain heuristics may turn out to be
inadequate, especially if the definition is a short sentence.

But why are these errors frequent at the intermediate levels and not at the highest
levels? To understand this, consider the following example from the AI domain: For
the term classifier the wrong hypernym is selected from the sentence “classifier is a
person who creates classifications.” In many cases, wrong hypernyms do not accumulate
sufficient weight and create “dead-end” hypernymy chains, which are pruned during
the optimal branching step. But, unfortunately, a domain appropriate definition is

Figure 11
Error distribution of the TREE version of our algorithm on the FINANCE domain.

698

Velardi, Faralli, and Navigli OntoLearn Reloaded

found for person: “person is the more general category of an individual,” due to the
presence of the domain word category. On the other hand, this new sentence produces
an attachment that, in a sense, recovers the error, because category is a “good” domain
concept that eventually ends up in subsequent iterations to the upper node abstraction.
Therefore, what happens is that the upper taxonomy nodes, with the help of the domain
heuristic, mitigate the “semantic drift” caused by out-of-domain ambiguity, recovering
the ambiguity errors of the intermediate levels. This phenomenon is consistently found
in all domains, as shown by the hollow that we noticed in the graphs of Section 4.2.2.
An example in the ANIMALS domain is represented by the hypernymy sequence
fawn← color← race← breed← domestic animal, where the wrong hypernym color was
originated by the sentence “fawn is a light yellowish brown color that is usually used in
reference to a dog’s coat color.” Only in VIRUSES is the phenomenon mitigated by the
highly specific and very focused nature of the domain.

In addition to out-of-domain ambiguity, we have two other phenomena: in-domain
ambiguity and polysemy. In-domain ambiguity is rare, but not absent (Agirre et al.
2010; Faralli and Navigli 2012). Consider the example of Figure 12a, from the VEHICLES
domain: tractor has two definitions corresponding to two meanings, which are both
correct. The airplane meaning is “tractor is an airplane where the propeller is located in
front of the fuselage,” whereas the truck meaning is “tractor is a truck for pulling a semi-
trailer or trailer.” Here the three hyponyms of tractor (see the figure) all belong to the
truck sense. We leave to future developments the task of splitting in-domain ambiguous
nodes in the appropriate way.

Another case is systematic polysemy, which is shown in Figure 13. The graph in
the figure, from the AI domain, captures the fact that a semantic network, as well as
its hyponyms, are both a methodology and a representation. Another example is shown
in Figure 12b for the PLANTS domain, where systematic polysemy can be observed
for terms like olive, orange, and breadfruit, which are classified as evergreen tree and
fruit. Polysemy, however, does not cause errors, as it does for in-domain ambiguity,
because hyponyms of polysemous concepts inherit the polysemy: In the two graphs
of Figures 13 and 12b, both partitioned semantic network and tangerine preserve the
polysemy of their ancestors. Note that in-domain ambiguity and polysemy are only
captured by the DAG structure; therefore this can be seen as a further advantage (in
addition to higher recall) of the DAG model over and against the more precise TREE
structure.

Figure 12
An example of in-domain ambiguity (a) and an example of systematic polysemy (b). Dashed
edges were added to the graph as a result of the edge recovery phase (see Section 3.5).

699

Computational Linguistics Volume 39, Number 3

Figure 13
An example of systematic polysemy. Dashed edges were added to the graph as a result of the
edge recovery phase (see Section 3.5).

Low quality of definitions. Often textual definitions, especially if extracted from the
Web, do not have a high quality. Examples are: “artificial intelligence is the next big
development in computing” or “aspectual classification is also a necessary prerequi-
site for interpreting certain adverbial adjuncts.” These sentences are definitions on a
syntactic ground, but not on a semantic ground. As will be shown in Section 4.3.3,
this problem is much less pervasive than for Hearst-like lexico-syntactic patterns,
although, neither domain heuristics nor the graph pruning could completely eliminate
the problem. We can also include overgeneralization in this category of problems: Our
algorithm prefers specific hypernyms to general hypernyms, but for certain terms no
specific definitions are found. The elective way to solve this problem would be to assign
a quality confidence score to the definition source (document or Web page), for example,
by performing an accurate and stable classification of its genre (Petrenz and Webber
2011).

