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1. Introduction

Named entities (NEs), especially person names (PER), location names (LOC), and
organization names (ORG), deliver essential context and meaning in human languages.
Therefore, NE translation plays a critical role in trans-lingual language processing tasks,
such as machine translation (MT) and cross-lingual information retrieval. To learn NE
translation knowledge, bilingual NE alignment (which links source NEs and target
NEs to generate desired NE pairs) is the first step in producing the NE translation
table (which can then be used to train the NE translation model). Furthermore, with
additional alignment constraints from the other language, the alignment module can
also refine those initially recognized NEs, and thus can be adopted to conduct semi-
supervised learning to learn monolingual NE recognition models from a large untagged
bilingual corpus.

Because NE alignment can only be conducted after its associated NEs have been
identified, the NE recognition errors propagate into the alignment stage. The type-
insensitive inclusion rate1 of the initial recognition stage thus significantly limits the
final alignment performance. One way to alleviate this error propagation problem is to
jointly perform NE recognition and alignment. Such a combined approach is usually
infeasible, however, due to the high computational cost of evaluating alignment scores
for a large number2 of NE pair candidates.

In order to make the problem computationally tractable, a sequential approach is
usually used to first identify NEs and then align them. Two such kinds of sequential
strategies that alleviate the error propagation problem have been proposed. The first
strategy, named asymmetry alignment (Al-Onaizan and Knight 2002; Moore 2003;
Feng, Lv, and Zhou 2004; Lee, Chang, and Jang 2006), identifies NEs only on the source
side and then finds their corresponding NEs on the target side. Although this approach
avoids the NE recognition errors resulting from the target side, which would otherwise
be brought into the alignment process, the NE recognition errors from the source side
continue to affect alignment.

To further reduce the errors from the source side, the second strategy, denoted
symmetry alignment (Huang, Vogel, and Waibel 2003), expands the NE candidate
sets in both languages before conducting the alignment. This is achieved by using the
original results as anchors, and enlarging or shrinking the boundaries of the anchors to
generate new candidates. This strategy fails to work if the NE anchor has already been
missed in the initial NE recognition stage, however. In our data set (1,000 Chinese–
English sentence pairs randomly selected from the Chinese News Translation Text
corpus [LDC2005T06]), this strategy significantly improves the type-insensitive NE pair
inclusion rate from 83.9% to 96.1%;3 in the meantime, the type-insensitive Chinese NE
(CNE) recognition inclusion rate rises from 88.7% to 95.9%, and that of English NE
(ENE) from 92.8% to 97.2%. This strategy is thus adopted in this article.

Although the symmetric expansion strategy has substantially alleviated the prob-
lem of error propagation, the final alignment accuracy, in terms of type-sensitive F-score

1 This is the percentage of desired NE pairs that are included within the given candidate set, and is the
upper bound for NE alignment performance (type-insensitive means disregarding NE types).

2 This number will dramatically increase if the combined approach is adopted, as every possible string
will become a NE candidate.

3 This figure is based on the expanded candidates that are constructed without any range limitation. In
this case, Inclusion rate = 1 – [Missing Rate of Initial NEs]. In addition, because not every Chinese NE is
linked in the given sentence pair, the Inclusion rate of Chinese NEs is even lower than that of NE pairs
(95.9% vs. 96.1%).
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(achieved by the approach proposed by Huang, Vogel, and Waibel [2003]) continues
to be as low as 68.4% (see in Table 3 in Section 4.3). After having examined the data,
we found the following: (1) How a given NE is translated, either semantically (called
translation) or phonetically (called transliteration), depends greatly on its associated
entity type.4 The translation mode ratio, which is the percentage of NE internal tokens
that are translated semantically, thus can help to identify the NE type. (2) Entities within
an aligned pair should share the same type, and this restriction should be integrated
into the NE alignment model as a constraint. (3) In prior work, the initially identified
monolingual NEs were used only to construct the candidate set without playing any
role in final NE identification. Indeed, these monolingual NEs do carry other useful in-
formation and can act as anchors to giveNE likelihoods, which can provide additional
scope preference information to those regenerated candidates.

Based on these observations, we propose a novel joint model that adopts the transla-
tion mode ratio, enforces the entity type consistency constraint, and also utilizes the NE
likelihoods. This proposed approach jointly identifies and aligns bilingual NEs under
an integrated framework, which consists of three stages: Initial NE Recognition, NE-
Candidate Set Expansion, and NE Re-identification & Alignment. The Initial NE Recog-
nition stage identifies the initial NEs and their associated NE types in both the source
and target. In the next stage, NE Candidate Set Expansion regenerates the candidate
sets in both languages in order to remedy the initial NE recognition errors. In the final
stage, NE Re-identification & Alignment jointly recognizes and aligns bilingual NEs via
the proposed joint model. The experimental results validate our proposed three-step
method.

The integrated model that jointly identifies and aligns bilingual named entities
between Chinese and English was originally introduced in Chen, Zong, and Su (2010).
In this article, the problem has been re-formulated and derived. The new derivation
starts from two given NE sequences, whereas the original derivation only begins with
one given NE pair. We also give more details of the problem study, model analysis, and
experiments. Moreover, we report additional experiments, which include those that
study the effect of adopting different initial NE recognizers and the effectiveness of the
proposed model across different domains. Finally, a complete error analysis is given in
the current version.

The remainder of this article is organized as follows: Section 2 motivates the pro-
posed method. Afterwards, the proposed model is formally introduced in Section 3.
Section 4 describes experiments conducted on various configurations of the method.
The associated error analysis and discussion of results are presented in Section 5.
Section 6 gives applications of the proposed model. We review related work in Section 7.
Finally, conclusions are drawn in Section 8.

2. Motivation

By examining the NEs initially recognized in aligned sentence pairs, we have the
following two observations: (1) Alignment can help fix those NEs that are initially in-
correctly recognized when they are not the correct counterparts of each other. Therefore,

4 The proportions of semantic translation (which denote the ratios of semantically translated words
among all the associated words within NEs) for PER, LOC, and ORG are approximately 0%, 28.6%, and
74.8%, respectively, in the Chinese–English name entity list (2005T34) released by the Linguistic Data
Consortium (LDC). Because titles, such as “sir” and “chairman,” are not considered part of person
names in this corpus, all PERs are transliterated.
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alignment and recognition should be jointly optimized. (2) Alignment cannot help in
determining the appropriate scope when each word within an NE (or within its larger
context window covering the NE) is correctly matched to its counterpart. Therefore, the
information of those initial NEs should be utilized to decide the appropriate NE scope.
The following two sections further elaborate on these two observations.

2.1 Alignment Helps NE Recognition

In NE recognition, both boundary identification and type classification are required.
The complexity of these tasks varies with different languages, however. For example,
Chinese NE boundaries are not obvious because adjacent words are not separated by
spaces. In contrast, English NE boundaries are easier to identify with explicit words and
capitalization clues. On the other hand, classification of English NE type is considered
more challenging (Ji and Grishman 2006).

Because alignment would force the NEs in the linked NE pair to share the same
semantic meaning, the NE that is more reliably identified in one language can be
used to identify its less reliable counterpart in the other language. This benefit, which
is observed in both NE boundary identification and type classification, indicates that
alignment can be used to locate those NEs that are initially incorrectly recognized. For
example, once the correct boundaries are drawn in one language, word equivalences
inside an aligned NE pair can help identify NE boundaries in the language that does
not have explicit clues (e.g., Chinese). As shown in Example (1), even though the desired
Chinese NE “北韩中央通信社” is only partially recognized as “北韩中央” in the initial
recognition stage, it can be recovered if the English counterpart North Korean [no’s]
Central News Agency is given. The reason for this is that News Agency is better aligned
to “通信社”, rather than be deleted, which would occur if “北韩中央” is chosen as the
corresponding Chinese NE.

On the other hand, type consistency constraints can help correct the NE type that
is less reliably identified. Moreover, in identifying the NE type, it helps if we know
whether a word is translated or transliterated. As illustrated in Example (2), the word
lake in the English NE is linked to the Chinese character “湖”, and this mapping is
found to be a translation, not a transliteration. Because translation rarely occurs for
personal names (Chen, Yang, and Lin 2003), the desired NE type “LOC” should be
shared between the English NE Lake Constance and its corresponding Chinese NE “康斯
坦茨湖.” As a result, the original incorrect type “PER” of the given English NE is fixed; it
thus corroborates the need for using the translation mode ratio and NE type consistency
constraint.
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2.2 Initial NEs Carry NE Scope Information

In Huang, Vogel, and Waibel (2003), initial NE information was discarded once the
new candidate set was generated. Alignment scores alone, however, are incapable of
selecting the appropriate NE scope in some cases. For instance, when each word in an
NE is correctly matched to its counterpart, the alignment score might still prefer an
incorrect NE pair with smaller scope, even after the normalization of alignment terms
has been considered (explained in Section 4.3). On the other hand, when words sur-
rounding the desired NE are also correctly matched to their counterpart, the incorrect
NE pair with larger scope might be chosen. As illustrated in Example (3), the desired NE
pair {〈德国〉::[Germany]} is initially correctly recognized, although the wrong NE pair
{〈德国经济〉::[Germany economy]} is finally selected from the regenerated candidate set

if only alignment scores are used in the final selection process. This is because the extra
words “经济” and economy are a perfect translation of each other, thus resulting in the
incorrect pair {〈德国经济〉::[Germany economy]}, which receives a higher alignment
score than does the correct NE pair {〈德国〉::[Germany]}.

It must also be noted that an NE alignment model usually ignores a fair amount of
potentially useful information that is commonly used in monolingual NE recognition
models. For example, the bigrams of text surrounding NEs are frequently adopted in
a monolingual NE recognition model, but not in a bilingual alignment model. Other

233



Computational Linguistics Volume 39, Number 2

examples include case information, part-of-speech (POS) triggers, gazetteer features,
and external macro context features mentioned in Zhou and Su (2006). The alignment
model fails to consider the monolingual context surrounding NEs while determining
NE scope, resulting in the error mentioned in Example 3. By ignoring the initial NEs
after their corresponding candidate sets have been generated, we lose the information
provided by these initial NEs that is otherwise available to the alignment model.
Therefore, though the initially detected NEs might be unreliable by themselves, they
should act as anchors to provide scope preference information, even after the expanded
candidate set has been generated from these NEs.

3. The Proposed Joint Model

Given a Chinese–English sentence pair (Sc,Se), with its initial (denoted by lower
case letter b, for ”beginning”) Chinese NEs [Cbi,Tci]

Nc
i=1,Nc ≥ 1 and English NEs

[Ebj,Tej]
Ne
j=1,Ne ≥ 1 , where Nc and Ne are the numbers of initially recognized NEs of

Chinese and English, respectively; Tci and Tej are the original NE types assigned to Cbi
and Ebj , respectively. (For the reader’s convenience, all adopted notations are listed in
Table 1 for quick reference.) We first regenerate two NE candidate sets (by enlarging
and shrinking the boundaries of those initial NEs) to include, we hope, the correct
corresponding candidates that failed to be recognized in the first stage. Let CKc

1 and EKe
1

denote the two sets that include those regenerated candidates for Chinese and English
NEs, respectively (Kc and Ke are their set-sizes), and K = min (Nc,Ne). Then, the total K
pairs of the final Chinese and English NEs will be extracted from the Cartesian product
of CKc

1 and EKe
1 . Here, only NE pairs in one-to-one mappings will be extracted, as most

applications are only interested in this kind of correspondence. Therefore, we will let CK
1

and EK
1 denote the two extracted candidate sets to be linked, and these sets will consist

of non-overlapping NE candidates from CKc
1 and EKe

1 , respectively (for conciseness,
we will not explicitly distinguish between the indices CK

1 and CKc
1 , or between

EK
1 and EKe

1 ).
Let

{
Ca(k),Ek

}
denote a specific NE-linking-pair (where a(k) and k are the associated

indices of those regenerated Chinese and English NEs within CK
1 and EK

1 , respectively);
the subscript a(k) denotes that Ca(k) is aligned to Ek. Let Tk be the NE type to be re-
assigned and shared by Ca(k) and Ek (as they should denote the same entity). Assuming
that only one-to-one mappings of NE pairs will be extracted, the problem of getting

Table 1
Adopted notations (keywords have been italicized).

