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We present a study on the automatic acquisition of semantic classes for Catalan adjectives from
distributional and morphological information, with particular emphasis on polysemous adjec-
tives. The aim is to distinguish and characterize broad classes, such as qualitative (gran ‘big’)
and relational (pulmonar ‘pulmonary’) adjectives, as well as to identify polysemous adjectives
such as econòmic (‘economic | cheap’). We specifically aim at modeling regular polysemy, that
is, types of sense alternations that are shared across lemmata. To date, both semantic classes for
adjectives and regular polysemy have only been sparsely addressed in empirical computational
linguistics.

Two main specific questions are tackled in this article. First, what is an adequate broad
semantic classification for adjectives? We provide empirical support for the qualitative and
relational classes as defined in theoretical work, and uncover one type of adjective that has
not received enough attention, namely, the event-related class. Second, how is regular polysemy
best modeled in computational terms? We present two models, and argue that the second one,
which models regular polysemy in terms of simultaneous membership to multiple basic classes,
is both theoretically and empirically more adequate than the first one, which attempts to identify
independent polysemous classes. Our best classifier achieves 69.1% accuracy, against a 51%
baseline.

1. Introduction

Adjectives are one of the most elusive parts of speech with respect to meaning. For
example, it is very difficult to establish a broad classification of adjectives into semantic
classes, analogous to a broad ontological classification of nouns (Raskin and Nirenburg
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1998). This article tackles precisely this task, that is, the semantic classification of adjectives,
for Catalan. We aim at automatically inducing the semantic class for an adjective given
its linguistic properties, as extracted from corpora and other resources.

The acquisition of semantic classes has been widely studied for verbs (Dorr and
Jones 1996; McCarthy 2000; Korhonen, Krymolowski, and Marx 2003; Lapata and Brew
2004; Schulte im Walde 2006; Joanis, Stevenson, and James 2008) and, to a lesser extent,
for nouns (Hindle 1990; Pereira, Tishby, and Lee 1993), but, with very few exceptions
(Bohnet, Klatt, and Wanner 2002; Carvalho and Ranchhod 2003), not for adjectives. Fur-
thermore, we cannot rely on a well-established classification for adjectives. The classes
themselves are subject to experimentation. We will test two different classifications,
analyzing the empirical properties of the classes and the problems in their definition.

Another significant challenge is posed by polysemy, or the fact that one and the
same adjective can have multiple senses. Different senses may fall into different classes,
such that it is no longer possible to identify one single semantic class per adjective.
Moreover, many adjectives exhibit similar sense alternations, in a phenomenon known
as regular or systematic polysemy (Apresjan 1974; Copestake and Briscoe 1995). A special
focus of the research presented, therefore, is on modeling regular polysemy. As an
example of regular polysemy, take for instance the sense alternation for the adjective
econòmic exemplified in Example (1). Econòmic, derived from economia (‘economy’), can
be translated as ‘economic, of the economy’, as in Example (1a), or as ‘cheap’, as in
Example (1b). As we will see, each of these senses corresponds to a different semantic
class in our classifications.

(1) a. recuperació
recovery

econòmica
economySUFFIX

‘recovery of the economy’

b. pantalons
trousers

econòmics
economySUFFIX

‘cheap trousers’

Other adjectives exhibit similar sense alternations; for example, familiar (derived
from famı́lia, ‘family’) and amorós (derived from amor, ‘love’), as shown in Example (2).

(2) a. reunió
meeting

familiar
familySUFFIX/

/
face

cara
familySUFFIX

familiar

‘family meeting / familiar face’

b. problema
problem

amorós
loveSUFFIX/

/
boy

noi
loveSUFFIX

amorós

‘love problem / lovely boy’

The first senses in Examples (1) and (2) have a transparent relation to the denotation of
the deriving noun, as witnessed by the fact that they are translated as nouns in English
(economy, family, love), whereas the other senses are translated as adjectives (cheap, famil-
iar, lovely). For each of these adjectives, there is a relationship between the two senses,
such that the sense alternations seem to correspond to a productive semantic process
along the lines of Example (3) (Raskin and Nirenburg 1998, schema (43), page 173).

(3) PERTAINING TO [noun meaning]→ CHARACTERISTIC OF [noun meaning]
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Because of the systematic semantic relationship between the two senses of these adjec-
tives, they constitute an instance of regular polysemy. In this article, therefore, we not
only address the acquisition of semantic classes, but also the acquisition of polysemy: Our
goal is to determine, for a given adjective, whether it is monosemous or polysemous,
and to which class(es) it belongs. Note that we are not dealing with individual sense
alternations, as related work on sense induction does (Schütze 1998; McCarthy et al.
2004; Brody and Lapata 2009), but with sense alternation types, that systematically hold
across different lemmata. Thus, the present research is at the crossroad between sense
induction and lexical acquisition.

Regularities in sense alternations are pervasive in human languages, and they
are probably favored by the properties of human cognition (Murphy 2002). Regular
polysemy has been studied in theoretical linguistics (Apresjan 1974; Pustejovsky 1995)
and in symbolic approaches to computational semantics (Copestake and Briscoe 1995).
It has received little attention in empirical computational semantics, however. This
is surprising, given the amount of work devoted to sense-related tasks such as Word
Sense Disambiguation (WSD). In WSD (see Navigli [2009] for an overview) sense
ambiguities are almost exclusively modeled for each individual lemma, despite the
ensuing sparsity problems (Ando [2006] is an exception). Properly modeling regular
polysemy, therefore, promises to improve computational semantic tasks such as WSD
and sense discrimination.

This article has the goal of finding a computational model that responds to the
theoretical and empirical properties of regular polysemy. In this direction, we test two
alternative approaches. We first model polysemy in terms of independent classes to be
separately acquired (e.g., an adjective with two senses ai and bi belongs to a class AB
defined independently of classes A and B), and show that this model is not adequate.
A second approach, which posits that polysemous adjectives simultaneously belong to
more than one class (e.g., an adjective with two senses ai and bi belongs to both class
A and class B), is more successful. Our best classifier achieves 69.1% accuracy against a
51% baseline, which is satisfactory, considering that the estimated upper bound (human
agreement) for this task is 68%. We discuss pros and cons of the two models described
and ways to overcome their limitations.