Hypernym is a clause. There are cases in which, although very descriptive and good
quality definitions are found, it is not possible to summarize the hypernym with a
term or multi-word expression. For example “anaphora resolution is the process of
determining whether two expressions in natural language refer to the same real world
entity.” OntoLearn extracts process of determining which ends up in procedure, process.
This is not completely wrong, however, and in some case is even fully acceptable, as
for “summarizing is a process of condensing or expressing in short something you
have read, watched or heard”: here, process of condensing is an acceptable hypernym.
An example for FINANCE is: “market-to-book ratio is book value of assets minus book
value of equity plus market value of equity,” where we extracted book value, rather than
the complete formula. Another example is: “roa is defined as a ratio of operating income
to book value of assets,” from which we extracted ratio, which is, instead, acceptable.

Lack of an appropriate definitional pattern. Though we acquired hundreds of different
definitional patterns, there are still definitions that are not correctly parsed. We already

700

Velardi, Faralli, and Navigli OntoLearn Reloaded

mentioned the geranium example in the PLANTS domain. An example in the AI domain
is “execution monitoring is the robot’s process of observing the world for discrepancies
between the actual world and its internal representation of it,” where the extracted
hypernym is robot because we have no WCL with a Saxon genitive.

Wrong hypernym string. This is the case in which the hypernym is a superstring or
substring of the correct one, like: “latent semantic analysis is a machine learning proce-
dure.” Here, the correct hypernym is machine learning procedure, but OntoLearn extracts
machine because learning is POS tagged as a verb. In general, it is not possible to evaluate
the extent of the hypernym phrase except case-by-case. The lattice learner acquired a
variety of hypernymy patterns, but the precision of certain patterns might be quite low.
For example, the hypernymy pattern “* of *” is acceptable for “In grammar, a lexical
category is a linguistic category of words” or “page rank is a measure of site popularity”
but not for “page rank is only a factor of the amount of incoming and outgoing links
to your site” nor for “pattern recognition is an artificial intelligence area of considerable
importance.” The same applies to the hypernymy pattern ADJ NN: important algorithm is
wrong, although greedy algorithm is correct.

4.3.3 Evaluation of Lexico-Syntactic Patterns. As previously remarked, Kozareva and Hovy
(2010) do not actually apply their algorithm to the task of creating a new taxonomy, but
rather they try to reproduce three WordNet taxonomies, under the assumption that the
taxonomy nodes are known (cf. Section 4). Therefore, there is no evidence of the preci-
sion of their method on new domains, where the category nodes are unknown. On the
other hand, if Hearst’s patterns, which are at the basis of K&H’s hypernymy harvesting
algorithm, could show adequate precision, we would use them in combination with
our definitional patterns. This section investigates the matter.

As briefly summarized in Section 2, K&H create a hypernym graph in three steps.
Given a few root concepts (e.g., animal) and basic level concepts or instances (e.g.,
lion), they:

1) harvest new basic and intermediate concepts from the Web in an iterative
fashion, using doubly anchored patterns (DAP) like ‘〈root〉 such as 〈seed〉
and ∗’ and inverse DAP (i.e., DAP−1) like ‘∗ such as 〈term1〉 and 〈term2〉’.
The procedure is iterated until no new terms can be found;

2) rank the nodes extracted with DAP by out-degree and those extracted
with inverse DAP by in-degree, so as to prune out less promising terms;

3) induce the final taxonomic structure by positioning the intermediate nodes
between basic level and root terms using a concept positioning procedure
based on a variety of Hearst-like surface patterns. Finally, they eliminate
cycles, as well as nodes with no predecessor or no successor, and they
select the longest path in the case of multiple paths between node pairs.