Symbols Symbols

Chinese Sentence Sc English Sentence Se
Initial/Beginning Chinese NE Cb Initial/Beginning English NE Eb
Regenerated Chinese NE C Regenerated English NE E
Initial Chinese NE Type Tc Initial English NE Type Te
Re-assigned NE Type T NE Sequence Alignment As
Internal Component Alignment A Internal Translation Mode M
Chinese Component cp English Word ew
Translation Mode Ratio δ Chinese Character cc
Left Distance dL Right Distance dR
Initial/Beginning NE Length Lb Regenerated NE Length L
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the final desired aligned NE pairs
{

C∗
a(k),E

∗
k ,T∗

k

}K

k=1
is that of finding the most likely

allowable combination of NE pairs (and their re-assigned NE types), given all the initial
NEs (i.e., [Cbi,Tci]

Nc
i=1 and [Ebj,Tej]

Ne
j=1) and the sentences that include them (i.e., Sc and

Se). This can be formulated as follows:

{
C∗

a(k),E
∗
k ,T∗

k

}K

k=1

= arg max
{Ca(k),Ek}

K

k=1


max

TK
1

P
({

Ca(k),Ek,Tk
}K

k=1 |[Cbi,Tci]
Nc
i=1,Sc, [Ebj,Tej]

Ne
j=1,Se

) (1)

For any given NE–pair sequence
{
Ca(k),Ek

}K
k=1, the internal max operator will first

operate over each re-assigned type-sequences TK
1 (where T belongs to PER, LOC, ORG

for each given NE pair included in the NE–pair sequence). The outer argmax operator
will cross every admissible NE–pair sequence.

This formulation implies that recognition and alignment are executed jointly
with respect to CK

1 and EK
1 , without making any independence assumptions among

those NE pairs included in the associated NE–pair sequence. This equation is
thus computationally infeasible due to a large search space. Therefore, it is fur-
ther simplified and derived as follows by first explicitly denoting the link between
Ca(k) and Ek as AS,k =

{
Ca(k),Ek

}
. Let {AS,k}

K
k=1 (abbreviated as AK

S,1) denote one possi-

ble alignment between CK
1 and EK

1 . We will then have K! different possible align-
ments between them (i.e., total factorial of K different AK

S,1). Finally, let [Cba(k),Tca(k)]
K
k=1

and [Ebk,Tek]
K
k=1 denote those initially recognized corresponding NEs that gener-

ate CK
1 and EK

1 (i.e., their associated anchors), respectively. Then we can replace{
Ca(k),Ek, Tk}

K
k=1 in Equation (1) by [AS,k,Ca(k),Ek,Tk]

K
k=1, and derive the original prob-

ability P
({

Ca(k),Ek,Tk
}K

k=1 |[Cbi,Tci]
Nc
i=1,Sc, [Ebj,Tej]

Ne
j=1,Se

)
as follows.

P
({

Ca(k),Ek,Tk
}K

k=1 |[Cbi,Tci]
Nc
i=1,Sc, [Ebj,Tej]

Ne
j=1,Se

)
≈ P

(
[AS,k,Ca(k),Ek,Tk]

K
k=1|[Cba(k),Tca(k)]

K
k=1,Sc, [Ebk,Tek]

K
k=1,Se

)
≈

K∏
k=1

[P
(
[AS,k,Ca(k),Ek,Tk]|[Cba(k),Tca(k)],Sc, [Ebk,Tek],Se

)
]

(2)

where P
(
[AS,k,Ca(k),Ek,Tk]|[Cba(k),Tca(k)],Sc, [Ebk,Tek],Se

)
can be further decomposed as

follows.

P
(
[AS,k,Ca(k),Ek,Tk]|[Cba(k),Tca(k)],Sc, [Ebk,Tek],Se

)
≈ P(AS,k|Ca(k),Ek,Tk) × P

(
Tk|Tca(k),Tek,Sc,Se

)
× P(Ca(k)|Cba(k),Tca(k),Tk,Sc) × P(Ek|Ebk,Tek,Tk,Se)

(3)

In Equation (3), P(AS,k|Ca(k),Ek,Tk) and P
(
Tk|Tca(k),Tek,Sc,Se

)
are defined as

NE Alignment Probability and NE Type Re-assignment Probability, respectively, for
finding the final alignment AK

S,1 among CK
1 and EK

1 that have been selected. Both
P(Ca(k)|Cba(k),Tca(k),Tk,Sc) and P(Ek|Ebk,Tek,Tk,Se) are called NE likelihoods, and are
used to assign preference to each selected CK

1 and EK
1 , based on the initial NEs (which

act as anchors). For brevity, we drop the associated subscripts hereafter, if there is
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no confusion. These probabilities will be further described in Sections 3.1 and 3.2.
Finally, the joint identification and alignment framework that incorporates the initial
NE recognition process, candidate set construction, and the associated search process
are given in Section 3.3.

3.1 Bilingual Related Probabilities

The NE alignment probability represents the likelihood of a specific alignment AS,k,
given C and E and their associated T. Because Chinese word segmentation in-
troduces errors, especially for transliterated words, the NE alignment probability
P(AS,k|Ca(k),Ek,Tk) in Equation (3) is derived from E (i.e., starting from the English part).
In addition, because internal component alignment (denoted as A, to be defined later)
within a given NE pair carries important information (as illustrated in Section 2), the
internal component alignment will be introduced as follows.

P(AS,k|Ca(k),Ek,Tk) =
∑

A
P(A|C,E,T)

≈ max
A

P(A|C,E,T) (4)

= max
A

[ 1
R
× P(A|E,T)]

where R =
∑

A P(A|E,T) is a normalization value,5 which will be ignored for simplicity,
leaving only the probability P(A|E,T) to be derived.

Let A be configured as A ≡ 〈[cpa(n), ewn,Mn]
N
n=1, δ〉, where [cpa(n), ewn,Mn] denotes

a linked pair of a Chinese component cpa(n) (which might contain several Chinese char-
acters) and an English word ewn within C and E, respectively, with their translation
mode Mn to be either translation (abbreviated as TS) or transliteration (abbreviated as
TL). We assume that there are N component transformations in total, including NTS

translation transformations [cpa(n), ewn,TS]NTS
n=1 and NTL transliteration transformations

[cpa(n), ewn,TL]NTL
n=1, such that N = NTS + NTL. Moreover, because the statistical distribu-

tion of internal translation mode varies greatly across various NE types (as illustrated in
footnote [4] of this article), the associated translation mode ratio δ = (NTS/N) is an impor-
tant feature and is included in the internal component alignment specified previously.
For example, if the A between “康斯坦茨湖” and Constance Lake is [康斯坦茨, Constance,
TL] and [湖, Lake, TS] (NTS = NTL = 1), then its associated translation mode ratio will be
0.5 (i.e., δ = 1/2).

Therefore, the internal alignment probability P(A|E,T) will be further deduced by
introducing the translation mode Mn and the translation mode ratio δ as follows:

P(A|E,T) ≡ P([cpa(n), ewn,Mn]
N
n=1, δ|E,T)

≈
N∏

n=1

[P(cpa(n)|Mn, ewn,T) × P(Mn|ewn,T)] × P(δ|T) (5)

5 The summation will be taken over various A that can generate C.
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Combining Equations (4) and (5), the NE alignment probability P(AS,k|Ca(k),Ek,Tk),
which integrates internal component alignment information such as translation mode
ratio and NE type constraint, is finally obtained as follows.

P(AS,k|Ca(k),Ek,Tk)

≈ 1
R × maxA

[
NA∏
n=1

[P(cpA,a(n)|MA,n, ewA,n,T) × P(MA,n|ewA,n,T)] × P(δA|T)

]
(6)

where R is the normalization factor defined by Equation (4), and will be ignored in
the final selection. In Equation (6), the mappings between internal elements is trained
from the syllable/word alignment of NE pairs of different NE types. For translitera-
tion, the model adopted in Huang, Vogel, and Waibel (2003), which first romanizes
Chinese characters and then transliterates them into English characters, is used in
estimating P(cpa(n)|TL, ewn,T). For translation, conditional probability is directly used
for P(cpa(n)|TS, ewn,T).

On the other hand, the NE type re-assignment probability P (T|Tc,Te,Sc,Se), proposed
in Equation (3), is derived as follows.

P (T|Tc,Te,Sc,Se) ≈ P (T|Tc,Te) (7)

As Equation (7) shows, both the initially assigned Chinese NE type Tc and the initially
assigned English NE type Te are adopted to jointly identify their shared NE type T.

3.2 Monolingual NE Likelihoods

The monolingual related probabilities in Equation (3) represent the likelihood that a
regenerated NE candidate is the true NE, given its originally detected NE. For Chinese,
we derive the likelihood as follows.

P(C|Cb,Tc,T,Sc)
≡ P

(
dL, dR,String[C]|Lb,Tc,T

)
≈ P(dL|Lb,Tc,T) × P(dR|Lb,Tc,T) ×

∏L
l=1 P(ccl|ccl−1,T)

(8)

Here Lb is the length (in characters) of the original recognized Chinese NE Cb. Let dL and
dR denote the left and right distance, respectively (which are based on the numbers of
Chinese characters), that C shrinks/enlarges from the left and the right boundaries of
its anchor Cb. In Example (1) in Section 2.1, in the case where the given Cb and C are
“北韩中央” and “韩中央通信社”, respectively, then dL and dR are −1 and +3, respec-
tively. Let String[C] denote the associated Chinese string of C, ccl denote the l-th Chinese
character within that string, and L denote the total number of Chinese characters within
C. Then we will have a range of bigram probabilities for candidates with different
lengths. Therefore, it is systematically biased6 (in probability value) towards candidates
with shorter lengths. On the English side, following Equation (8), P(E|Eb,Te,T,Se) can
be derived similarly; the unit is a word, however, rather than a character.

6 This bias is introduced by the conditional independence assumption made while decomposing

P
(
String[C]|T

)
into

∏L
l=1 P(ccl|ccl−1, T).
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In summary, with factors dL and dR, the proposed NE likelihood is able to assign
scope preference to each regenerated NE based on its associated initial NE. The initial
NE therefore still plays a role in the final selection process, even after its related candi-
date set has been generated, which is important when all words involved are correctly
matched to their counterparts, as explained in Section 2.2. In contrast, Huang, Vogel,
and Waibel (2003) adopt only type-dependent bigrams as the NE likelihood. The initial
NE thus will not play any role in the final selection process after its related candidate
set has been generated. The scope preference information carried by the initial NE is
therefore not utilized in their model.

Having integrated all related probabilities (Equations (6), (7), and (8)) together,
we now have the final desired model. For simplicity, all the probabilities involved are
estimated by the Good-Turing smoothing technique (Chen and Goodman 1998) unless
otherwise specified.

3.3 Framework for Jointly Identifying and Aligning Bilingual NEs

In jointly identifying and aligning bilingual NEs, a three-stage framework is adopted:
(A) Initial NE Recognition, generating the initial NE anchors with off-the-shelf pack-
ages, (B) NE Candidate Set Expansion, expanding the associated NE Candidate set to
remedy the errors made in the previous stage, and (C) NE Re-identification & Align-
ment, extracting the final NE pairs from the Cartesian product of source and target
candidate sets (created in the second stage) via a search process. Figure 1 presents the
detailed procedure of this framework.

1 For each given bilingual sentence pair:
2 (A) Initial NE Recognition: The initial Chinese NEs and English NEs are first identified by their

corresponding NE recognition toolkits, respectively.
3 (B) NE Candidate Set Expansion: To rescue those NEs whose boundaries are incorrectly identified in

the previous stage—for each initially detected NE, several NE candidates will be regenerated from the
original NE by allowing its boundaries to be shrunk or enlarged within a pre-specified range.

4 (B.1) Create both C and E candidate sets, which are expanded from those initial NEs recognized in
the previous stage.

5 (B.2) Construct a NE pair candidate set (namedNE-Pair-Candidate set) by generating a Cartesian
product of C and E candidate sets created in the above step.

6 (C)NE Re-identification & Alignment: Rank each candidate in the NE-Pair-Candidate set constructed
above with the score specified by the proposed model. Let Nc and Ne be the numbers of those initial
Chinese and English NEs in the first stage, respectively, and set K = min(Nc,Ne). Extract top K final
NE pairs (with their re-assigned NE types) with the highest scores from the NE-Pair-Candidate set.

7 (C.1) FOR each NE pair in the NE-Pair-Candidate set created above:
FOR each re-assigned NE type within {PER, LOC, ORG}

Evaluate the score for the given candidate pair and the given NE type according to the
proposed model.

END FOR
Find the re-assigned NE type with the highest score, then attach it and its corresponding
score to the given NE pair

END FOR (C.1)
8 (C.2) Conduct a beam search process to select the top K non-overlapping NE pairs from the NE-Pair-

Candidate set with the scores assigned above. The searching process will keep removing those over-
lapping NEs from the candidate list before each state is branched.