In the following, we first review related work (Section 2) and linguistic aspects
of adjective classification (Section 3), then present the two acquisition experiments
(Sections 4 and 5), and finish with a general discussion (Section 6) and some conclusions
and directions for future research (Section 7).

2. Related Work

As mentioned in the Introduction, there has been very little research in the semantic
classification of adjectives. We know of only two articles on specifically this topic:
Carvalho and Ranchhod (2003) used adjective classes similar to the ones explored here
to disambiguate between nominal and adjectival readings in Portuguese. Adjective
information, manually coded, served to establish constraints in a finite-state transducer
part-of-speech tagger. Actually, POS tagging was also the initial motivation for the
present research, as adjective–noun and adjective–verb (participle) ambiguities cause
most difficulties to both humans and machines in languages such as English, German,
and Catalan (Marcus, Santorini, and Marcinkiewicz 1993; Brants 2000; Boleda 2007).
Bohnet, Klatt, and Wanner (2002) also has similar goals to the present research, as it
is aimed at automatically classifying German adjectives. However, the classification
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used is not purely semantic, polysemy is not taken into account, and the evidence and
techniques used are more limited than the ones used here.

Other research on adjectives within computational linguistics is oriented toward
different goals than ours. Yallop, Korhonen, and Briscoe (2005) tackle syntactic, not
semantic classification, akin to the acquisition of subcategorization frames for verbs.
Another relevant line of research pursues WSD. Justeson and Katz (1995) and Chao
and Dyer (2000) showed that adjectives are a very useful cue for disambiguating the
sense of the nouns they modify. Adjective classes could be further exploited in WSD
in at least two respects: (1) to establish an inventory of adjective senses (if polysemous
instances are correctly detected; this is where sense induction and our own work fits
in), and (2) to exploit class-based properties for the disambiguation, similar to related
work on verb classes (Resnik 1993; Prescher, Riezler, and Rooth 2000; Kohomban and
Lee 2005).

The application where adjectives have received most attention, however, is Opinion
Mining and Sentiment Analysis (Pang and Lee 2008), as adjectives are known to convey
much of the evaluative and subjective information in language (Wiebe et al. 2004).
The typical goal of this kind of study has been to identify subjective adjectives and
their orientation (positive, neutral, negative). This type of research, from pioneering
work by Hatzivassiloglou and colleages (Hatzivassiloglou and McKeown 1993, 1997;
Hatzivassiloglou andWiebe 2000) to current research (de Marneffe, Manning, and Potts
2010), has thus focused on scalar adjectives, that is, adjectives like good and bad, which can
be translated into values that can be ordered along a scale. These adjectives typically
enter into antonymy relations (the semantic relation between good and bad), and in fact
antonymy is the main organizing criterion for adjectives in WordNet (Miller 1998), the
most widely used semantic resource in NLP. However, when examining a large scale
lexicon, it becomes immediately apparent that there are many other types of adjectives
that do not easily fit in a scale-based or antonymy-based view of adjectives (Alonge
et al. 2000). Some examples are pulmonary, former, and foldable. It is not clear, for in-
stance, whether it makes sense to ask for an antonym of pulmonary, or to establish a
“foldability” scale for foldable. These adjectives need a different treatment, and they are
treated in terms of different semantic classes in this article.

The semantic properties of adjectives can also be exploited in advanced NLP tasks
and applications such as Question Answering, Dialog Systems, Natural Language Gen-
eration, or Information Extraction. For instance, from a sentence like This maimai is round
and sweet, we can quite safely infer that the (invented) object maimai is a physical object,
probably edible. This type of process could be exploited in, for instance, Information
Extraction and ontology population, although to our knowledge this possibility has
received but little attention (Malouf 2000; Almuhareb and Poesio 2004).

As for polysemy, previous approaches to the automatic acquisition of semantic
classes have mostly disregarded the problem, by biasing the experimental material
to include monosemous words only, or by choosing an approach that ignores
polysemy (Hindle 1990; Merlo and Stevenson 2001; Schulte im Walde 2006; Joanis,
Stevenson, and James 2008). There are a few exceptions to this tradition, such as Pereira,
Tishby, and Lee (1993), Rooth et al. (1999), and Korhonen, Krymolowski, and Marx
(2003), who used soft clustering methods for multiple assignment to verb semantic
classes (see Section 4.5).

There is very little related work in empirical computational semantics in modeling
regular polysemy. A pioneering piece of research is Buitelaar (1998), which tried to
account for regular polysemy with the CoreLex resource. CoreLex, building on the
Generative Lexicon theory (Pustejovsky 1995), groups WordNet senses into 39 “basic
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types” (broad ontological categories). In CoreLex, each word is associated to a polysemy
class, that is, the set of all basic types its synsets belong to. Some of these polysemy
classes constitute instances of regular polysemy, as recently explored in Utt and Padó
(2011).

Lapata (2000, 2001) also addresses regular polysemy in the Generative Lexicon
framework. This work attempts to establish all the possible meanings of adjective-noun
combinations, and rank them using information gathered from the British National
Corpus (Burnage and Dunlop 1992). This information should indicate that an easy
problem is usually equivalent to problem that is easy to solve (as opposed to, for example,
easy text, that is usually equivalent to text that is easy to read). Thus, the focus is on
the meaning of adjective-noun combinations, not on that of adjectives alone as in the
present research.

3. Basis for a Semantic Classification of Adjectives

Adjective classes in our definition are broad classes of lexical meaning. We will present
lexical acquisition experiments in which, given the evidence found in corpora and other
lexical resources, a semantic class can be assigned to a given adjective. For this purpose,
two preconditions are required:

(a) a classification that establishes the number and characteristics of the target
semantic classes;

(b) a stable relation between observable features and each semantic class.