In this section we apply their method23 to the domain of AI in order to manually
analyze the quality of the extracted relations. To replicate the first two steps of K&H
algorithm we fed the algorithm with a growing set of seed terms randomly selected
from our validated terminology, together with their hierarchically related root terms

23 We followed the exact procedure described in Figure 2 of Kozareva & Hovy (2010).

701

Computational Linguistics Volume 39, Number 3

Table 10
K&H performance on the AI domain.

number of root/seed pairs 1 10 100 1,000

new concepts 131 163 227 247
extracted is-a relations 114 146 217 237
correct and in-domain 21.05% 24.65% 18.89% 18.56%

(24/114) (36/146) (41/217) (44/237)

in the upper taxonomy (e.g., unsupervised learning is a method or maximum entropy is a
measure). We then performed the DAP and DAP−1 steps iteratively until no more terms
could be retrieved, and we manually evaluated the quality of the harvested concepts
and taxonomic relations using the same thresholding formula described in K&H.24 We
give the results in Table 10.

As we said earlier, our purpose here is mainly to evaluate the quality of Hearst
patterns in more technical domains, and the efficacy of DAP and DAP−1 steps in
retrieving domain concepts and relations. Therefore, replicating step (3) above is not
useful in this case since, rather than adding new nodes, step (3) is aimed, as in our
optimal branching and pruning recovery steps, at reorganizing and trimming the final
graph.

Table 10 should be compared with the first three rows (AI) of Table 9: It shows that
in the absence of a priori knowledge on the domain concepts the quantity and quality
of the is-a links extracted by the K&H algorithm is much lower than those extracted by
OntoLearn Reloaded. First, the number of new nodes found by the K&H algorithm is
quite low: For the same domain of ARTIFICIAL INTELLIGENCE, our method, as shown in
Table 9, is able to extract from scratch 2,387 – 52 = 2,335 nodes,25 in comparison with the
247 new nodes of Table 10, obtained with 1,000 seeds. Second, many nodes extracted by
the K&H algorithm, like fan speed, guidelines, chemical engineering, and so on, are out-of-
domain and many hypernym relations are incorrect irrespective of their direction, like
computer program is a slow and data mining is a contemporary computing problem. Third, the
vast majority of the retrieved hypernyms are overgeneral, like discipline, method, area,
problem, technique, topic, and so forth, resulting in an almost flat hypernymy structure. A
high in-degree threshold and a very high number of seeds do not mitigate the problem,
demonstrating that Hearst-like patterns are not very good at harvesting many valid
hypernym relations in specialized domains.26

Following this evaluation, we can outline several advantages of our method over
K&H’s work (and, as a consequence, over Hearst’s patterns):

i) We obtain higher precision and recall when no a priori knowledge is
available on the taxonomy concepts, because hypernyms are extracted
from expert knowledge on the Web (i.e., technical definitions rather than
patterns reflecting everyday language).

24 The technique is based on the in-degree and out-degree of the graph nodes.
25 Remember that the 52 domain-independent upper terms are manually defined (cf. Section 4.1.4).
26 This result is in line with previous findings in a larger, domain-balanced experiment (Navigli and Velardi

2010) in which we have shown that WCLs outperform Hearst patterns and other methods in the task of
hypernym extraction.

702

Velardi, Faralli, and Navigli OntoLearn Reloaded

ii) We cope better with sense ambiguity via the domain filtering step.27

iii) We use a principled algorithmic approach to graph pruning and cycle
removal.28

iv) Thanks to the support provided by textual definitions, we are able to
cope with the problem of manually evaluating the retrieved concepts
and relations, even in the absence of a reference taxonomy.