Figure 1
A framework for jointly identifying and aligning bilingual NEs.
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Example 4 illustrates how the framework works. For simplicity, we will allow the
Chinese NE to enlarge/shrink its boundaries to four characters on each side, and only
allow two words for English.

Example 4. An example of candidate set construction

Each NE and its type in this example is separated by ”/”. Only partial and relevant
information is shown here.

(A.1) A Chinese tagged sentence: “据报道〈加拉巴戈斯/PER〉 国家公园以及当地渔民，正
合. . .。”;

(A.2) Initial Chinese NE (Cb): 〈加拉巴戈斯/PER〉, Nc = 1;
(A.3) An English tagged sentence: “The report said the [Galapagos/PER] [National

Park/ORG] and local fishermen were working together . . .”;
(A.4) Initial English NEs (Eb): [Galapagos/PER], [National Park / ORG], Ne = 2;

(B.1.1) Regenerated Chinese candidate set (CK
1 ): {〈加拉巴戈斯〉, 〈加拉巴戈斯国家公园〉, 〈加〉,

〈拉巴戈斯国家公园〉, 〈拉巴〉, 〈拉〉, 〈巴〉, 〈戈〉, 〈斯〉, 〈据报道加拉巴戈斯国家公园〉, 〈据报道
加拉巴戈〉, . . . .}. Total 62 C candidates will be generated.

(B.1.2) Regenerated English candidate set (EK
1 ): {[Galapagos], [National Park], [Galapagos Na-

tional Park], [said the Galapagos National Park], [National Park and local], [National],
[Park], . . .}. Total 24 E candidates will be generated.

(B.2) NE-Pair-Candidate set: {〈加拉巴戈斯〉::[Galapagos], 〈加拉巴戈斯国家公园〉::[Galapagos
National Park], 〈加拉巴戈斯〉::[National Park], 〈加拉巴戈斯国家公园〉::[Park], . . . . . .}.
Total 1,488 (62 × 24) NE pairs will be generated.

(C) K = min(Nc,Ne) = 1. Therefore, only {〈加拉巴戈斯国家公园〉::[Galapagos National
Park], ORG} will be extracted.

This example shows that the desired Chinese NE 〈加拉巴戈斯国家公园〉 is partially
recognized as 〈加拉巴戈斯〉 initially with an incorrect NE type PER. In addition, the
desired English NE [Galapagos National Park] is split into [Galapagos] and [National
Park], initially two NEs. After each NE Candidate set has been expanded, the desired
NEs 〈加拉巴戈斯国家公园〉 and [Galapagos National Park] are included in C and E
candidate sets, respectively. The desired NE pair {〈加拉巴戈斯国家公园〉::[Galapagos
National Park], ORG} can thus be located.

If we allow the boundaries to be enlarged/shrunk without any limitation during
the expansion step, all NEs that are initially incorrectly recognized can then be in-
cluded. The generated search space, however, would be too large to be tractable. In
our observation, four Chinese characters for both shrinking and enlarging, and two
English words for shrinking and three for enlarging, are found to be adequate in
most cases. (Note that only the candidate that contains at least one original character/
word is allowed.) Under this condition, the inclusion rates for NEs with correct
boundaries can be increased to 94.6% (from 88.7%) for Chinese, and 96.3% (from
92.8%) for English, respectively; the NE pair inclusion rate can even be increased to
95.3% from 83.9%. Because the inclusion rate achieved by this strategy (with limited
range) is only 0.8% lower than that obtained without any range limitation (which
is 96.1%, as some NEs might have been completely missed in the first stage), this
setting is adopted in this article to reduce the search space. Even with this expansion
strategy, however, those missing and spurious (false positive) errors still cannot be
remedied, because we will neither create additional anchors nor delete any existing
anchor.
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4. Experiments on Various Configurations

To evaluate the proposed approach, prior work (Huang, Vogel, and Waibel 2003) is
re-implemented as our baseline (see Section 4.2). This is because the work not only
adopts the same candidate set expansion strategy mentioned previously, but also uti-
lizes monolingual information when selecting NE pairs (only a simple bigram model is
used, however). This is in contrast to other works (Feng, Lv, and Zhou 2004; Lee, Chang,
and Jang 2006), which only used alignment scores.

The same training and test sets are used for the various experiment configura-
tions. The adopted training set includes two parts. The first part consists of 110,874
aligned sentence pairs from newswire data in the Foreign Broadcast Information Service
(LDC2003E147) corpus, which is denoted as Training Set I. The average length of the
Chinese sentences in this data set is 74.6 characters, and the average length of the
English sentences is 30.2 words. Training Set I is initially tagged by Chinese/English
NE taggers, and then reference NE boundaries and types are manually labeled. The
second part of the training set is the LDC2005T348 bilingual NE pair list with a total
of 218,772 NE pairs, which is denoted as Training Set II. The required features (e.g.,
NE type and translation-mode) are then manually labeled throughout the two training
sets. Because Training Set II only contains isolated NE pairs that are not associated with
their surrounding context, Training Set I is thus required to train those context-related
parameters.

In the baseline system, translation cost and transliteration cost models are trained
on Training Set II, and tagging cost is trained on Training Set I. For the proposed
approach, the NE likelihoods are trained on Training Set I, and Training Set II is used to
train the parameters relating to the NE alignment probability.

For the test set, 300 sentence pairs are randomly selected from the Linguistic Data
Consortium (LDC) Chinese–English News Text (LDC2005T06) corpus, which contains
at least one NE pair in each sentence. The average length of Chinese sentences is 59.4
characters, and the average length of English sentences is 24.8 words. The answer
keys to NE recognition and alignment are annotated manually, and used as the gold
standard to calculate the metrics of precision (P), recall (R), and F-score (F) for both
NE recognition and alignment. A total of 765 Chinese NEs and 747 English NEs are
manually identified in the test set, in which there are 718 reference NE pairs (including
214 PER pairs, 371 LOC pairs, and 133 ORG pairs). NE alignment result is a subset of
NE recognition results, because not all those recognized NEs can be aligned.

The development set for feature selection and weight training is composed of 200
sentence pairs selected from the LDC2005T06 corpus, which includes 482 manually
tagged NE pairs. The average length of Chinese sentences is 56.4 characters, and the
average length of English sentences is 23.2 words. There is no overlap between the
training, development, and test sets.

These data sets will be adopted in a series of experiments that investigate the
proposed model. Among them, the results of initial NE recognition are given in Sec-
tion 4.1, and those related to the baseline system are given in Section 4.2. In Section 4.3,
a series of experiments are conducted to examine the effect of various features adopted
in the proposed model. The weighted version of the proposed model is also tested.

7 FBIS multilingual text (http://projects.ldc.upenn.edu/TIDES/mt2003.html).
8 The LDC2005T34 data set consists of proofread bilingual entries: 73,352 person names, 76,460 location

names, and 68,960 organization names.
(http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2005T34).
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Table 2
Initial type-sensitive Chinese/English NER performance.

NE type P (%) R (%) F (%)

PER 80.2/79.2 87.7/85.3 83.8/82.1
LOC 89.8/85.9 87.3/81.5 88.5/83.6
ORG 78.6/82.9 82.8/79.6 80.6/81.2
ALL 83.4/82.1 86.0/82.6 84.7/82.3

Furthermore, the effectiveness of adopting different initial NE recognizers is shown in
Section 4.4, and the effectiveness of the proposed model across different domains is
illustrated in Section 4.5. Finally, the result of directly using all available features under
a Maximum Entropy framework without developing a principled model is given in
Section 4.6.

4.1 Initial NE Recognizers

Both the baseline alignment system and the proposed model share the same Initial
NE Recognition subtask. The systems adopt the Chinese NE recognizer reported in
Wu, Zhao, and Xu (2005), which is a hybrid statistical model incorporating multi-
knowledge sources, and the English NE recognizer included in the publicly available
Mallet toolkit9 (McCallum 2002) to generate initial NEs. These two initial NE recog-
nizers are adopted because their performance is comparable to other state-of-the-art
systems (Gao, Li, Wu, and Huang 2005; Zhou and Su 2006). The NE recognition baseline
performances reported subsequently are provided by these two packages. A total of 789
Chinese NEs and 752 English NEs are recognized.

Table 2 shows the initial NE recognition (NER) performance for both Chinese and
English (the highest performance in each column is in bold). It is observed that the
F-score of ORG type is the lowest among all NE types for both English and Chinese.
This is because many organization names are only partially recognized or missed alto-
gether. In addition, the precision rate of PER type is lowest among all English NE types
because many location names or abbreviated organization names tend to be incorrectly
recognized as person names in English. In general, the initial Chinese NER outperforms
the initial English NER, as the NE type classification turns out to be a more difficult
problem for this English NER system.

4.2 The Baseline System

The model of Huang, Vogel, and Waibel (2003) is re-implemented in our environment as
the baseline system, and is briefly sketched here for the reader’s convenience. There are
three cost features in Huang’s alignment model: (1) transliteration cost, which measures
the phonetic similarity of the aligned NEs; (2) translation cost, which is similar to IBM
model-1 (Brown et al. 1993); and (3) tagging cost, which evaluates bigram probabilities
of the aligned NEs based on the same NE type.

9 http://mallet.cs.umass.edu/index.php/Main Page.
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Table 3
NEA type-insensitive (type-sensitive) performance on the test set.

Model P (%) R (%) F (%)

ExpB (Baseline) 77.1 (67.1) 79.7 (69.8) 78.4 (68.4)
Exp1 (B-Probabilities) 76.2 (72.3) 78.5 (74.6) 77.3 (73.4)
Exp2 (B-Probabilities N-Alignment) 77.7 (73.5) 79.9 (75.7) 78.8 (74.6)
Exp3 (N-Full Model) 83.7 (78.1) 86.2 (80.7) 84.9 (79.4)
Exp4 (MERT-W) 85.9 (80.5) 88.4 (83.0) 87.1 (81.7)

In our experiments, the translation cost of the baseline system is trained on Training
Set I (with 110,874 aligned sentence pairs) by the GIZA++ toolkit (Och and Ney 2003),
the transliteration cost is trained on all person names (all are transliterated) and translit-
erated location and organization names included in Training Set II. The tagging cost is
trained on the tagging result of Training Set I by the initial NE detection system.

When those initially identified NEs are directly used for alignment, only a 64.1%
F-score (regarding their NE types) is obtained from this baseline system. This relatively
poor performance is mainly due to errors in the initial NE recognition stage that are
brought into the subsequent alignment stage. To diminish the accumulative effect of
errors, the same expansion strategy described in Section 3.3 is then adopted to enlarge
the possible NE candidate set. However, only a slight improvement is obtained (from
64.1% to 68.4% for type-sensitive F-score), as shown in Table 3 in Section 4.3. Therefore,
it is conjectured that the baseline alignment model is unable to perform well if the
features proposed in this article are not adopted.

4.3 The Re-identification and Alignment Joint Model

To examine the individual effect of features adopted in the model, a series of experi-
ments are first conducted on the development set. All features mentioned in Section 3
are verified by their contributions and are then adopted for further experiments on the
test set. Table 3 lists only the representative performance of NE alignment (NEA) on
the test set, and gives two performance measures for the experiments. The first one
(named type-insensitive) only checks the scope of each NE without taking its associated
NE type into account (which is the approach adopted in most of the literature on NE
recognition), and is reported as the main metric in Table 3. The second one (named
type-sensitive) also evaluates the associated NE type of each NE. To evaluate the type-
sensitive performance for NE pairs with correct boundaries, we give one point to any
NE pair that also possesses the correct type-tags on both sides, and give 0.5% if only
one side is correct. Of course, zero points are given if both types are incorrect or the
boundary of any NE is incorrect. With the rules specified herein, the type-sensitive
results are also given within the parentheses in Table 3, and a large degradation is
observed. The configurations of various experiments are listed as follows.

ExpB: This is the baseline system (Huang, Vogel, and Waibel 2003), which is re-
implemented in our environment for comparison.

Exp1: Exp1 (named B-Probabilities) adopts all bilingual related probabilities involved in
Equations (6) and (7), to show the full power of bilingual probabilities.
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Exp2: Furthermore, because the NE alignment probability would favor the candidates
with fewer components,10 it is further normalized by converting Equation (6) into
the following form:

max
A




NA∏

n=1

P(cpA,a(n)|MA,n, ewA,n,T) × P(MA,n|ewA,n,T)




1
NA

× P(δA|T)




The experiment covering complete bilingual probabilities, with the normalized
versions of Equations (6) and (7), is denoted as Exp2 (named B-Probabilities
N-Alignment).
Table 3 indicates that Exp2 achieves the best performance (both type-insensitive
and type-sensitive) among different combinations of the bilingual-related prob-
abilities. Due to its effectiveness, the normalized bilingual probabilities are hence
adopted in all subsequent experiments (i.e., all are based on Exp2).