There is no established semantic classification for adjectives in computational linguistics
that we can use and, therefore, one subgoal of the research is to establish the clas-
sification in the first place, addressing (a), and exploiting the morphology–semantics
and syntax–semantics interfaces for acquisition, addressing (b). We are thus facing
a highly exploratory endeavor, and we do not regard the classifications we use as
final. We test two different classifications: an initial classification, based on the lit-
erature, for the experiments reported in Section 4, and an alternative classification,
for the experiments reported in Section 5. We next turn to presenting the two tested
classifications.

3.1 Initial Classification

In the acquisition experiments reported in Section 4, we distinguish between qualita-
tive, intensional, and relational adjectives, which have the following properties (Miller
1998; Raskin and Nirenburg 1998; Picallo 2002; Demonte 2011).

Qualitative adjectives. These are prototypical adjectives like gran (‘big’) or dolç (‘sweet’),
including scalar adjectives, which denote attributes or properties of objects. Adjectives
in this class tend to be gradable and comparable (see Examples (4a–4b)). They are char-
acterized by exhibiting the greatest variability with respect to their syntactic behavior:
In Catalan, they can act as predicates in copular sentences and other constructions
(Examples (4c–4d)), and they can typically act as both pre- and post-nominal modifiers
(Examples (4e–4f)). When an adjective modifies a head noun in pre-nominal position,
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the interpretation is usually nonrestrictive, as shown by the fact that they can modify
proper nouns (Example (4e)).

(4) a. Taula
Table

molt
very

gran
big

/
/
grandı́ssima
bigSUPERLATIVE

‘Very big table’

b. Aquesta
This

taula
table

és
is
més
more

gran
big

que
than

aquella
that

‘This table is bigger than that one’

c. Aquesta
This

taula
table

és
is
gran
big

‘This table is big’

d. Aquesta
This

taula
table

la
itOBJ-CL-FEM

veig
seepres−1stp−sg

massa
too

gran
big

‘This table seems to me to be too big’

e. La
The

gran
great

Diana
Diana

va
PAST-AUX

seguir
continue

cantant
singing.

‘Great Diana continued singing.’

f. Van
PAST-AUX

portar
bring

una
a

taula
table

gran
big

‘They brought in a big table’

Intensional adjectives. These are adjectives like presumpte (‘alleged’) or antic (‘former’),
which according to formal semantics denote second-order properties (Montague 1974,
and subsequent work). Most intensional adjectives modify nouns in pre-nominal posi-
tion only (Example (5a)), and they cannot functionally act as predicates (Example (5b)).
They are also typically not gradable (Example (5c)).

(5) a. El
The

Joan
Joan

és
is
el
the
presumpte
alleged

assassı́
murderer

‘Joan is the alleged murderer’

b. #El
The

Joan
Joan

és
is
presumpte
alleged

‘#Joan is alleged’

c. #Més
More

presumpte
alleged

assassı́
murderer

/
/
#presumptı́ssim
allegedSUPERLATIVE

assassı́
murderer

‘#More/very alleged murderer’

Intensional adjectives like presumpte may appear in any order with respect to
qualitative adjectives, as in Example (6). The order, however, affects interpretation:
Example (6a) entails that the referent of the noun phrase is young, whereas Example
(6b) does not (McNally and Boleda 2004).

(6) a. jove presumpte assassı́
‘young alleged murderer’
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b. presumpte jove assassı́
‘alleged young murderer’

Relational adjectives. Adjectives such as pulmonar, estacional, botànic (‘pulmonary, sea-
sonal, botanical’) denote a relationship to an object (in the mentioned examples, LUNG,
SEASON, and PLANT objects). Most of them are denominal (e.g., pulmonar is derived
from pulmó, ‘lung’) and can only modify nouns post-nominally (see Example (7a)).
Also, contrary to qualitative adjectives, they are not gradable (Example (7b)) and act
as predicates only under very restricted circumstances (Example (7c) vs. (7d)). If other
adjectives or modifiers co-occur with relational adjectives, these occur after the adjective
(Example (7e)). We will say relational adjectives are adjacent to the head noun.

(7) a. Tenia
Had

una
a

malaltia
disease

pulmonar
pulmonary

/
/
#pulmonar
pulmonary

malaltia
disease

‘He/she had a pulmonary disease’

b. #Malaltia
Disease

molt
very

pulmonar
pulmonary

/
/
pulmonarı́ssima
pulmonarySUPERLATIVE

#‘Very pulmonary disease’

c. La
The

decisió
decision

europea
European

→
→
??Aquesta
This

decisió
decision

és
is
europea
European

‘The European decision→ ??This decision is European’

d. La
The

tuberculosi
tuberculose

pot
can

ser
be
pulmonar
pulmonary

‘Tuberculose can be pulmonary’

e. inflamació
inflamation

pulmonar
pulmonary

greu
serious

/
/
#inflamació
inflamation

greu
serious

pulmonar
pulmonary

‘serious pulmonary inflammation’

Table 1 summarizes the properties just explained. Our goal is to use these properties
to induce the semantic class of adjectives. For instance, if an adjective is denominal,
appears almost exclusively in postnominal position, and is strictly adjacent to the head
noun, we predict that it is relational. In the experiments reported in Sections 4 and 5, we

Table 1
Initial classification: Linguistic properties of qualitative, intensional, and relational adjectives.

Qualitative Intensional Relational

gran (‘big’) presumpte (‘alleged’) pulmonar ‘pulmonary’

Property
predicative + − restricted
gradable/comparable + − −
position with respect to head noun both pre-nom. post-nom.
adjacent − − +
denominal − − +
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extract data related to these and other properties of adjectives from linguistic resources,
and use them as features in machine learning experiments.

3.2 Alternative Classification

In the acquisition experiments reported in Section 5, we distinguish between qualitative,
relational, and event-related adjectives. The classification presented in Section 3.1 is
thus altered in two ways: (1) The intensional class is dropped. (2) A new class, that
of event-related adjectives, is added to the classification. The reasons for these changes
will become clear in the discussion of the experiments in Section 4. Here, we describe
the new class and provide a summary table of the alternative classification.