4.3.4 Summary of Findings. We here summarize the main findings of our manifold
evaluation experiments:

i) With regard to the two versions of our graph pruning algorithm, we found
that TREE structures are more precise, whereas DAGs have a higher recall.

ii) Errors are mostly concentrated in the mid-level of the hierarchy, where
concepts are more ambiguous and the “attractive” power of top nodes is
less influential. This was highlighted by our quantitative (F&M) model
and justified by means of manual analysis.

iii) The quality and number of definitions is critical for high performance.
Less-focused domains in which new terms continuously emerge are the
most complex ones, because it is more difficult to retrieve high-quality
definitions for them.

iv) Definitions, on the other hand, are a much more precise and high-coverage
source of knowledge for hypernym extraction than (Hearst-like) patterns
or contexts, because they explicitly represent expert knowledge on a
given domain. Furthermore, they are a very useful support for manual
validation and structural analysis.

5. Conclusions

In this paper we presented OntoLearn Reloaded, a graph-based algorithm for learning
a taxonomy from scratch using highly dense, potentially disconnected, hypernymy
graphs. The algorithm performs the task of eliminating noise from the initial graph
remarkably well on arbitrary, possibly specialized, domains, using a weighting scheme
that draws both on the topological properties of the graph and on some general prin-
ciples of taxonomic structures. OntoLearn Reloaded provides a considerable advance-
ment over the state of the art in taxonomy learning. First, it is the first algorithm that
experimentally demonstrates its ability to build a new taxonomy from the ground up,
without any a priori assumption on the domain except for a corpus and a set of (possibly
general) upper terms. The majority of existing systems start from a set of concepts
and induce hypernymy links between these concepts. Instead, we automatically learn
both concepts and relations via term extraction and iterative definition and hypernym

27 In the authors’ words (Kozareva and Hovy 2010, page 1,115): “we found that the learned terms in the
middle ranking do not refer to the meaning of vehicle as a transportation device, but to the meaning of
vehicle as media (i.e., seminar, newspapers), communication and marketing.”

28 Again in the authors’ words (Kozareva and Hovy 2010, page 1,115): “we found that in-degree is not
sufficient by itself. For example, highly frequent but irrelevant hypernyms such as meats and others are
ranked at the top of the list, while low frequent but relevant ones such as protochordates, hooved-mammals,
homeotherms are discarded.”

703

Computational Linguistics Volume 39, Number 3

extraction. Second, we cope with issues such as term ambiguity, complexity, and
multiplicity of hypernymy patterns. Third, we contribute a multi-faceted evaluation,
which includes a comparison against gold standards, plus a structural and a manual
evaluation. Taxonomy induction was applied to the task of creating new ARTIFICIAL
INTELLIGENCE and FINANCE taxonomies and four taxonomies for gold-standard
comparison against WordNet and MeSH.29

Our experimental analysis shows that OntoLearn Reloaded greatly simplifies the
task of acquiring a taxonomy from scratch: Using a taxonomy validation tool,30 a team
of experts can correct the errors and create a much more acceptable taxonomy in a
matter of hours, rather than man-months, also thanks to the automatic acquisition of
textual definitions for our concepts. As with any automated and unsupervised learning
tool, however, OntoLearn does make errors, as we discussed in Section 4. The accuracy
of the resulting taxonomy is clearly related to the number and quality of discovered
definitional patterns, which is in turn related to the maturity and generality of a domain.
Even with good definitions, problems might arise due to in- and out-domain ambiguity,
the latter being probably the major source of errors, together with complex definitional
structures. Although we believe that there is still room for improvement to OntoLearn
Reloaded, certain errors would appear unavoidable, especially for less focused and
relatively dynamic domains like ARTIFICIAL INTELLIGENCE and FINANCE, in which
new terms arise continuously and have very few, or no definitions on the Web.

Future work includes the addition of non-taxonomical relations along the lines of
ReVerb (Etzioni et al. 2011) and WiSeNet (Moro and Navigli 2012), and a more sophis-
ticated rank-based method for scoring textual definitions. Finally, we plan to tackle
the issue of automatically discriminating between in-domain ambiguity and systematic
polysemy (as discussed in Section 4.3.2).