Exp3: Exp3 (named N-Full Model) manifests the full power of the proposed recognition
and alignment joint model, by integrating all monolingual options into Exp2.
Note that we use the SRI Language Modeling Toolkit11 (Stolcke 2002) to train
various character-/word-based bigram models on different NE types. They are
trained with modified Kneser-Ney smoothing (Kneser and Ney 1995, Chen and
Goodman 1998). Note that monolingual bigrams are also normalized with their
numbers.

As Exp3 shows, the best configuration is to take advantage of all features proposed
in this article and to normalize all feature probabilities. This configuration will thus be
taken for further improvement in the following sections.

So far the proposed model weighs all features equally. It is reasonable to expect that
features should be weighted differently according to their contribution, however. Those
weighting coefficients can be learned from the development set via the well-known
Minimum Error Rate Training approach (Schlüter and Ney 2001; Och 2003) (commonly
abbreviated as MERT). To save computational cost, we only re-evaluate the scores of
candidate pairs in a pre-generated pool, instead of regenerating new candidate pairs
each time when Wt (the vector of weighting coefficients at i-th iteration) is updated to
Wt+1 (of the next iteration). For each sentence pair, its corresponding pool is first created
by using W0 (i.e., Exp3) to generate the top 50 NE pairs12 resulting from the beam search
process. Subsequently, when we switch Wt to Wt+1, we only re-score (and then re-rank)
those candidate pairs inside the pool according to Wt+1.

Exp 4 presents the weighted version of the proposed joint model obtained from
MERT training (MERT-W, N-Full Model, abbreviated as MERT-W). The result demon-
strates that MERT is effective and useful. Entries in bold indicate that the model signif-
icantly outperforms the baseline system. (All statistical significance tests in this article
are measured with 95% confidence level on 1,000 re-sampling batches [Zhang, Vogel,
and Waibel 2004]).

10 It is biased by the E word-count due to the sufficiency (Freedman 2005; Liese and Miescke 2008)
assumption made during decomposition.

11 http://www.speech.sri.com/projects/srilm/.
12 Because most sentence pairs possess less than four NE pairs under Exp3, 50 NE pairs should be sufficient.
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Table 4
NER type-insensitive (type-sensitive) performance of different English NE recognizers.

English NE recognizers P (%) R (%) F (%)

Mallet Toolkit 91.8 (82.1) 92.4 (82.6) 92.1 (82.3)
Stanford NE recognizer 93.7 (84.7) 91.4 (82.3) 92.5 (83.5)
Minor Third 90.8 (82.1) 89.5 (80.7) 90.1 (81.4)

Table 5
NEA type-insensitive (type-sensitive) performance with the same Chinese NE recognizer
(Wu’s system) and different English NE recognizers.

NE alignment on P (%) R (%) F (%) Upper bound (%)
different recognizers

Mallet Toolkit 85.9 (80.5) 88.4 (83.0) 87.1 (81.7) 95.3
Stanford NE recognizer 85.9 (80.2) 88.4 (82.7) 87.1 (81.4) 95.0
Minor Third 85.7 (80.2) 88.1 (82.7) 86.9 (81.4) 94.2

Compared to the baseline system, the MERT-W version has substantially raised
the test set type-insensitive F-score of identified NE pairs from 78.4% to 87.1% (11.1%
relative improvement), and the type-sensitive F-score from 68.4% to 81.7% (19.4%
relative improvement). Therefore, this MERT-W version is adopted in all further
experiments.

4.4 Effect of Adopting Different Initial NE Recognizers

To study whether the final performance of NE alignment is sensitive to the choice of
initial NE recognizers, we investigate the final alignment performance across different
Chinese and English NE recognizers.

First, we test the NE alignment performance with the same Chinese NE recognizer
(Wu’s system, adopted earlier) but with different English NE recognizers that include
the Mallet toolkit (used before), the Stanford NE recognizer (Finkel, Grenager, and
Manning 2005), and Minor Third (Cohen 2004). Table 4 shows the type-insensitive and
type-sensitive (within parentheses) results. Table 5 shows the effect on NE alignment
performance. From Tables 4 and 5, we find that NE alignment performance is actually
not sensitive to the NE recognition result. Although the performance of different NE
recognizers are various (type-insensitive13 F-scores are 90.1%, 92.1%, and 92.5%, re-
spectively), the gaps among their corresponding NE alignment results are negligible
(type-sensitive F-scores of weighted versions are 81.7%, 81.4%, and 81.4%, respectively),
as their candidate sets are enlarged based on initially recognized NEs. It is also note-
worthy that although the F-score of the Stanford NE recognizer is higher than that
of the Mallet toolkit, its corresponding NE alignment performance is lower than the
model based on the Mallet toolkit. We conjecture that the lower recall of Stanford NE

13 Because the initial NE recognizer mainly provides NE anchors, NE type is less relevant to the following
alignment.
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Table 6
NER type-insensitive (type-sensitive) performance of different Chinese NE recognizers.

Chinese NE recognizers P (%) R (%) F (%)

Wu’s System 86.2 (83.4) 88.7 (86.0) 87.4 (84.7)
BaseNER 88.3 (85.9) 84.9 (82.5) 86.6 (84.2)
S-MSRSeg 86.8 (84.7) 81.5 (79.5) 84.1 (82.1)

Table 7
NEA type-insensitive (type-sensitive) performance with the same English NE recognizer (Mallet
system) and different Chinese NE recognizers.

NE alignment on P (%) R (%) F (%) Upper bound (%)
different recognizers

Wu’s System 85.9 (80.5) 88.4 (83.0) 87.1 (81.7) 95.3
BaseNER 85.6 (79.9) 88.1 (82.4) 86.8 (81.1) 94.2
S-MSRSeg 84.5 (78.9) 87.1 (81.4) 85.8 (80.1) 93.3

recognizer leads to lower NE alignment performance because the recall of NER is closely
related to the NE pair inclusion rate (please refer to footnote 1), which is the upper
bound of its corresponding NE alignment performance.

Similarly, we test the NE alignment performance with the same English NE rec-
ognizer (Mallet) but with different Chinese NE recognizers, including Wu’s system (as
before), BaseNER (Zhao and Kit 2008), and S-MSRSeg (Gao, Li, Wu, and Huang 2005).
The comparisons are given in Tables 6 and 7. From these tables we also see that the
NE alignment result is not sensitive to the NE recognition result (84.1% to 87.4% type-
insensitive for NER vs. 80.1% to 81.7% type-sensitive in F-score for NEA), although the
performance of NE alignment is related to the recall of the Chinese NE recognizer (the
weaker side). We also note that the type-insensitive F-score performance gap among
various English NE recognizers in Table 5 is less than that of the Chinese NE recognizers
in Table 7 (0.2% vs. 1.3%), which is mainly due to the different gaps among their original
performances (2.4% vs. 3.3%, shown by Tables 4 and 6).

Furthermore, NE alignment based on the worst Chinese NE recognizer (S-MSRSeg)
and the worst English NE recognizer (Minor Third) is conducted in Table 8. From Table 8
we see that the final NE alignment performance is primarily determined by the weaker
side, which is the one that gives the lower recognition recall rate. In this particular
case, the performance of the combination of S-MSRSeg and Minor Third (79.9% type-
sensitive F-score) is mainly driven by the performance of the Chinese S-MSRSeg (80.1%

Table 8
NEA type-insensitive (type-sensitive) performance with a different English NE recognizer and
another Chinese NE recognizer.

NE alignment on P (%) R (%) F (%) Upper bound (%)
different recognizers

Wu & Mallet 85.9 (80.5) 88.4 (83.0) 87.1 (81.7) 95.3
S-MSRSeg & Minor 84.7 (78.6) 87.3 (81.3) 86.0 (79.9) 93.9
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Table 9
Initial NE recognition type-insensitive (type-sensitive) performance across various domains.

Different domains Language P (%) R (%) F (%)

News (Table 2) Chinese (Wu) 86.2 (83.4) 88.7 (86.0) 87.4 (84.7)
English (Mallet) 91.8 (82.1) 92.4 (82.6) 92.1 (82.3)

HK Hansards Chinese (Wu) 91.4 (88.5) 89.1 (87.3) 90.2 (87.9)
English (Mallet) 93.5 (90.4) 94.3 (91.2) 93.9 (90.8)

Computer Chinese (Wu) 82.7 (81.4) 87.9 (86.5) 85.2 (83.9)
English (Mallet) 76.6 (72.9) 88.9 (85.2) 82.3 (78.6)

Table 10
The superiority of our joint model on three different domains indicated by type-insensitive
(type-sensitive) performance (those significant entries are marked in comparison with baseline).

Different domains Model P (%) R (%) F (%)

News (Table 3) Baseline 77.1 (67.1) 79.7 (69.8) 78.4 (68.4)
Proposed Model 85.9 (80.5) 88.4 (83.0) 87.1 (81.7)

HK Hansards Baseline 86.3 (83.3) 87.1 (84.1) 86.7 (83.7)
Proposed Model 88.2 (86.5) 89.1 (87.3) 88.6 (86.9)

Computer Baseline 69.4 (66.1) 80.3 (77.1) 74.5 (70.3)
Proposed Model 75.5 (72.4) 86.2 (83.1) 79.6 (76.5)

in Table 7). This is because the NE pair inclusion rate is usually dominated by the
weaker side.

4.5 Effectiveness of the Proposed Model Across Different Domains

To test the effectiveness of the joint model across domains, we compare the baseline
and our joint model on three different domains (News, HK Hansards, and Com-
puter Technology). To do this, two other test sets are selected from HK Hansards
(LDC2004T08) and from the computer domain (training data in CWMT08),14 respec-
tively (the test set used in the previous sections is from the News domain). Each of
these new test sets also includes 300 randomly selected sentence pairs.

Table 9 shows the initial NE recognition performance across those three different
domains. Also, it is clear from Table 10 that our joint model outperforms the baseline in
all three domains, which indicates that the advantage of our joint model holds over
various domains. On the other hand, the smaller improvement observed in the HK
Hansards domain might be due to the possibly easier task of initial NE recognition and
NE alignment.15 (Note that the baseline performance in this domain is much higher
than others—with an NE alignment type-sensitive F-score of 83.7% compared with

14 http://nlpr-web.ia.ac.cn/cwmt-2008.
15 Note that 40.3% sentence pairs in the HK Hansards corpus contains only one NE pair (alignment would

be trivial in this case); this ratio is 15.7% and 27.0% for News and Computer domains, respectively.
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Table 11
Comparison between a ME framework and the derived model on the same test set.

Model Data set–Size 400 4,000 40,000 90,412

ME Framework (Maxent) 38.9 (0%) 51.6 (0%) 63.8 (0%) 69.5 (0%)
ME Framework (YASMET) −2.4 (−6.2%) −1.2 (−2.3%) −1.2 (−1.9%) −1.6 (−2.3%)
Weighted-Joint-Model +2.6 (+6.9%) +3.5 (+6.9%) +3.4 (+5.3%) +2.9 (+4.2%)

68.4% and 70.3% in News and Computer domains, respectively). Therefore, those novel
features of our joint model are not crucial in easy cases.

4.6 Maximum Entropy Framework with Primitive Features

We propose and derive the model described previously in a principled manner. One
might wonder, however, whether it is worthwhile to derive such a model after all related
features have been proposed, as all proposed features can also be directly integrated
into the well-known maximum entropy (ME) framework (Berger, Della Pietra, and
Della Pietra 1996) without making any assumptions. To show that not only features,
but also the adopted model contributes to performance improvement, we build an
ME model that directly adopts all primitive features mentioned previously as its input
(including the internal component alignment-pair, initial and final NE type, NE bigram-
based string, and left/right distance), without involving any related probabilities
derived in the proposed model.

Because an ME approach can be trained only on linked NE pairs, those sentence
pairs that include at least one NE pair are first extracted from Training Set I. A total of
90,412 sentence pairs are obtained, as some sentence pairs only have either Chinese or
English NEs, and 298,302 NE pairs are identified. This ME method is implemented with
the YASMET16 package, and is tested under various training-set sizes (400, 4,000, 40,000,
and 90,412 sentence pairs). Because the NEs of the bilingual NE pair list (Training Set II)
do not contain their corresponding sentences, the ME approach lacks the necessary
context to extract specific ME features and hence this list is left out of our training data
for both the baseline ME model and our joint model.