Event-related adjectives. Adjectives such as exportador, promès, resultant (‘exporting,
promised, resulting’) denote a relationship to an event, in this case, EXPORT, PROMISE,
and RESULT events, respectively. Most of them are deverbal. Like relational adjectives,
they are typically nongradable (see Example (8a)) and prefer the postnominal position
when modifying nouns (Example (8b)). Like qualitative adjectives, they typically can
act as predicates (Example (8c)).

(8) a. És
Is
un
a
paı́s
country

{exportador
{exporting

/
/
#molt
very

exportador}
exporting}

de
of
petroli
oil

‘It is an oil exporting / #very exporting country’

b. #exportador paı́s
‘exporting country’

c. Aquest
This

paı́s
country

és
is
exportador
exporting

‘This is an exporting country’

Table 2 summarizes the properties of the alternative classification (for a more
thorough discussion of previous research on the semantics of adjectives and more
motivation for the classification, see Boleda [2007]). For comparison, we will briefly
outline the treatment of adjectives in WordNet (Miller 1998; Alonge et al. 2000). As

Table 2
Alternative classification: Linguistic properties of qualitative, event-related, and relational
adjectives.

Qualitative Event-related Relational

gran (‘big’) exportador (‘exporting’) pulmonar ‘pulmonary’

Property
predicative + + restricted
gradable/comparable + typically not −
position with respect to both post-nom. post-nom.
head noun

adjacent − − +
derivational type non-derived deverbal denominal
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mentioned in Section 2, the main semantic relation around which adjectives are or-
ganized in WordNet is antonymy. Also as explained, however, not all adjectives have
antonyms. This is solved in WordNet by the use of indirect antonyms (e.g., swift and
slow are indirect antonyms, through the semantic similarity between swift and fast). Still,
indirect antonymy only applies to a small subset of the adjectives in WordNet (slightly
over 20% in WordNet 1.5). Therefore, some kinds of adjectives receive a differentiated
treatment.

Specifically, twomain kinds of adjectives are distinguished inWordNet: (1) Descrip-
tive adjectives, akin to our qualitative adjectives, which are organized around antonymy
(descriptive adjectives, however, include intensional adjectives). (2) Relational adjec-
tives, as defined in this article, for which two different solutions are adopted. If a suit-
able antonym can be found for a given relational adjective (antonym in a broad sense;
in Miller [1998, page 60], physical and mental are considered antonyms), it is treated in
the same way as a descriptive adjective. Otherwise, it is linked through a PERTAIN-TO
pointer to the related noun. In addition, a subclass of descriptive adjectives, having
the form of past or present participles, is distinguished, and also receives a hybrid
treatment. Those that can be accommodated to antonymy are treated as descriptive
adjectives (laughing–unhappy, through the similarity between laughing and happy). Those
which cannot are linked to the source verb through a PRINCIPAL-PART-OF pointer. Our
event-related class includes not only past and present participles, but other types of
deverbal adjectives. Thus, most of the classes used in this article are to some extent
backed up by the organization of adjectives in WordNet.

3.3 The Role of Polysemy

As explained in the Introduction, some adjectives are polysemous such that each sense
falls into a different class of the classifications just presented. Consider for instance
the adjective econòmic in Example (1), repeated here as Example (9) for convenience.
The two main senses of econòmic instantiate the relational (sense in Example (9a))
and the qualitative class (sense in Example (9b)), respectively.

(9) a. anàlisi econòmica
‘economic analysis’

b. pantalons econòmics
‘cheap trousers’

Crucially for our purposes, in each of the senses the adjective exhibits the properties
of each of the associated classes. When used as a relational adjective, it is not gradable
and cannot be used in a pre-nominal position (Example (10)).When used as a qualitative
adjective, it is gradable and it can be used predicatively (see Example (11)). In the
experiments that follow, we aim at capturing this hybrid behavior.

(10) a. #L’anàlisi
The-analysis

molt
very

econòmica
economic

de
of
les
the
dades
data

‘#The very economic analysis of the data’

b. #Va
‘PAST-AUX

dur
bring

a
to
terme
term

una
an

econòmica
economic

anàlisi
analysis

‘#He/she carried out an economic analysis’
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(11) Aquests
These

pantalons
trousers

són
are

molt
very

econòmics!
economic!

‘These trousers are very cheap!’

Cases of regular polysemy between the intensional and qualitative classes also exist,
as illustrated in Examples (12) and (13). Antic has two major senses, a qualitative one
(equivalent to ‘old, ancient’) and an intensional one (equivalent to ‘former’). Note again
that, when used in the intensional sense, it exhibits properties of the intensional class: It
appears pre-nominally (Example (13a)) and is not gradable (Example (13b)).

(12) a. edifici
building

antic
ancient

‘ancient building’

b. edifici
building

molt
very

antic
ancient

‘very ancient building’

(13) a. antic
ancient

president
president

‘former president’

b. #molt
very

antic
ancient

president
president

‘#very former president’

The new class in the alternative classification, that of event-related adjectives, also
introduces regular polysemy, specifically, between event-related and qualitative adjec-
tives, as illustrated in Examples (14) and (15). The participial adjective sabut (‘known’)
has an event-related sense, corresponding to the verb saber (‘know’), and a qualitative
sense that can be translated as ‘wise’. Likewise, the deverbal adjective cridaner derived
from cridar (‘to shout’) alternates between an event-related sense and a qualitative sense.

(14) problema
problem

sabut
known

/
/
home
man

sabut
known

‘known problem / wise man’

(15) noi
boy

cridaner
shoutSUFFIX/

/
shirt

camisa
attention-gaining

cridanera

‘boy who shouts a lot / attention-gaining shirt’

Examples (14) and (15) represent cases of regular polysemy because, as can be drawn
from the translations, there is a systematic shift from a transparent relation with the
event to a quality that bears a more distant relation to the event. In the case of sabut the
relation is clear (if a man knows a lot, he is wise); in the case of cridaner, a shirt qualifies
for the adjective if it is for instance loud-colored or has an eccentric cut, such that it gains
the attention of people, as shouting does.