Acknowledgments
Stefano Faralli and Roberto Navigli
gratefully acknowledge the support of the
ERC Starting Grant MultiJEDI No. 259234.
The authors wish to thank Jim McManus for
his valuable comments on the paper, and
Zornitsa Kozareva and Eduard Hovy for
making their data available.

References
Agirre, Eneko, Oier López de Lacalle,

Christiane Fellbaum, Shu-Kai Hsieh,
Maurizio Tesconi, Monica Monachini,
Piek Vossen, and Roxanne Segers.
2010. SemEval-2010 Task 17: All-words
Word Sense Disambiguation on a
specific domain. In Proceedings of the
5th International Workshop on Semantic
Evaluation (SemEval-2010), pages 75–80,
Uppsala.

Berland, Matthew and Eugene Charniak.
1999. Finding parts in very large
corpora. In Proceedings of the 27th Annual

Meeting of the Association for Computational
Linguistics (ACL), pages 57–64, College
Park, MD.

Biemann, Chris. 2005. Ontology learning
from text—A survey of methods.
LDV-Forum, 20(2):75–93.

Brank, Janez, Dunja Mladenic, and
Marko Grobelnik. 2006. Gold standard
based ontology evaluation using instance
assignment. In Proceedings of 4th Workshop
Evaluating Ontologies for the Web (EON),
Edinburgh.

Carpineto, Claudio and Giovanni Romano.
2012. Consensus Clustering Based on
a New Probabilistic Rand Index with
Application to Subtopic Retrieval.
IEEE Transactions on Pattern Analysis and
Machine Intelligence, 34(12):2315–2326.

Chu, Yoeng-Jin and Tseng-Hong Liu.
1965. On the shortest arborescence
of a directed graph. Science Sinica,
14:1396–1400.

Cimiano, Philipp, Andreas Hotho, and
Steffen Staab. 2005. Learning concept

29 Data sets are available at: http://lcl.uniroma1.it/ontolearn reloaded.
30 For example, http://lcl.uniroma1.it/tav/.

704

Velardi, Faralli, and Navigli OntoLearn Reloaded

hierarchies from text corpora using
formal concept analysis. Journal of
Artificial Intelligence Research,
24(1):305–339.

Cohen, Trevor and Dominic Widdows.
2009. Empirical distributional semantics:
Methods and biomedical applications.
Journal of Biomedical Informatics,
42(2):390–405.

Cormen, Thomas H., Charles E. Leiserson,
and Ronald L. Rivest. 1990. Introduction
to Algorithms. MIT Electrical Engineering
and Computer Science. MIT Press,
Cambridge, MA.

De Benedictis, Flavio, Stefano Faralli, and
Roberto Navigli. 2013. GlossBoot:
Bootstrapping Multilingual Domain
Glossaries from the Web. In Proceedings
of the 51st Annual Meeting of the
Association for Computational Linguistics
(ACL), Sofia.

De Nicola, Antonio, Michele Missikoff,
and Roberto Navigli. 2009. A software
engineering approach to ontology
building. Information Systems,
34(2):258–275.

Edmonds, Jack. 1967. Optimum branchings.
Journal of Research of the National Bureau of
Standards, 71B:233–240.

Etzioni, Oren, Anthony Fader, Janara
Christensen, Stephen Soderland, and
Mausam. 2011. Open information
extraction: The second generation. In
Proceedings of the 22nd International Joint
Conference on Artificial Intelligence (IJCAI),
pages 3–10, Barcelona.

Fahmi, Ismail and Gosse Bouma. 2006.
Learning to identify definitions using
syntactic features. In Proceedings of
the EACL 2006 workshop on Learning
Structured Information in Natural
Language Applications, pages 64–71,
Trento.