In order to compare different ME approaches, we also try Zhang’s Maxent pack-
age17 with five classes (i.e., PER, LOC, ORG, Incorrect-Boundaries, Correct-Boundaries-
Incorrect-Type). A five-class approach outperforms a three-class approach (YASMET)
in this case (it has many more features as well). Table 11 shows only the type-sensitive
F-scores evaluated on the same test set to save space. The data within the parentheses
are relative improvements, and entries in bold indicate that the performance of the
derived model is statistically better than that of the ME models.

The improvement indicated in Table 11 clearly illustrates the benefit of deriving the
model. Because a reasonably derived model not only shares the same training set with
the primitive ME approach, but also enjoys the additional knowledge introduced by
the human researcher (i.e., the assumptions/constraints implied by the model), it is not
surprising that a good model does perform well, and the relative improvement becomes
more noticeable when the training set becomes smaller.

16 http://www.fjoch.com/YASMET.html.
17 http://homepages.inf.ed.ac.uk/lzhang10/maxent toolkit.html.
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When we take a closer look at the 18 instances where our model correctly identifies
the NE alignments and Maxent fails to do so on the test set, we find that the internal
component alignment-pair feature in the Maxent approach to be dominant in causing
56% of the errors (10 out of 18). In contrast, our corresponding internal mapping prob-
ability P(cpa(n)|Mn, ewn,T) in Equation (5) makes the correct decisions 90% of the time
(9 out of 10). In fact, even P(cpa(n)|ewn,T) (the simpler form) makes correct predictions
80% of the time (8 out of 10).

One example of the ten errors made by Maxent is “玻利维亚举行” (Bolivia holds),
which is incorrectly linked to Bolivia holds as a NE pair by the ME approach, whereas
our model correctly aligns “玻利维亚” with Bolivia. This is because “玻利维亚” is
transliterated into Bolivia, but “举行” is translated into holds. Given T = LOC, the in-
ternal mapping probability P(cpa(n)|ewn,T) thus disfavors the translation mode between
“举行” and hold within an LOC NE pair, and prefers the correct result. This example
illustrates the utility of the explicit dependency constraint imposed by the model, which
is not possible in the ME approach.

5. Discussion and Error Analysis

Although the proposed model substantially improves alignment performance, errors do
remain. Therefore, we would like to know what the limitations of the proposed model
are, and what kinds of problems still remain—an essential component in finding future
directions for further improvements. In the test set, a total of 718 NE reference-pairs and
739 aligned NE pairs are generated from the proposed joint model (MERT-W version).
Among the generated NE pairs, there are 104 (out of 739) boundary errors (regardless of
their re-assigned types), or 14.1%. Also, among the remaining 635 NE pairs with correct
boundaries, 41 (6.5%) are re-assigned to the incorrect NE type. Boundary identification,
therefore, is still a crucial problem.

Before investigating the errors made by MERT-W, we would like to understand its
limits. As mentioned in Section 3.3, the inclusion rate of those desired NE pairs (within
the Cartesian product of expanded candidate sets CK

1 and EK
1 ) is the upper bound for

the system adopted in the final selection stage, which in the current setting is 95.3%.
In comparison, the type-insensitive F-score of MERT-W is 87.1%, indicating that there
is still a significant 8.2% scope for improvement, even though a great improvement has
already been made over the baseline system. We examine this gap and propose solutions
to address the errors in the following section.

5.1 Classification of Type-Insensitive NE Pair Errors

There are 111 type-insensitive NE pair errors in the test set (104 boundary errors plus 7
others not included in the output list due to missing anchors), and these can be classified
into the following six main categories.

(I) Reference Inconsistency (11%): The NE references from Chinese and English
are not correctly matched, which rules out the possibility of generating the
correct NE pair.

(II) Missing Anchor (14%): Although the NE reference is consistent, not all their
associated NE anchors are generated in the initial recognition stage, which
cannot be remedied by the expansion strategy adopted in this article.
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(III) Over-generating Anchors (10%): Similarly, additional spurious NE anchors
are also generated in the initial recognition stage, and result in incorrect
NE pairs.

The remaining cases with correct corresponding anchors are further classified as
follows.

(IV) Inconsistent Components (12%): Although their corresponding anchors are
correctly generated, the internal components of those reference pairs are
originally unmatched due to deletions or insertions occurring in the NE
translation. For example, in the reference {〈乌伯林更镇〉::[Berlingen]}, the
Chinese component “镇” (town) is originally unmatched because its
English correspondent town does not exist in the given English sentence.
Therefore, only one incorrect pair {〈乌伯林更〉::[Berlingen]} is generated.
Other cases with all matched components are further classified in the
following.

(V) Expansion Limitation (5%): Even though all the internal components are
matched, the desired candidate (i.e., the reference) is still not covered by the
candidate set after its expansion.

(VI) Others (48%): Even if all internal components are matched and their
references are also included in the candidate set, some errors still remain,
mainly due to the limitations of the current model. These cases account for
the majority of the errors that will be further analyzed subsequently in the
article.

Table 12 shows the distribution of the six defined categories. {〈CNE〉::[ENE]} is
a specified NE pair, and the unmatched components are underlined. The numbers in

Table 12
Distribution of various error categories (type-insensitive).

Consistency
Problem

Anchor
Problem

Error
Categories

Reference NE pair Initially
Recognized NEs

Final Output Percentage

Inconsistent
References
(11%)

NA (I) Reference
Inconsistency

〈佛塞特〉::[ ];
〈〉::[Northam]

CNE: 〈塞特〉
ENE: [Northam]

〈塞
特〉::[Northam]

11% (12)

Consistent
References
(89%)

Incorrect
Anchors
(24%)

(II) Missing
Anchor

〈东协〉::[ASEAN] CNE: 〈〉 ENE:
[ASEAN]

No such
alignment

14% (16)

(III) Over-
generating
Anchors

〈李南信〉::[Lee
Nam-shin]

CNE: 〈李南信〉
ENE: [Lee
Nam-shin];
[South]

〈南〉::[South] 10% (11)

Correct
Anchors
(65%)

(IV) Inconsistent
Components

〈乌伯林更
镇〉::[Berlingen]

CNE: 〈乌伯林〉
ENE: [Berlingen]

〈乌伯
林〉::[Berlingen]

12% (13)

(V) Expansion
Limitation
(Matched
Components,
Excluded
Reference)

〈英国葛兰素史克
美占药
厂〉::[British
Pharmaceutical
Firm
GlaxoSmithKline]

CNE: 〈英国〉; 〈葛
兰素〉; 〈史克美〉
ENE: [British
Pharmaceutical];
[Firm
GlaxoSmithKline]

〈英
国〉::[British]

5% (6)

(VI) Others
(Matched
Components,
Included
Reference)

〈南北韩〉::[South
and North
Koreas]

CNE: 〈韩〉 ENE:
[North Koreas]

〈北
韩〉::[North
Koreas]

48% (53)
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parentheses in the last column denote the number of NE pairs of the corresponding
category. Among all categories, Category (I) errors (Reference Inconsistency, 11%) are
irrelevant to the alignment model, and are attributed to the asymmetrical distribution
of bilingual NEs (corresponding NEs might sometimes be missed or replaced by the
pronoun it). As illustrated in Table 12, CNE “佛塞特” (Fossett) is initially recognized as
“塞特” and finally linked to an irrelevant ENE Northam (诺森). This occurs because their
corresponding counterparts Fossett and “诺森” do not appear in the original sentence
pair, and our alignment model assumes that the linking between NEs is a one-to-
one mapping. One possible simple solution would be to set a minimal threshold on
alignment scores that filters out such spurious linking. This may introduce the risk that
some correct NE pairs might be pruned away at the same time, however.

Category (II) errors (Missing Anchor, 14%) are due to the absence of the associated
NE anchors in the initial recognition stage. As an example in Table 12, the corresponding
anchor of the Chinese NE “东协” (ASEAN) is not initially identified. Because each
candidate set is generated from the given anchor, a missing anchor implies that its
associated candidate set will not exist, thereby making it impossible to generate the
corresponding NE pair. Although increasing the number of output anchors generated
from the initial recognition stage can relieve this problem, doing so makes the
subsequent alignment task harder. Additionally, the spurious anchors generated might
introduce even more errors.

The errors in Category (III) (Over-generating Anchors, 10%) are due to spurious
anchors generated in the initial recognition stage. For instance, the CNE “李南信” is
originally aligned with the ENE Lee Nam-shin by transliteration. A spurious ENE South is
also identified in the initial stage, however. This spurious ENE South is then incorrectly
linked to a virtual CNE with the highest score, “南,” which is a sub-string of the desired
CNE “李南信,” and also a Chinese translation for south. This prevents the correct NE
pair from being generated. Both missing and over-generating anchor problems are
largely dependent on the NE recognition toolkits adopted in the initial stage. Using the
current expansion strategy, the initial NE recognizers with lower recall (or precision)
tend to result in worse NE-pair recall (or precision) in the final alignment stage.

Category (IV) errors (Inconsistent Components, 12%) are caused by internal com-
ponents within NEs that were not originally matched. Because words in NEs are not
always translated literally, there are insertions and deletions during NE translation.
As an example, shown in Table 12 and illustrated previously, the incorrect result
{〈乌伯林更〉::[Berlingen]} is generated for its reference {〈乌伯林更镇〉::[Berlingen]}, as
its Chinese component “镇” (town) is originally unmatched. In the worse case, those
unmatched components could interleave with matched components within the NE pair,
and thus prevent some matched components from being included. For example, in
the reference {〈欧盟执行委员会〉::[European Commission]}, both the Chinese compo-
nents “盟” (alliance) and “执行” (execution) have no counterparts, and they would have
prevented the matched portion {〈委员会〉::[Commission]} from being included in the
final output. As a result, only {〈欧〉::[European]} is eventually extracted. To tackle this
problem of component insertions/deletions that sometimes occur in English–Chinese
translation, the alignment model should be further enhanced to allow the component to
be linked to an empty element, NULL. Introducing this freedom, however, might have
the side effect of including additional spurious Chinese characters (or English words).
Further study is required to justify this idea; given that this category accounts for only
12% of the errors, we propose to defer this for later studies.

Furthermore, Category (V) errors (Expansion Limitation, 5%) are caused by the
problem that the desired candidate (i.e., reference) is excluded during the candidate
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set expansion stage. Table 12 shows that the final output of the reference {〈英国葛兰素
史克美占药厂〉::[British Pharmaceutical Firm GlaxoSmithKline]} is {〈英国〉::[British]}.
This reference has three Chinese initial anchors: “英国” (British), “葛兰素” (Glaxo) and
“史克美” (SmithKline), and it also has two English initial anchors: British Pharmaceuti-
cal and Firm GlaxoSmithKline. Because only four characters are allowed for boundary
enlarging/shrinking for Chinese anchors (three words for English anchors), the refer-
ence CNE is beyond the scope of any Chinese initial anchor during the expansion stage.
Therefore, it could not be included in the candidate set for final selection. In addition,
the adjacent Chinese component “葛兰素” could not be recovered due to the translation
re-ordering of the Chinese components—its counterpart Glaxo is far apart from British
in the given sentence. Similarly, the adjacent English words Pharmaceutical Firm could
not be recovered, as its counterpart “药厂” is far apart from “英国.” Although loosening
the constraint during the expansion stage can increase the reference coverage, it must
be weighed against the corresponding lower precision.

Finally, for those NE pairs with aligned components and included references, the
proposed model still makes a significant number of mistakes. These kinds of errors,
Category (VI) (Others, 48%), account for the largest portion among all errors. There-
fore, they are further hierarchically classified in Table 13 according to their associated
transformation types and origins.

The incorrect NE pairs with aligned components and included references (i.e., [VI]
Other Category in Table 12) are first classified by their corresponding transformation
types: (VI.A) Abnormal Transformation (27%), whose transformation types are not as-
sumed by the model (i.e., neither normally translated nor normally transliterated); and
(VI.B) Normal Transformation (21%), whose components are either normally translated
or normally transliterated. A detailed explanation is given as follows.

Table 13
Distribution of Category (VI) error classes (type-insensitive).