In this article, we only consider types of polysemy that cut across the classification
pursued. Other kinds of polysemy that have traditionally been tackled in the literature
will not be considered. For instance, we will not be concerned with the polysemy
illustrated in Example (16), which arguably has more to do with the semantics of the
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modified noun than that of the adjective (Pustejovsky 1995). Both of the uses of trist
(‘sad’) illustrated in Example (16) fall into the qualitative class, so, contrary to the work
by Lapata (2000, 2001) cited previously, we do not treat the adjective as polysemous in
the context of the present experiments.

(16) noi
boy

trist
sad

/
/
pel·lı́cula
film

trista
sad

‘sad boy / sad film’

4. First Model: Polysemous Adjectives Constitute Independent Classes

Given the hybrid behavior of polysemous adjectives explained in Section 3, we can
expect that they behave differently from adjectives in the basic classes. For instance,
adjectives polysemous between a qualitative and a relational use should exhibit more
evidence for gradability than pure relational adjectives, but less than pure qualitative
adjectives. In this view, polysemous adjectives belong to a class, for instance, the
qualitative-relational class, that is distinct from both the qualitative and the relational
classes, typically exhibiting feature values that are in between those of the basic classes.
In this section, we report on experiments testing precisely this model for regular
polysemy. We will therefore distinguish between five types of adjectives: qualitative,
intensional, relational, polysemous between a qualitative and an intensional reading
(intensional-qualitative), and polysemous between a qualitative and a relational reading
(qualitative-relational). There is one polysemous class missing (intensional-relational).
No cases of polysemy between intensional and relational adjectives were observed in
our data.

Recall from the previous sections that we cannot reuse an established classification,
and that there is virtually no previous work on the automatic semantic classification of
adjectives. The present experiments also aim at testing the overall enterprise of inducing
semantic classes from distributional properties for adjectives. Given the exploratory
nature of the experiment, we use clustering, an unsupervised technique, to uncover
natural groupings of adjectives and test to what extent these correspond to the classes
described in the literature.

4.1 Data and Gold Standard

The experiments reported in this section are based on an eight million word fragment
of the CTILC corpus (Corpus Informatitzat de la Llengua Catalana; Rafel 1994), developed
at the Institut d’Estudis Catalans. Each word is associated with its lemma, part of speech,
and inflectional features, as well as syntactic function. Lemma and morphological in-
formation have been manually checked. We automatically added syntactic information
with CatCG (Alsina et al. 2002). CatCG is a shallow parser that assigns one or more
syntactic functions to each word. In the case of the adjective, CatCG distinguishes
between (1) predicate of a copular sentence; (2) predicate in another construction; (3)
pre-nominal modifier; (4) post-nominal modifier. As no full dependencies are indicated,
the head noun can only be identified with heuristics.

In the experiments, we cluster all adjectives occurring more than ten times in the
corpus (a total of 3,521 lemmata), and analyze the results using a subset of the data.
This is a randomly chosen 101-lemma gold standard (available in the Appendix). Fifty
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lemmata were chosen token-wise and 50 type-wise to balance high-frequency and low-
frequency adjectives (one lemma was chosen with both methods, so the repetition was
removed). Two lemmata were added in a post-hoc fashion, as explained subsequently.

The lemmatawere annotated by four doctoral students in computational linguistics.
The task of the judges was to assign each lemma to one of the five classes (qualitative,
intensional, relational, qualitative-intensional, and qualitative-relational). The instruc-
tions for the judges included information about all linguistic characteristics discussed
in Section 3, including syntactic and semantic characteristics.

The judges had a moderate degree of agreement, comparable to that obtained in
other tasks on semantics or discourse, inter-annotator scores ranging between κ = 0.54
and 0.64 (see Artstein and Poesio [2008] for a discussion of agreement measures for
computational linguistics). For comparison, Véronis (1998) reported a mean pair-wise
weighted κ = 0.43 for a word sense tagging task in French; and Merlo and Stevenson
(2001) obtained κ = 0.53–0.66 for the task of classifying English verbs as unergative,
unaccusative, or object-drop. Poesio and Artstein (2005) report κ values of 0.63–0.66
(0.45–0.50 if a trivial category is dropped) for the tagging of anaphoric relations. Our
judges reported difficulties in tagging particular kinds of adjectives, such as deverbal
adjectives. This issue will be retaken in Section 4.5.

No intensional adjectives were identified in the data by the judges, and only
one intensional-qualitative adjective was identified. Two intensional lemmata were
manually added to be able to minimally track the class. This is clearly insufficient for
a quantitative approach, however, so the intensional class is dropped in the alternative
classification. It is striking that intensional adjectives, which have traditionally been the
focus of formal semantic approaches to the semantics of adjectives, constitute a very
small class (less than a dozen lemmata are mentioned in the reviewed literature).

4.2 Features

We use two sets of distributional features to model adjective behavior: on the one hand,
theoretically motivated features (theoretical features for short); on the other hand,
features that encode the part-of-speech distribution of a four-word window around the
adjective (POS features). The former provide a theoretically informed model of adjec-
tives, because they are cues to the properties of each class as described in the literature.
The latter are meant to provide a theory-independent representation of adjectives, to
test to what extent the structures obtained with theoretical and POS features are similar.
Both sets of features take a narrow context into account (at most five words to each side
of the adjective), because of the limited syntactic behavior of adjectives.

4.2.1 Theoretical Features. Theoretical features model the syntactic and semantic proper-
ties of the classes described in Section 3. The features used, together with their mean
and standard deviation values (computed on all 3,521 adjectives), are summarized in
Table 3. A feature value va,i for an adjective lemma a and a feature i corresponds to the
proportion of the occurrences in which i is observed for adjective a over all occurrences
of a (see Equation (1); f stands for absolute frequency).

va,i =
f (a, i)
f (a)

(1)
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Table 3 is the translation of Table 1 into shallow cues that can be extracted from
a corpus. The mean values in Table 3 are very low, which points to the sparseness of
theoretically defined properties such as predicativity or gradability, at least in written
texts (oral corpora would presumably yield different values). Also note that standard
deviations are higher than mean values, which indicates a high variability in the feature
values, something that will be exploited for classification.

From the discussion in Section 3, the following predictions with respect to the
semantic features can be made.