Faralli, Stefano and Roberto Navigli.
2012. A new minimally supervised
framework for domain Word Sense
Disambiguation. In Proceedings of
the 2012 Joint Conference on Empirical
Methods in Natural Language Processing
and Computational Natural Language
Learning (EMNLP-CoNLL),
pages 1,411–1,422, Jeju.

Fellbaum, Christiane, editor. 1998. WordNet:
An Electronic Lexical Database. MIT Press,
Cambridge, MA.

Fleiss, Joseph L. 1971. Measuring
nominal scale agreement among
many raters. Psychological Bulletin,
76(5):378–382.

Fountain, Trevor and Mirella Lapata. 2012.
Taxonomy induction using hierarchical
random graphs. In Proceedings of the North
American Chapter of the Association for
Computational Linguistics: Human Language
Technologies (HLT-NAACL), pages 466–476,
Montréal.

Fowlkes, Edward B. and Colin L. Mallows.
1983. A method for comparing two
hierarchical clusterings. Journal of the
American Statistical Association,
78(383):553–569.

Girju, Roxana, Adriana Badulescu, and
Dan Moldovan. 2006. Automatic discovery
of part-whole relations. Computational
Linguistics, 32(1):83–135.

Gomez-Perez, Asunción and David
Manzano-Mancho. 2003. A survey of
ontology learning methods and
techniques. OntoWeb Delieverable 1.5.
Universidad Politécnica de Madrid.

Guarino, Nicola and Chris Welty. 2002.
Evaluating ontological decisions with
OntoClean. Communications of the ACM,
45(2):61–65.

Hearst, Marti A. 1992. Automatic acquisition
of hyponyms from large text corpora.
In Proceedings of the 14th International
Conference on Computational Linguistics
(COLING), pages 539–545, Nantes.

Hovy, Eduard, Andrew Philpot,
Judith Klavans, Ulrich Germann, and
Peter T. Davis. 2003. Extending metadata
definitions by automatically extracting
and organizing glossary definitions. In
Proceedings of the 2003 Annual National
Conference on Digital Government Research,
pages 1–6, Boston, MA.

Ide, Nancy and Jean Véronis. 1993.
Extracting knowledge bases from
machine-readable dictionaries: Have
we wasted our time? In Proceedings
of the Workshop on Knowledge Bases and
Knowledge Structures, pages 257–266,
Tokyo.

Kozareva, Zornitsa and Eduard Hovy. 2010.
A semi-supervised method to learn and
construct taxonomies using the Web.
In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language
Processing (EMNLP), pages 1,110–1,118,
Cambridge, MA.

Kozareva, Zornitsa, Ellen Riloff, and
Eduard Hovy. 2008. Semantic class
learning from the Web with hyponym
pattern linkage graphs. In Proceedings
of the 46th Annual Meeting of the
Association for Computational Linguistics
(ACL), pages 1,048–1,056, Columbus, OH.

705

Computational Linguistics Volume 39, Number 3

Maedche, Alexander, Viktor Pekar, and
Steffen Staab. 2002. Ontology learning
part one—on discovering taxonomic
relations from the Web. In N. Zhong,
J. Liu, and Y. Y. Yao, editors, Web
Intelligence. Springer Verlag, Berlin,
pages 301–322.

Maedche, Alexander and Steffen Staab.
2009. Ontology learning. In Steffen Staab
and Rudi Studer, editors, Handbook on
Ontologies. Springer, Berlin, pages 245–268.

Miller, George A., R. T. Beckwith,
Christiane D. Fellbaum, D. Gross, and
K. Miller. 1990. WordNet: An online
lexical database. International Journal of
Lexicography, 3(4):235–244.

Morey, Leslie C. and Alan Agresti. 1984. The
measurement of classification agreement:
An adjustment to the Rand statistic for
chance agreement. Educational and
Psychological Measurement, 44:33–37.