Transformation
Type

Classes Reference NE pair Initially Recognized NEs Final Output Percentage

(VI.A)
Abnormal
Transformation
(27%)

(VI.A.1)
English
Acronym

〈国际刑事法
庭::[ICC]

CNE: 〈国际刑事法庭〉;
〈法新社〉
ENE: [ICC]

〈法新社〉::[ICC] 11% (12)

(VI.A.2)
Chinese
Abbreviation

〈维和部
队〉::[Peace-
keeping
Troop]

CNE: 〈部队〉
ENE: [Peace-keeping
Troop]

〈部队〉::[Troop] 8% (9)

(VI.A.3)
Irregular
Translation

〈明仁〉::[Akihito] CNE: 〈明仁〉 ENE:
[Akihito]

〈明仁〉::[Hirohito] 8% (9)

(VI.B)
Normal
Transformation
(21%)

(VI.B.1) Bias
from NE
likelihoods

Translation:
〈南北韩〉
::[South and
North Koreas]
Transliteration:
〈毕翠克丝〉
::[Beatrix]

Translation:
CNE: 〈韩〉
ENE: [North Koreas]
Transliteration:
CNE: 〈毕翠〉; 〈克丝〉
ENE: [Beatrix]

Translation:
〈北韩〉
::[North Koreas]
Transliteration:
〈毕翠克〉
::[Beatrix]

18% (20)

(VI.B.2) Bias
from
Bilingual
Probabilities

Translation:
〈世界杯〉
::[World Cup]
Transliteration:
〈伊斯兰堡〉
::[Islamabad]

Translation:
CNE: 〈世界杯〉
ENE: [World Cup]
Transliteration:
CNE: 〈伊斯兰堡〉
ENE: [Islamabad]

Translation:
〈世界杯冠军〉
::[championship
at World Cup]
Transliteration:
〈伊斯兰堡地〉
::[Islamabad]

3% (3)
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(VI.A) Abnormal Transformation (27%): This category includes transformation
types that are not assumed by our alignment model. It can be further divided into
three classes according to their origins: (VI.A.1) English Acronym (11%), whose ENE is an
acronym; (VI.A.2) Chinese Abbreviation (8%), whose CNE is an abbreviation; and (VI.A.3)
Irregular Translation (8%), whose components are transformed neither semantically nor
phonetically. These cases are interesting and are illustrated herein.

In the row (VI.A.1) (English Acronym, 11%) of Table 13, a Chinese NE “国际刑
事法庭” (International Criminal Court) is tagged as “国际刑事法庭/ORG,” whereas
its English counterpart is the acronym ICC. Linking “国际刑事法庭” to ICC is thus
beyond the ability of our model. On the other hand, Chinese NEs are also occasionally
abbreviated. For example, in Class (VI.A.2) (Chinese Abbreviation, 8%), “维和” is the
Chinese abbreviation of “维持和平” (Peace-keeping), which is also difficult to align
to its English counterpart. Such acronym and abbreviation cases are not rare in NE
translation. We believe that an expansion table (or even anaphora analysis) for acronyms
and abbreviations can help handle such issues.

It is also known that some loanwords or out-of-vocabulary terms are translated
neither semantically nor phonetically. As an example for Class (VI.A.3) (Irregular Trans-
lation, 8%), CNE “明仁” (which is the name of a Japanese emperor, and consists of
Japanese kanji characters) is incorrectly linked to an English word Hirohito (whose
Chinese translation should be “昭和”), although it should be linked to ENE Akihito.
In this example, the Japanese kanji “明仁” is directly adopted as the corresponding
Chinese characters (as those characters are originally borrowed from Chinese), which
would be pronounced as ming-ren in Chinese and thus deviates significantly from the
English pronunciation of Akihito. Therefore, it is translated neither semantically nor
phonetically. This phenomenon mainly occurs in loanwords or out-of-vocabulary terms
and the model would have to be extended to cover those new conversion types. Such an
extension is very likely to be language-pair dependent (e.g., with an additional Japanese
phonetic table for cases such as the given example), however.

(VI.B) Normal Transformation (21%): Components of this category are translated
normally. It can be further divided into two classes according to their sources: (VI.B.1)
Bias from NE likelihoods (18%), which prefers the incorrect NE pair scope due to its
associated monolingual likelihood scores, and (VI.B.2) Bias from Bilingual Probabilities
(3%), which introduces extra non-NE words in the output due to high alignment scores
of words that are adjacent to the NE. Further illustration is given as follows.

As Class (VI.B.1) (Bias from NE likelihoods, 18%) shows in Table 13, the Chinese NE
“南北韩” and the English NE South and North Koreas are initially recognized as “韩”
(Korea) and North Koreas, respectively; the model finally chooses a partial alignment
result {〈北韩〉::[North Koreas]}. In this case, every component in either the CNE or
the ENE is well matched to its counterpart. Therefore, there is no significant differ-
ence among the alignment scores of various NE pair candidates with different scopes
(such as {〈韩〉::[Koreas]}, {〈北韩〉::[North Koreas]}, and {〈南北韩〉::[South and North
Koreas]}, etc.)

The same situation also appears in the transliteration case. For example, the final
output of the reference {〈毕翠克丝〉::[Beatrix]} is {〈毕翠克〉::[Beatrix]}, and it has two
Chinese initial anchors: “毕翠” (pronounced as bi-cui in Chinese) and “克丝” (ke-si).
According to the training data, both “克” (ke) and “克丝” (ke-si) could be aligned to
the English letter x. There is no significant difference, therefore, in the alignment scores
between {〈毕翠克〉::[Beatrix]} and {〈毕翠克丝〉::[Beatrix]}.

Because the NE alignment feature has only negligible discrimination power in these
cases (as described in Section 2.2), monolingual likelihood scores dominate the scope
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preference. Addressing this shortcoming is beyond the capability of the alignment
model, and the adjacent contextual (non-NE) bigrams, to be proposed later, can only
correct 5 of the 20 errors in this class. No easy and effective solution for this kind of
problem can currently be found.

Contrary to this case, Class (VI.B.2) (Bias from Bilingual Probabilities, 3%) accounts
for those cases where incorrect NE pairs are selected due to the bilingual align-
ment score. For example, the final output of the reference {〈世界杯〉::[World Cup]} is
{〈世界杯冠军〉::[championship at World Cup]}. Although both desired CNE and ENE
have already been correctly recognized in the initial stage, the bilingual NE alignment
feature prefers to include the additional Chinese common noun “冠军” and an extra
English word championship, because they are a perfect mutual translation. At first glance,
it seems that we could use the lower casing of championship as a feature. Other refer-
ences with lower case words could also be found (e.g., {〈世贸组织部长会议〉::[WTO
ministerial meeting]}), however. Therefore, additional features such as their relative
positions are also required.

The same situation also occurs in transliteration. For example, the Chinese NE
“伊斯兰堡” (yi-si-lan-bao, in Chinese pronunciation) and the English NE Islamabad
are both correctly recognized in the initial stage. The model chooses a longer align-
ment result {〈伊斯兰堡地〉::[Islamabad]} in the final stage, however. In this case, the
Chinese character “地” (land, pronounced as di in Chinese) could also be phoneti-
cally aligned to syllable “d” with high probability. Therefore, there is no significant
difference in the alignment scores between 〈伊斯兰堡〉::[Islamabad] and 〈伊斯兰堡
地〉::[Islamabad]. We may need to resort to using a richer bilingual context (i.e., “在
伊斯兰堡地图上…”; In the map of Islamabad . . .) as features to resolve this issue. If its
Chinese adjacent contextual word “地图” (map, pronounced as di-tu) could be aligned
to the corresponding English word map, and given that “地图” and map are common
nouns in their respective languages, it is possible to determine that this extra Chinese
character “地” should not be linked to the ENE Islamabad.

Addressing these problems requires that both translation and transliteration models
be more complex and must use additional features (possibly knowledge-rich features).
Because this class accounts for only 3% of the errors, we leave the problem for future
work.

5.1.1 Features Contributing to Boundary Errors. Among the 111 alignment errors analyzed,
76 of them18 have their references covered by the expanded candidate set. The scores
of their associated features are then further inspected to determine which features
contribute to the errors. This is assessed by counting the number of times (denoted
by #Worst) that a specific weighted feature-score gets the worst difference when those
incorrect NE pairs are compared to their corresponding references. A large #Worst
would imply that this feature should get more attention in pursuing further perfor-
mance improvement.

The top four related statistics are given in Table 14, which indicates that F1 (Nor-
malized TS/TL Transformation) is the most dominant feature in making those errors.
Following this, F2 (Normalized Translation Mode), F7 (Normalized Chinese Bigram),
and F10 (Normalized English Bigram) are on the second tier. Both F1 and F2 are related
to alignment, which coincides with our observation that alignment-related Categories

18 This is the number of those entries under Categories (III), (IV), and (VI) in Table 12 after subtracting one
(76 = 11 + 13 + 53 − 1), as one reference in Category (III) cannot be found after expansion.
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Table 14
Top four worst-case statistics of features for NE boundary errors.

Features #Worst

F1: [
∏N

n=1 P(cpa(n)|Mn, ewn,T)]1/N (Normalized TS/TL Transformation) 17
F2: [

∏N
n=1 P(Mn|ewn, T)]1/N (Normalized Translation Mode) 10

F7: [
∏L

l=1 P(ccl|ccl−1,T)]1/L (Normalized Chinese Bigram) 10
F10: [

∏N
n=1 P(ewn|ewn−1,T)]1/N(Normalized English Bigram) 9

(i.e., IV, VI.A, and VI.B.2) occupy the largest portion of errors (62% of 76 inspected
errors). The errors dominated by F7 and F10 are further discussed as follows.

Among the ten errors dominated by F7, except for three (in which one is due to
a spurious anchor, and two are due to abnormal transformations), all others selected
the sub-strings of their corresponding CNE references. Furthermore, each selected sub-
string included the Chinese bigrams that appear more frequently than those within the
remaining sub-string (of its reference CNE). In other words, F7 tends to select only the
portion with high frequency bigrams when all related components are aligned. For
example, for the reference {〈儿童拒菸运动中心〉::[National Center for Tobacco-Free
Kids]}, only {〈中心〉::[Center]} is extracted, as this Chinese bigram is frequently used
in various organization names. Further inspection of those seven cases (which prefer
the sub-string) reveals that three of them are with unmatched components (Category
IV); therefore only four of them are, in fact, due to the problem of F7.

On the other hand, among the nine errors caused mainly by F10, only three of them
chose the sub-strings of their corresponding ENE reference, and the remaining six errors
selected the strings unrelated to the reference due to spurious anchors and an acronym.
It therefore seems that different languages possess different error patterns.

The problem of preferring a more frequent sub-string cannot be solved by normaliz-
ing related bigrams. This is because the current bigram model does not consider the im-
plied restriction on the context surrounding the given CNE. In other words, a given CNE
also implies that its left and right adjacent characters should not be a part of CNE (or its
left and right adjacent characters must be in a non-NE region). In our data set, two adja-
cent non-NE Chinese characters (or words for English) are found to be sufficient for both
left and right contexts. Therefore, the following additional terms are further proposed to
take care of this issue: P(cc−1|cc0,T) × P(cc0|cc1,T) × P(ccL+2|ccL+1,T) × P(ccL+1|ccL,T),
where ccL

1 is the given CNE, cc0 and ccL+1 are its left and right adjacent non-NE char-
acters, respectively. This formula can be easily derived from P(C|Cb,Tc,T,Sc), similar
to Equation (8). The derivation also applies to English. To test this supposition, the
related experiment (Exp4 [MERT-W, N+Full Model] specified in Table 3) is updated as
Experiment 5 with the probability features shown here.

Exp5: This experiment (named MERT-W, N-Full Model+Contextual-Bigram, and

denoted by MERT-W-CB) replaces [
∏L

l=1 P(ccl|ccl−1,T)]
1
L in the original Exp4 with

P(cc−1|cc0,T) · P(cc0|cc1,T) · P(ccL+2|ccL+1,T) · P(ccL+1|ccL,T) · [
∏L

l=1
P(ccl|ccl−1,T)]

1
L

The same is done for English.
Table 15 shows the performance on the test set (data from Exp4 are also listed for

comparison). The entries in bold indicate statistically significant improvements over
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Table 15
Effect of adjacent contextual (non-NE) bigrams on the test set.

Model P(%) R(%) F(%)

Exp4 (MERT-W) 85.9 (80.5) 88.4 (83.0) 87.1 (81.7)
Exp5 (MERT-W-CB): Add Contextual- 86.7 (81.7) 89.3 (84.1) 88.0 (83.0)

Bigram to Original N-Bigram

their counterparts. Results show that the performance has indeed improved, and six of
the targeted seven cases (four CNE and three ENE errors, as mentioned previously)
have been corrected (the remaining error is due to data sparseness and cannot be
corrected). According to coefficient weighting by MERT process, P(cc0|cc1,T) is more
important than P(cc−1|cc0,T), indicating that the closer a non-NE character is to the
given NE, the more influential it is. This observation confirms our intuition about the
context effect. A similar trend is also observed for other contextual non-NE characters.