(1) In comparison with the other classes, qualitative adjectives should have
higher values for features gradable, comparable, copular, predicative, middle
values for feature prenominal, and low values for feature adjacent.

(2) Relational adjectives should have an almost opposite distribution, with
very low values for all features except for adjacent.

(3) Intensional adjectives should exhibit very low values for all features
except for pre-nominal, for which a very high value is expected.

(4) With respect to polysemous adjectives, it can be foreseen that their feature
values will be in between those of the basic classes. For instance, an
adjective that is polysemous between a qualitative and a relational reading
should exhibit a higher value for feature gradable than a monosemous
relational adjective, but a lower value than a monosemous qualitative
adjective.

Figure 1 shows that the predictions just outlined are met to a large extent, showing that
the empirical (corpus) data support the theoretical predictions. This graph represents
the value distribution of each feature in the form of boxplots. In the boxplots, the
rectangles have three horizontal lines, representing the first quartile, the median, and
the third quartile, respectively. The dotted line at each side of the rectangle stretches to
the minimum andmaximum values, at most 1.5 times the length of the rectangle. Values
that are outside this range are represented as points and termed outliers (Verzani 2005).
Note that the scale in Figure 1 does not range from 0 to 1; this is because the data are
standardized, as will be explained subsequently.

Table 3
Theoretical features. The mean and SD values are computed on all clustered adjectives. Feature
copular accounts for predicative constructions with the copula verbs ser, estar (‘be’). Feature
predicative accounts for other predicative constructions, such as Example (4d).

Feature Textual correlate Mean SD

gradable degree adverbs, degree suffixation 0.04 0.08
comparable comparative constructions 0.03 0.07
copular copular predicate syntactic tag 0.06 0.10
predicative predicate syntactic tag 0.03 0.06
pre-nom pre-nominal modifier syntactic tag 0.04 0.08
adjacent first adjective in a series of two or more 0.03 0.05
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Figure 1
Theoretical features: Feature value distribution in the gold standard. Class labels: I = intensional;
IQ = polysemous between intensional and qualitative; Q = qualitative; QR = polysemous
between qualitative and relational; R = relational.

The differences in value distributions, although significant,1 are not sharp, as most
of the ranges in the boxes overlap. This affects mainly polysemous classes: Although
they show the tendency predicted—exhibiting values that are in between those of the
basic classes—they do not present clearly distinct values. The clustering results will be
affected by this distribution, as will be discussed in Section 4.5.

4.2.2 POS Features. POS features encode the part-of-speech distribution of a four-word
window around the adjective, providing a theory-independent representation of the
linguistic behavior of adjectives. To avoid data sparseness, we encode possible POS for
each position as a different feature. For instance, for an occurrence of alta (‘tall’) as in Ex-
ample (17a), the representation would be as in Example (17b). In the example, the target
adjective is in boldface, and the relevant word window is in italics. Negative numbers

1 Tested by one-way ANOVA tests on each of the features (factor: Classes), excluding items in the I and
IQ classes because not enough observations are available. The test yields p-values lower than 0.05
(predicative), 0.01 (comparable, pre-nominal, adjacent), and 0.001 (gradable, copular), respectively.
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Table 4
POS features. The mean and SD values are computed on all clustered adjectives.

Feature Mean SD Feature Mean SD

−1 noun 0.52 0.25 −2 preposition 0.13 0.09
+1 punctuation 0.42 0.15 −1 adverb 0.10 0.11
−2 determiner 0.39 0.20 −1 verb 0.08 0.11
+2 determiner 0.24 0.13 −1 determiner 0.06 0.10
+1 preposition 0.21 0.15 +1 noun 0.06 0.10

indicate positions to the left, positive ones positions to the right. The representation in
Example (17b) corresponds to the parts of speech of és, més, que, and la, respectively.

(17) a. la
the
Bruna
Bruna

és
is

més
more

alta
tall

que
than

l’Angelina
the-Angelina

‘Bruna is taller than Angelina’

b. -2 verb, -1 adverb, +1 conjunction, +2 determiner

Feature values are defined as in theoretical features (see Equation (1)). The ten
features with the overall highest mean value in our data (among a total of 36 features)
are listed in Table 4. Note that the mean values are much higher for the POS features
(Table 4) than for the theoretical features (Table 3), as theoretical features are much
sparser.

4.3 Clustering Algorithm and Parameters

We use the k-means clustering algorithm (see Kaufman and Rousseeuw [1990] and
Everitt, Landau, and Leese [2001] for comprehensive introductions to clustering).2 This
is a classical algorithm, conceptually simple and computationally efficient, which has
been used in related work, such as the induction of German semantic verb classes
(Schulte imWalde 2006) and the syntactic classification of Catalan verbs (Mayol, Boleda,
and Badia 2005). Also, it performs hard clustering, which is adequate for our purposes
(recall from Section 4.1 that wemodel polysemy in terms of separate classes). Additional
experiments with other clustering methods yielded similar results: We tested two hier-
archical and one flat algorithm, one of them agglomerative and the other two partitional,
with several clustering criteria, always using the cosine distance measure.

K-means is a flat, partitional algorithm that aims at minimizing the overall distance
from objects to their centroids (mean vectors of each cluster), which favors globular
cluster structures. An initial random partition into k clusters is performed on the data.
The centroids (mean vectors) of each cluster are computed, and each object is re-
assigned to the cluster with the nearest centroid. The centroids are recomputed, and the
process is iterated until no further changes take place, or a pre-specified number of times
(20 in our case). Equation (2) shows the formula for the clustering criterion, where k is
the total number of clusters and l are the lemmata in each cluster c1, . . . , ck. To avoid the

2 More specifically, because we are using the cosine measure, the algorithm is spherical k-means (Dhillon
and Modha 2001). All the experiments were performed with the CLUTO toolkit (Karypis 2002).
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influence of the initial partition on the final structure, the whole experiment is repeated
several times (25 in our case) with different random partitions, and the partition that
better satisfies the clustering criterion is chosen.

minimize
∑
i∈k

∑
l∈ci

cos(l, centroid(ci)) (2)

We experimented with two representations of the feature values: raw and stan-
dardized proportions. In clustering, features with higher mean and standard deviation
values tend to dominate over more sparse features. Standardization smooths the differ-
ences in the strengths of features. We standardize to z-scores, so that all features have
mean 0 and standard deviation 1. As the most interpretable results were obtained with
standardized values, we will restrict the discussion in the next section to the results
obtained with standardized values.