Moro, Andrea and Roberto Navigli. 2012.
WiSeNet: Building a Wikipedia-based
semantic network with ontologized
relations. In Proceedings of the 21st

ACM Conference on Information and
Knowledge Management (CIKM 2012),
pages 1,672–1,676, Maui, HI.

Navigli, Roberto. 2009. Word Sense
Disambiguation: A survey. ACM
Computing Surveys, 41(2):1–69.

Navigli, Roberto, and Simone Paolo
Ponzetto. 2012. BabelNet: The automatic
construction, evaluation and application of
a wide-coverage multilingual semantic
network. Artificial Intelligence 193,
pp. 217–250.

Navigli, Roberto and Paola Velardi. 2004.
Learning domain ontologies from
document warehouses and dedicated
websites. Computational Linguistics,
30(2):151–179.

Navigli, Roberto and Paola Velardi. 2005.
Structural semantic interconnections:
A knowledge-based approach to Word
Sense Disambiguation. IEEE Transactions
on Pattern Analysis and Machine Intelligence,
27(7):1075–1088.

Navigli, Roberto and Paola Velardi. 2010.
Learning Word-Class Lattices for
definition and hypernym extraction.
In Proceedings of the 48th Annual Meeting
of the Association for Computational
Linguistics (ACL), pages 1,318–1,327,
Uppsala.

Navigli, Roberto, Paola Velardi, and Stefano
Faralli. 2011. A graph-based algorithm for
inducing lexical taxonomies from scratch.
In Proceedings of the 22nd International Joint

Conference on Artificial Intelligence (IJCAI),
pages 1,872–1,877, Barcelona.

Newman, Mark E. J. 2010. Networks: An
Introduction. Oxford University Press.

Pado, Sebastian and Mirella Lapata. 2007.
Dependency-based construction of
semantic space models. Computational
Linguistics, 33(2):161–199.

Pantel, Patrick and Marco Pennacchiotti.
2006. Espresso: Leveraging generic
patterns for automatically harvesting
semantic relations. In Proceedings of
44th Annual Meeting of the Association for
Computational Linguistics joint with 21st

Conference on Computational Linguistics
(COLING-ACL), pages 113–120, Sydney.

Pasca, Marius. 2004. Acquisition of
categorized named entities for web search.
In Proceedings of the 13th ACM International
Conference on Information and Knowledge
Management (CIKM), pages 137–145,
Washington, DC.

Petasis, Georgios, Vangelis Karkaletsis,
Georgios Paliouras, Anastasia Krithara,
and Elias Zavitsanos. 2011. Ontology
population and enrichment: State of the
art. In Georgios Paliouras, Constantine
Spyropoulos, and George Tsatsaronis,
editors, Knowledge-Driven Multimedia
Information Extraction and Ontology
Evolution, volume 6050 of Lecture Notes
in Computer Science. Springer, Berlin /
Heidelberg, pages 134–166.

Petrenz, Philipp and Bonnie L. Webber.
2011. Stable classification of text genres.
Computational Linguistics, 37(2):385–393.

Ponzetto, Simone Paolo and Roberto Navigli.
2009. Large-scale taxonomy mapping for
restructuring and integrating Wikipedia.
In Proceedings of the 21st International Joint
Conference on Artificial Intelligence (IJCAI),
pages 2,083–2,088, Pasadena, CA.

Ponzetto, Simone Paolo and Michael Strube.
2011. Taxonomy induction based on a
collaboratively built knowledge repository.
Artificial Intelligence, 175:1737–1756.

Poon, Hoifung and Pedro Domingos. 2010.
Unsupervised ontology induction from
text. In Proceedings of the 48th Annual
Meeting of the Association for Computational
Linguistics (ACL), pages 296–305, Uppsala.

Rand, William M. 1971. Objective criteria for
the evaluation of clustering methods.
Journal of the American Statistical
Association, 66(336):846–850.