5.2 NE Type Errors

In addition to the 111 boundary errors just analyzed, there are also NE type errors.
Among those 635 NE pairs with correct boundaries in the test set, there are 41 (6.5%)
NE type errors in Exp4 (MERT-W). Among them, 175 PER, 248 LOC, and 212 ORG
NE types are assigned. The associated confusion matrix of various NE types is shown
in Table 16 (the numbers within the parentheses are the relative ratios of their output
types). All except 5 of the 41 NE type errors originated from transliterated NE pairs (not
shown in the table). This is consistent with our observation that even a human annotator
finds it challenging to identify correct types for transliterated NE pairs in the absence of
context.

Table 16 shows that PER has the highest error rate, LOC follows as the second,
and ORG is a distant third. In addition, PER and LOC are the types that are most often
confused with one another. These observations match the distribution of transliterations
in each type (the transliteration mode ratios for PER, LOC, and ORG are 100%, 71.4%,
and 25.2%, respectively), as it is very difficult to determine the type when a NE is
transliterated without context.

To solve NE type errors originating from transliteration, the adjacent contextual
non-NE characters are also helpful. For example, {〈梅尔斯〉::[Myers]} is incorrectly
identified as LOC, when in fact it should have been PER in the context “主席梅尔斯”
(president Myers). The left adjacent contextual bigrams “主席” (president) should indicate
that the following NE is likely to be PER. Table 15 shows that an additional four type
errors are also corrected apart from the six boundary errors. Therefore, in comparison
with the original MERT-W, this new version (MERT-W-CB) gains more in type-sensitive

Table 16
Distribution of the NE type errors (MERT-W).

NE type Reference PER Type Reference LOC Type Reference ORG Type

Output Type = PER 153 (87.4%) 16 (9.1%) 6 (3.4%)
Output Type = LOC 14 (5.6%) 232 (93.5%) 2 (0.8%)
Output Type = ORG 0 (0%) 3 (1.4%) 209 (98.6%)
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F-score (an increase of 1.5%, from 81.5% to 83.0%) than in type-insensitive F-score
(an increase of 0.9%, from 87.1% to 88.0%).

The adjacent contextual non-NE characters have only limited power in disam-
biguating NE types, however. For instance, the reference {〈喀布尔〉::[Kabul]} is incor-
rectly identified as PER, which should be LOC in the context “在喀布尔” (at Kabul).
Because “喀布尔” follows a preposition “在” (at) in the associated context, it indicates
that “喀布尔” is a location name. We can also easily find counterexamples, however,
such as “在布希周围” (around Bush), in which “布希” (Bush) is PER, not LOC. In
fact, both PER and LOC can be freely exchanged in this situation in either a Chinese
or English context. Therefore, more complicated syntactic or semantic information is
required in some cases involving transliteration.

Another interesting statistic not shown in Table 16 is the distribution of errors versus
initial NE types (i.e., Tc and Te) assigned in the first stage. Among 41 errors, 22 (54%)
have both incorrect Tc and Te, 16 (39%) have correct Tc but wrong Te, and only 3 (7%)
have correct Te but incorrect Tc. This distribution shows that Tc is more reliably assigned
in the first stage than is Te, which confirms the observation in Ji and Grishman (2006)
that English NE type assignment is more challenging.

5.2.1 Features Contributing to Type Errors. Similarly, the study for #Worst on weighted
feature-scores is also performed under MERT-W-CB (i.e., Exp5). There are 37 type errors
with correct boundaries, and we have examined that F4 (NE Type Re-assignment) is
the most dominant feature in making these errors. Because this feature LogP(T|Tc,Te)
(Equation [7]) always assigns an incorrect type when both Tc and Te are incorrect (11 out
of 13 F4 errors belong to this class), it is not surprising that it is ranked at the top
(22 [59%] out of a total of 37 errors have both incorrect Tc and Te). In addition, the feature
LogP(δA|T) in Equation (6) always prefers PER (which are always completely translit-
erated in the corpus) when all components in an NE are transliterated (i.e., δA = 0).
Therefore, the feature is ranked second (31 out of 37 errors are complete transliterations,
although only 10 of them should have been assigned PER). It is found that all nine cases
in this category are not PER (only two of them are not transliterated), which further
supports our analysis. Solving these type errors requires that these two features be
conditioned on more features, and requires further study. Finally, the top four features in
making type errors are related to alignment (Equations [6] and [7]), which indicates that
monolingual lexicon information (both English and Chinese bigrams) is more reliable
in deciding NE type.

6. Applications of the Proposed Model

It would be interesting to know how the proposed model performs in real applications.
Because MERT-W performs best in our tests, it is adopted in this study on real applica-
tions. Section 6.1 presents the effectiveness of improving NE recognition, and Section 6.2
shows how the improved NE recognition can be used in learning a monolingual NE
recognition model (also NE translation table/models) in a semi-supervised manner.

6.1 On Improving Monolingual NE Recognition

As explained in Section 2.1, the alignment result can also be used to refine the initially
recognized NEs. The improvements that MERT-W made in refining the boundaries and
NE types of those initially recognized Chinese/English NEs are shown in Tables 17 and
18, respectively. For comparison, the rows associated with the initial recognizers and the

256



Chen, Zong, and Su A Joint Model to Identify and Align Bilingual Named Entities

Table 17
Type-insensitive improvement for Chinese/English NER.

NE type Model P (%) R (%) F (%)

PER Initial 85.9/91.3 89.3/91.1 87.6/91.2
Baseline 88.1 (+2.2)/ 92.9 (+1.6) 89.8 (+0.5)/ 92.2 (+1.1) 89.0 (+1.4)/ 92.6 (+1.4)
MERT-W 90.3 (+4.4)/ 94.5 (+3.2) 90.5 (+1.2)/ 93.0 (+1.9) 90.4 (+2.8)/ 93.8 (+2.6)

LOC Initial 90.9/93.6 91.4/93.4 91.1/93.5
Baseline 91.8 (+0.9)/ 94.7 (+1.1) 91.8 (+0.4)/ 94.2 (+0.8) 91.8 (+0.7)/ 94.5 (+1.0)
MERT-W 94.2 (+3.3)/ 95.8 (+2.2) 93.2 (+1.8)/ 95.2 (+1.8) 93.6 (+2.5)/ 95.5 (+2.0)

ORG Initial 81.1/88.9 83.9/87.7 82.5/88.3
Baseline 84.4 (+3.3)/ 90.7 (+1.8) 86.6 (+2.7)/ 89.2 (+1.5) 85.5 (+3.0)/ 90.0 (+1.7)
MERT-W 86.8 (+5.7)/ 92.8 (+3.9) 88.7 (+4.8)/ 89.9 (+2.2) 87.8 (+5.3)/ 91.4 (+3.1)

ALL Initial 86.0/92.2 88.7/92.2 87.3/92.5
Baseline 88.8 (+2.8)/ 93.6 (+1.4) 89.6 (+0.9)/ 93.9 (+1.1) 89.2 (+1.9)/ 93.7 (+1.2)
MERT-W 91.4 (+5.4)/ 95.2 (+3.0) 91.1 (+2.4)/ 94.7 (+1.9) 91.2 (+3.9)/ 94.9 (+2.4)

alignment baseline systems are also given in the two tables (as before, the entries in bold
indicate that differences are statistically significant). In addition, figures in parentheses
indicate the corresponding differences in performance compared to the initial version
(shown in Table 2).

Table 17 shows that both the baseline and MERT-W systems have significantly im-
proved the initial NE recognition type-insensitive results for both Chinese and English.
It also shows that MERT-W significantly outperforms the baseline. In particular, Chinese
ORG is observed to yield the largest improvement among NE types in both Chinese and
English, which matches our previous observations that the boundary of a Chinese ORG
is difficult to identify using only the information from the Chinese sentence.

The type-sensitive results are given in Table 18, which shows that MERT-W also
significantly improves the initial NE recognition results for both Chinese and English.

Table 18
Type-sensitive improvement for Chinese/English NER.

NE type Model P (%) R (%) F (%)

PER Initial 80.2/79.2 87.7/85.3 83.8/82.1
Baseline 79.4 (−0.8)/ 78.6 (−0.6) 88.1 (+0.4)/ 86.6 (+1.3) 83.5 (−0.3)/ 82.4 (+0.3)
MERT-W 85.6 (+5.4)/ 85.6 (+6.4) 89.9 (+2.2)/ 87.9 (+2.6) 87.7 (+3.9)/ 86.7 (+4.6)

LOC Initial 89.8/85.9 87.3/81.5 88.5/83.6
Baseline 90.5 (+0.7)/ 86.5 (+0.6) 83.6 (−3.7)/ 80.4 (−1.1) 86.9 (−1.6)/ 83.3 (−0.3)
MERT-W 93.8 (+4.0)/ 89.3 (+3.4) 87.1 (−0.2)/ 84.1(+2.7) 90.3 (+1.8)/ 86.6 (+3.0)

ORG Initial 78.6/82.9 82.8/79.6 80.6/81.2
Baseline 79.5 (−0.9)/ 82.2 (−0.7) 80.9 (−1.9)/ 80.1 (+0.5) 80.2 (−0.4)/ 81.1 (−0.1)
MERT-W 85.6 (+7.0)/ 86.8 (+3.9) 88.4 (+5.6)/ 88.7 (+9.1) 87.0 (+6.4)/ 87.7 (+6.5)

ALL Initial 83.4/82.1 86.0/82.6 84.7/82.3
Baseline 83.2 (−0.2)/ 82.2 (+0.1) 83.9 (−2.1)/ 82.3 (−0.3) 83.5 (−1.2)/ 82.2 (−0.1)
MERT-W 88.7 (+5.3)/ 87.3 (+5.2) 88.4 (+2.4)/ 86.6 (+4.0) 88.6 (+3.9)/ 86.9 (+4.6)
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Note that English ORG yields the largest gain among NE types in both Chinese and
English, again supporting our earlier observation that an English ORG cannot be easily
identified when only the English sentence is available. It must be noted that the baseline
alignment model deteriorates the original NE recognition in overall performance (even
though it can correct some NE initial boundary errors as shown in Table 17), because it
does not use the features/constraints proposed in the joint model.

6.2 On Learning NE Recognition Models via Semi-Supervised Learning

In many NLP applications, the associated process will be considerably simplified if
the included NEs can be identified first. Therefore, it is important to have a good NE
recognizer that has been well trained. Various domains frequently have different sets
of NEs, however, and new NEs also emerge over time. We thus need to periodically
update the NE recognition model (also the NE translation table/model, if it is for MT),
which necessitates the need to ensure short training times (including set-up time and
human effort). This requirement can be addressed well in a semi-supervised learning
set-up where parameters/tables are learned from a large unlabeled corpus with a small
(albeit human) annotated seed set.

Under the semi-supervised learning framework, however, maximizing likelihood
does not imply a minimizing of error rate at the same time. Without additional con-
straints, a monolingual NE model is usually unable to converge to the desired point in
the parameter space. On the other hand, as shown in the previous section, the align-
ment module can further refine the initially recognized NEs with additional mapping
constraints from the other language. The proposed joint model thus can be used to train
the monolingual NE recognition model via semi-supervised learning on a large un-
labeled bilingual corpus. In other words, when semi-supervised learning is conducted
for learning the NE recognition model, MERT-W is expected to guide the search pro-
cess for convergence towards the human annotation. This advantage is important for
regularly updating the NE recognition and translation table/models.

We now outline our semi-supervised learning procedure as follows.

(1) A small pre-labeled corpus acts as seed data. Based on these seed data,
train the Chinese/English NE recognition toolkit (described in Section 4.1)
and the adopted NE alignment model.

(2) Perform the Chinese/English NE recognition toolkits and the NE
alignment model, trained in Step (1), on a large unlabeled
(sentence-aligned) bilingual corpus to report those NE pairs that they
identify.

(3) Denote the located NE pairs as correctly labeled and combine them with
the seed data as new labeled training data.

(4) Re-train the Chinese/English NE recognition toolkit and also re-train the
NE alignment model on the newly labeled training data.

(5) Repeat Steps (2) through (4) until convergence. The final Chinese/English
NE recognizer and the NE alignment model are compared to their initial
versions.

Because the adopted Chinese NE recognizer (Wu, Zhao, and Xu 2005) cannot be
re-trained (because it is not an open source toolkit), only the English NE recognizer and
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Table 19
English NE recognition on test data after semi-supervised learning.