4.4 Results

The discussion focuses on the cluster analyses with three and five clusters because
our basis is three classes (intensional, qualitative, and relational) and we consider a
total of five classes (basic classes plus polysemous classes: intensional-qualitative and
qualitative-relational). A higher number of clusters introduces more noise (in the form
of small clusters with no clear content).

The contingency tables of the clustering results with three clusters are depicted in
Table 5. Part A of the table depicts the solution obtained with theoretical features, while
Part B represents the solution obtained with POS features. Rows are gold standard
classes and columns are clusters, labeled with the cluster number provided by the
algorithm. The ordering of the cluster numbers corresponds to the quality of the cluster,
measured in terms of the clustering criterion (see Equation (2)), 0 representing the
cluster with the highest quality. In each cell Cij of Table 5, the number of adjectives

Table 5
First model: Three-way solution contingency tables for theoretical and POS features. Rows are
gold standard classes, columns are clusters. Row TotalGS shows the number of Gold Standard
lemmata and row Totalcl the total number of lemmata contained in each cluster. Note that the
column labeled Total represents the row sum for each part (as the number of items per class
is identical).

A: Theoretical B: POS

Cluster 0 1 2 0 1 2 Total

intensional (I) 0 0 2 0 2 0 2
intensional-qualitative (IQ) 0 0 1 0 1 0 1
qualitative (Q) 4 13 35 10 37 5 52
qualitative-relational (QR) 3 5 3 7 2 2 11
relational (R) 21 13 1 20 5 10 35

TotalGS 28 31 42 37 47 17 101
Totalcl 834 1,287 1,400 1,234 1,754 533 3,521
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of class i that are assigned to cluster j by the algorithm is given. The largest value for
each class is highlighted (see gray cells).

A striking feature of Table 5 is that results in the two parts (A and B) are very similar.
The following can be observed:

(1) There is one cluster (cluster 0 in both solutions) that contains the majority
of relational adjectives in the gold standard. This is the most compact
cluster according to the clustering criterion.

(2) Another cluster (2 in solution A, 1 in solution B) contains the majority of
qualitative adjectives in the gold standard, as well as all intensional and
IQ adjectives.

(3) The remaining cluster contains a mixture of qualitative and relational
adjectives in both solutions.

(4) Adjectives that are polysemous between a qualitative and a relational
reading (QR) are scattered through all the clusters, although they show a
tendency to be ascribed to the relational cluster in solution B (cluster 0).

The five-way results are depicted in Table 6. On the one hand, the table shows that
the five-way structure found by the clustering algorithm is very similar to the three-
way structure in Table 5. This means that the three clusters in A and B have basically
been replicated by the three first clusters in C and D, respectively. On the other hand,
the differences between the structures obtained using theoretical versus POS features
are more obvious in the five-way solutions. From the set-up of the experiment, we
had expected one cluster per class, plus QR and IQ adjectives isolated in a cluster of
their own. This is clearly not borne out in Table 6. What we find instead is that (a)
the mixed clusters persist and score high in the clustering criterion (see clusters 0 in
solution C and 0–1 in solution D, with a mixture of Q, QR, and R adjectives), and (b)
two additional small clusters are created (clusters 3 and 4 in both solutions) with no
clear interpretation, suggesting that the three-way set-up matches better the structure
uncovered by the clustering algorithm.

From the discussion of Tables 5 and 6 we conclude that the three-way clustering
meets the target classification better than the five-way clustering, and that polysemous
adjectives are not identified as a separate class. These results suggest that modeling

Table 6
First model: Five-way solution contingency tables. Information presented as in Table 5.

C: Theoretical D: POS

Cluster 0 1 2 3 4 0 1 2 3 4 Total

I 0 0 2 0 0 0 0 2 0 0 2
IQ 0 0 1 0 0 0 0 1 0 0 1
Q 7 4 35 4 2 3 7 37 2 3 52
QR 5 3 3 0 0 6 1 2 1 1 11
R 12 21 1 0 1 11 9 5 7 3 35

TotalGS 24 28 42 4 3 20 17 47 10 7 101
Totalcl 857 854 1462 156 192 828 406 1,754 275 258 3,521
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polysemous adjectives in terms of additional, complex classes is not an adequate strat-
egy (we return to this point subsequently).

Recall that we defined theoretical and POS features to compare the structures
obtained using theoretically informed and theory-independent features. Further feature
analysis, not reported here for space reasons, reveals a high correlation between the
most descriptive features of solutions A and B.3 This highlights the correspondence
between the two feature representations with respect to the clustering results: The
POS features elicited as most discriminative by the clustering algorithm are precisely
those that correspond to the theoretical features. This correspondence explains the
resemblance between the solutions obtained with the two types of representation and
at the same time provides support for the present definition of the theoretical features.

Last but not least, note that we do not assign a score to each clustering solution.
Evaluation of clustering is very problematic when there is no one-to-one correspon-
dence between classes and clusters (Hatzivassiloglou and McKeown 1993), as is our
case. Schulte imWalde (2006) provides a thorough discussion of this issue and proposes
different metrics and types of evaluation. We defer numerical evaluation until Section 5.

4.5 Discussion
4.5.1 Classification. The experiments presented provide feedback to the question, what is
an appropriate broad semantic classification for adjectives? The clustering experiments
provide empirical support for the qualitative and relational classes, as is particularly
evident in the three-way solution (Table 5). These are classes that have traditionally been
taken into account in descriptive grammar (Bally 1944; Picallo 2002) and computational
resources such as WordNet (Miller 1998; Alonge et al. 2000), so we consider them to be
quite stable and keep them in our classification.