Schmid, Helmut. 1995. Improvements in
part-of-speech tagging with an application
to German. In Proceedings of the ACL
SIGDAT-Workshop, pages 47–50, Dublin.

706

Velardi, Faralli, and Navigli OntoLearn Reloaded

Sclano, Francesco and Paola Velardi. 2007.
TermExtractor: A Web application to
learn the shared terminology of emergent
Web communities. In Proceedings of the 3th

International Conference on Interoperability
for Enterprise Software and Applications
(I-ESA), pages 287–290, Funchal.

Snow, Rion, Dan Jurafsky, and Andrew Ng.
2006. Semantic taxonomy induction from
heterogeneous evidence. In Proceedings of
44th Annual Meeting of the Association for
Computational Linguistics joint with 21st

Conference on Computational Linguistics
(COLING-ACL), pages 801–808, Sydney.

Sowa, John F. 2000. Knowledge Representation:
Logical, Philosophical, and Computational
Foundations. Brooks Cole Publishing Co.,
Pacific Grove, CA.

Storrer, Angelika and Sandra Wellinghoff.
2006. Automated detection and annotation
of term definitions in German text corpora.
In Proceedings of the 5th International
Conference on Language Resources and
Evaluation (LREC), pages 2,373–2,376,
Genova.

Suchanek, Fabian M., Gjergji Kasneci,
and Gerhard Weikum. 2008. YAGO:
A large ontology from Wikipedia and
WordNet. Journal of Web Semantics,
6(3):203–217.

Tang, Jie, Ho Fung Leung, Qiong Luo,
Dewei Chen, and Jibin Gong. 2009.
Towards ontology learning from
folksonomies. In Proceedings of the
21st International Joint Conference on
Artificial Intelligence (IJCAI),
pages 2,089–2,094, Pasadena, CA.

Tarjan, Robert Endre. 1977. Finding optimum
branchings. Networks, 7(1):25–35.

Velardi, Paola, Roberto Navigli, and Pierluigi
D’Amadio. 2008. Mining the Web to create
specialized glossaries. IEEE Intelligent
Systems, 23(5):18–25.

Völker, Johanna, Denny Vrandečić,
York Sure, and Andreas Hotho. 2008.

AEON—An approach to the automatic
evaluation of ontologies. Journal of
Applied Ontology, 3(1-2):41–62.

Vossen, Piek. 2001. Extending, trimming
and fusing WordNet for technical
documents. In Proceedings of the North
American Chapter of the Association
for Computational Linguistics Workshop
on WordNet and Other Lexical
Resources: Applications, Extensions
and Customizations (NAACL),
pages 125–131, Pittsburgh, PA.

Wagner, Silke and Dorothea Wagner. 2007.
Comparing clusterings: An overview.
Technical Report 2006-04, Faculty of
Informatics, Universität Karlsruhe (TH).

Westerhout, Eline. 2009. Definition extraction
using linguistic and structural features.
In Proceedings of the RANLP Workshop
on Definition Extraction, pages 61–67,
Borovets.

Yang, Hui and Jamie Callan. 2008.
Human-guided ontology learning.
In Proceedings of Human-Computer
Interaction and Information Retrieval
(HCIR), pages 26–29, Redmond, WA.

Yang, Hui and Jamie Callan. 2009. A
metric-based framework for automatic
taxonomy induction. In Proceedings of
the 47th Annual Meeting of the Association
for Computational Linguistics (ACL),
pages 271–279, Suntec.

Zavitsanos, Elias, Georgios Paliouras,
and George A. Vouros. 2011. Gold
standard evaluation of ontology learning
methods through ontology transformation
and alignment. IEEE Transactions on
Knowledge and Data Engineering,
23(11):1635–1648.

Zhang, Chunxia and Peng Jiang. 2009.
Automatic extraction of definitions.
In Proceedings of 2nd IEEE International
Conference on Computer Science and
Information Technology (ICCSIT),
pages 364–368, Beijing.

707