Model Seed Size (sentence pairs) 100 400 4,000 40,000

Initial-NER 36.7 58.6 71.4 79.1
(0%) (0%) (0%) (0%)

NER-Only −2.3 −0.5 −0.3 −0.1
(−6.3%) (−0.8%) (−0.4%) (−0.1%)

NER+Alignment-Baseline +4.9 +3.4 +1.7 +0.7
(+13.4%) (+5.8%) (+2.4%) (+0.9%)

NER+Alignment-Weighted +10.7 +8.7 +4.8 +2.3
(+29.2%) (+14.8%) (+6.7%) (+2.9%)

the alignment model are updated during training iterations. In our experiments, 50,412
sentence pairs are first extracted from Training Set I as unlabeled data. Various labeled
data sets are then extracted from the remaining data as seed corpora with different sizes
(100, 400, 4,000, and 40,000 sentence pairs). The test set is still the same 300 sentence
pairs that were adopted previously.

Table 19 shows the type-sensitive F-score of English NER on the test set at conver-
gence.19 The Initial-NER in Table 19 indicates the initial performance of the NER model
re-trained from different seed corpora. Three different approaches are tested: (1) English
NER only (NER-Only), (2) the alignment baseline model (NER+Alignment-Baseline),
and (3) our weighted joint model MERT-W (NER+Alignment-Weighted). The first case
performs semi-supervised learning only on English data without involving alignment,
whereas the last two cases include alignment, and both the English NER model and
the alignment model are re-trained during iterations. The numbers in parentheses
show relative improvements over Initial-NER. The entries in bold indicate statistically
significant improvements over Initial-NER.

As Table 19 shows, using the NER model alone, the performance may drop after
convergence. This is because maximizing likelihood does not imply minimizing the
error rate. With additional mapping constraints from the other language, however, the
alignment module can guide the search process to converge to a more desirable point in
the parameter space. It must be noted here that the contribution of additional constraints
increases with smaller seed corpora, because constraints become more important when
the labeled data set is smaller.

Table 20 shows only the type-sensitive F-score of NE pair alignment on the test set
before and after convergence due to space constraints. Two different models are tested:
(1) the alignment baseline model (NER+Alignment-Baseline), and (2) our weighted joint
model (NER+Alignment-Joint). The data in parentheses indicate relative improvements
over the performance before training. The entries in bold indicate statistically significant
improvements over the model before training.

As Table 20 demonstrates, the alignment performance can also be improved with
semi-supervised learning. Note that the improvement is greater on smaller data sets,
which is common in most semi-supervised learning tasks.

19 The iteration process will stop when the last two consecutive iterations share more than 99.9% of their
output.
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Table 20
NE alignment on test data after semi-supervised learning.

Model Seed Size (sentence pairs) 100 400 4,000 40,000

NER+Alignment-Baseline 33.5 50.2 62.6 67.3
(0%) (0%) (0%) (0%)

NER+Alignment-Baseline (After) +4.2 +3.0 +1.8 +1.2
(+12.5%) (+6.0%) (+2.9%) (+1.8%)

NER+Alignment-Joint 38.1 56.3 67.7 72.5
(0%) (0%) (0%) (0%)

NER+Alignment-Joint (After) +10.1 +8.7 +6.0 +3.3
(+26.5%) (+15.5%) (+8.9%) (+4.6%)

As shown by Tables 19 and 20, the proposed joint model gains more from the
learning process in comparison with the alignment-baseline model, because informa-
tion from the aligned sentence is utilized more effectively. Results demonstrate that
the proposed joint model, combined with semi-supervised learning, offers significant
improvement for semi-automatically updating the NE recognition model and the NE
translation table. Additionally, the impact is greater when less time is available for
labeling seed data.

7. Related Work

There is significant work on identifying NEs within monolingual texts across languages,
such as English (Chinchor 1998; Mikheev, Grover, and Moens 1998; Borthwick 1999)
and Chinese (Chen et al. 1998a; Sun, Zhou, and Gao 2003), to name a few. Various
approaches to identifying NEs have also been proposed, such as hidden Markov
models (Bikel et al. 1997; Bikel, Schwartz, and Weischedel 1999), conditional random
fields (McCallum and Li 2003; Jiao et al. 2006), modified transformation-based
learning (Black and Vasilakopoulos 2002), boosting (Collins 2002; Wu et al. 2002),
AdaBoost (Carreras, Marquez, and Padro 2002), and adopting semi-supervised
learning (Wong and Ng 2007; Liao and Veeramachaneni 2009). Furthermore, features
including local information (e.g., token, part-of-speech) and global information (e.g.,
label consistency, context features) from monolingual resources have been adopted
(Krishman and Manning 2006; Zhou and Su 2006). In prior work on the use of bilingual
NE alignment for NE recognition, Huang and Vogel (2004) used an iterative process
to extract a smaller but cleaner NE translation dictionary and then used the dictionary
to improve the monolingual NE annotation quality. Ji and Grishman (2007) adopted
several heuristic rules for using bilingual-text information to correct NE recognition
errors.

In aligning bilingual NEs from two given NE lists, the NE translation model is
usually adopted. Typically, an NE is either transliterated or semantically translated. For
transliteration, Knight and Graehl (1998) were pioneers in adopting the probabilistic
model to align the components within an NE pair. Since then, similar approaches have
been applied to various language pairs such as English/Arabic (Stalls and Knight
1998), English/Chinese (Chen et al. 1998b; Wan and Verspoor 1998; Lin and Chen
2002; Lee and Chang 2003; Lee, Chang, and Jang 2003; Gao, Wong, and Lam 2004;
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Pervouchine, Li, and Lin 2009), English/Japanese (Knight and Graehl 1998; Tsuji 2002),
and English/Korean (Lee and Choi 1997; Oh and Choi 2002, 2005). Moreover, Li,
Zhang, and Su (2004), and Li et al. (2007) presented a joint source channel model for
transliteration, and automated the semantic transliteration process, which takes origin
and gender into account for personal names.

In contrast, research on automatic NE semantic translation is less common. Zhang
et al. (2005) proposed a phrase-based context-dependent joint probability model for
semantic translation, which is similar to phrase-level translation models in statistical
MT (Zong and Seligman 2005; Hu, Zong, and Xu 2006). Chen, Yang, and Lin (2003) and
Chen et al. (2006) studied formulation and transformation rules for English–Chinese
NEs. They adopted a frequency-based approach for extracting key words of NEs with or
without dictionary assistance and constructed transformation rules from the bilingual
NE corpus. Their studies focused on transformation rules with particular attention
to distinguishing translated parts from transliterated parts; the performance of rule-
application in NE translation was not described, however. Chen and Zong (2008) pro-
posed a chunk-based probabilistic translation model for organization names, although,
its application to person and location names has not been studied.

Because new NEs emerge from time to time and can be transformed in various ways
(translation, transliteration, or other abnormal types), the NE transliteration/translation
models mentioned usually lead to unsatisfactory results, especially for infrequently
occurring NEs. Recent studies have therefore focused on extracting new NE pairs from
either bilingual corpora or Web resources, so that the corresponding human translation
can be directly adopted (or used for training). To do this, however, NE alignment is an
essential tool. Due to the relatively poor quality of Web data, such alignment approaches
are usually limited unless significant effort is devoted to data cleaning; therefore, we do
not discuss these approaches.

To extract the NE pairs from bilingual corpora, all NE alignment approaches we
found in the literature are conducted after an initial NE identification stage so that
the complexity of the task can be reduced. The associated cost is that those initial NE
recognition errors propagate into the following alignment stage. Both symmetric (which
first identifies NEs in both languages) and asymmetric (which first identifies NEs in only
one language) strategies have been proposed to mitigate this problem (Moore 2003), and
are described here.

For the symmetric strategy, Huang and Vogel (2004) proposed to extract the NE
translation dictionary from the bilingual corpus, and then used it to improve the
NE annotation performance iteratively. Huang, Vogel, and Waibel (2003) described
a multi-feature NE alignment model to extract NE equivalences (with translation,
transliteration, and tagging features), from which a NE translation dictionary was then
constructed. Kumano et al. (2004) proposed a method to extract English–Chinese NE
pairs from a content-aligned corpus. This approach tries to find the correspondences
between bilingual NE groups based on the similarity in their order of appearance in
each document. Additionally, an abridged version of our work has been presented in
our ACL-10 paper (Chen, Zong, and Su 2010). Among those symmetric approaches,
only Huang, Vogel, and Waibel and Chen, Zong, and Su adopt the expansion strategy,
described below.

For the asymmetric strategy, Al-Onaizan and Knight (2002) proposed an algorithm
to translate NEs from Arabic to English using monolingual and bilingual resources.
Given an Arabic NE, they used transliteration models (including a phonetic-based and
a spelling-based model), a bilingual dictionary, and an English news corpus to first
generate a list of English candidates, which were then re-scored by a Web resource.
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Moore (2003) developed an approach to learning phrase translations from a parallel
corpus based on a sequence of cost models. A maximum entropy model for NE align-
ment was presented in Feng, Lv, and Zhou (2004). Lee, Chang, and Jang (2006) proposed
to align bilingual NEs in a bilingual corpus by incorporating a statistical model with
multiple sources. Turning to comparable corpora, Shao and Ng (2004) presented a
hybrid method to mine new translations from Chinese–English comparable corpora,
combining both transliteration and context information. Sproat, Tao, and Zhai (2006)
investigated the Chinese–English NE transliteration equivalence within comparable
corpora.

Although these asymmetry strategies can prevent NE recognition errors on the
target side from affecting alignment, errors on the source side continue to propagate
to later stages. To reduce error propagation from both the source and the target, Huang,
Vogel, and Waibel (2003) proposed to first identify the NEs in both the source and target,
and then enlarge the obtained NE candidate sets for both languages before conducting
alignment. Based on the observation that NE boundaries are frequently identified in-
correctly, the enlarging procedure is done by treating the original recognition results as
anchors and then increasing the number of candidates by expanding or shrinking the
boundaries of those originally recognized NEs in both languages.

Our approach also adopts the expansion strategy. It differs from the works of Huang
et al. (2003) and others in several ways, however. First, in all the alignment papers
mentioned here, the adopted probabilities are directly used as features for log-linear
combination or ME training without derivation. In contrast, our work fully derives a
probabilistic joint model, for both identification and alignment, in a principled way.
Second, unlike previous approaches that discard the information of initially identified
NE anchors after the anchors have been expanded, our approach uses this information
in the final selection process. Third, we propose new features, such as translation mode
and its ratio, boundary shifting distance, and contextual bigrams. Fourth, we introduce
a normalization step that removes the systematic bias preferring shorter NEs. Fifth, the
effect of each individual feature, the influence of adopting different NE recognizers, the
effectiveness across different domains, the effect of using a derived model (compared
to ME), and the effect of the alignment model in semi-supervised learning are studied.
Finally, the causes of alignment errors and type re-assignment errors are extensively
investigated and categorized.

8. Conclusion

This article develops a novel and principled model for jointly conducting NE recogni-
tion and alignment. To the best of our knowledge, this is the first work that formally
captures the interactions between NE recognition and NE alignment. The joint model
not only greatly improves NE alignment performance, but also significantly boosts NE
recognition performance.

Our experiments show that the new NE likelihoods are more effective than the
bigram model used in the baseline system. Moreover, both the translation mode ratio
and the entity type consistency constraint are critical in identifying the associated
NE boundaries and types, as evidenced by the 21.3% relative improvement on type-
sensitive F-score (from 68.4% to 83.0%) in our Chinese–English NE alignment task. The
superiority of the proposed model has been shown to hold over the various domains
tested.

Furthermore, the joint alignment model can also be used to refine the initially
recognized NEs. This is achieved by utilizing additional mapping information from the

262



Chen, Zong, and Su A Joint Model to Identify and Align Bilingual Named Entities

other language. In our experiments, when semi-supervised learning is conducted to
train the adopted English NE model (with only 100 seed sentence pairs), the proposed
model greatly boosts the English NE recognition type-sensitive F-score from 36.7% to
47.4% (29.2% relative improvement) in the test set.

Finally, the proposed model does not utilize language-dependent features. For
example, Chinese characters and English words adopted in the model are visible units
in the given languages, and no language-dependent features, such as morpheme/part-
of-speech (or prefix/suffix), are used. In addition, the model does not use linguistic
rules or tree banks. Therefore, although our experiments are conducted on Chinese–
English language pairs, it is expected that the proposed approach can be applied to
other language pairs with little adaptation effort.
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