Intensional and IQ adjectives, in contrast, are grouped together with qualitative
adjectives in all solutions, because they do not exhibit distinctive enough distributional
properties to differentiate them, a fact aggravated by the small size of the intensional
class. From the point of view of NLP, it is reasonable to encode intensional adjectives
by hand, given their limited number. For these reasons, we include the intensional
class in the qualitative class in what follows (remember that, as mentioned in Sec-
tion 3, WordNet also includes intensional adjectives in the qualitative—in their terms,
descriptive—class).

”Hybrid” clusters, that is, clusters that contain adjectives from several semantic
classes, play an interesting role in our cluster analyses. Such clusters seem to be coherent
and stable, as they appear in all examined solutions (A, B, and also C and D in Tables 5
and 6) and have good scores in the clustering criterion. Significantly, however, most of
the adjectives that are problematic for humans are assigned to hybrid clusters, where
problematic means that they are not assigned to the same class by all four judges.
Conversely, most adjectives in the hybrid clusters are problematic. Thus, hybrid clusters
are useful to signal problems in the proposed classification. As an example, consider
cluster 0 in Part C of Table 6: 17 out of the 24 (70.1%) gold standard adjectives in this
hybrid cluster are problematic for humans. This cluster contrasts with the qualitative
cluster (cluster 2 of Table 6), where only 10 out of its 42 (23.8%) lemmata are problematic.

Two kinds of adjectives crop up among problematic adjectives: so-called ethnic
adjectives (alemany ‘German’, menorquı́ ‘Menorcan’, sud-africà ‘South African’, xinès

3 Descriptive features are defined here as those that are among the three features with highest or lowest
mean values for at least three clusters in the five-way solution.
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‘Chinese’), and deverbal adjectives (indicador ‘indicating’, parlant ‘speaking’, protector
‘protecting, protective’, salvador ‘savior’). Ethnic adjectives can act as predicates of
copular sentences in a much more natural way than typical relational adjectives,
and seem to be vague between a relational and a qualitative reading in their
semantics (Raskin and Nirenburg 1998, page 173). This kind of adjective will mainly be
treated as polysemous in the experiments reported in Section 5.

As for deverbal adjectives, they are clearly neither relational (they do not express
a relationship to an object) nor intensional. They are also not typically qualitative,
however, because they trigger a relationship to an event instead of denoting a simple
property. For instance, protector triggers a relationship with a stable event of protecting
in Example (18): A person named Serra belongs to the kind of associates who have as a
primary role to protect the association.

(18) Serra
Serra

. . . Era

. . .was
soci
associate

protector
protecting

de
of
l’Associació
the-Association

de
of
concerts
concerts

‘Serra was a protecting associate of the Association of concerts’

These considerations motivate the addition of a class of event-related adjectives
in the overall classification. Event-related adjectives have not received much attention
in the linguistic literature, except for one particular subtype, namely, adjectival uses of
the participle (Bresnan 1982; Levin and Rappaport 1986; Bresnan 1995). As for compu-
tational resources, the English WordNet, as explained in Section 3, only distinguishes
some participial adjectives. In the Italian WordNet, however, other event-related adjec-
tives receive a specific treatment, through the encoding of the lexical relations CAUSES
and LIABLE-TO, as exemplified in Example (19) (Alonge et al. 2000):

(19) a. depuratorio ‘depurative, purifying’ CAUSES depurare ‘to depurate/purify’.

b. giudicabile ‘triable’ LIABLE-TO giudicare ‘to judge’.

To sum up, the results of the experiments reported in this section motivate a three-
way classification between qualitative, event-related, and relational adjectives. Note
that, in the revised classification proposed in this section, classes are uniformly defined
according to the ontological type of their denotation: Qualitative adjectives denote at-
tributes or properties, relational adjectives denote relationships to objects, and event-
related adjectives denote relationships to events. The classes correspond to the three
major types of entities in an ontology (attributes, objects, events), more specifically, to
the way adjectives participate from those entities. In this view, relational and event-
related adjectives denote properties, just as qualitative adjectives do, but they are a
specific type of property involving a relationship with either an object or an event.
The classification is in fact similar to the one proposed in the Ontological Semantics
framework (Raskin and Nirenburg 1998; Nirenburg and Raskin 2004).

Also note that the revised semantic classification bears a prominent relationship
to morphology: In the default case, qualitative adjectives are not derived, event-
related adjectives are deverbal, and relational adjectives are denominal. However, the
correspondence between semantic classes and derivational type is not a one-to-one
mapping. Although most event-related adjectives are deverbal, not only strictly
deverbal adjectives evoke events: For instance, tangible ‘tangible’ evokes an event of
touching, but there is no verb *tangir in Catalan (tangible is built on the Latin verb
tangō, ‘touch’). Raskin and Nirenburg (1998, page 187) cite examples for English
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such as audible or ablaze. Similarly, some object adjectives are not denominal (such as
botànic ‘botanical’). Conversely, some denominal or deverbal adjectives are qualitative:
vergonyós ‘shy’ (from vergonya ‘shyness’), amable (literally ‘suitable to be loved’; has
evolved to ‘kind, friendly’). We will empirically check the correspondence between
morphology and semantic class in Section 5.5.

4.5.2 Regular Polysemy. Our first series of experiments also provides feedback to the
question, what is an adequate computational model for regular polysemy? Specifically,
we have shown that the treatment of regular polysemy in terms of independent classes
is not adequate. Remember that the motivation for the experiments presented in this
section was the hypothesis that polysemous adjectives exhibit a linguistic behavior
that participates from the basic classes involved in the regular polysemy, thus yielding
feature values that are in between those of the basic classes (cf. Figure 1). Thus, we had
expected that polysemous adjectives form a homogeneous group of lexical items, char-
acterized precisely by the fact that they exhibit properties from each class to a certain
degree. However, this expectation is not borne out in the results of the experiments.
To this respect, it is striking that QR adjectives (polysemous between a qualitative
and a relational reading) are spread throughout all the clusters in all solutions. They
are not identified as a homogeneous group, nor as distinct from the rest. Crucially, as
pointed out in Section 4.2, the differences between the feature values of polysemous
adjectives and those of the basic classes are not strong enough to motivate a separate
cluster.

We believe that the reason for these results is the fact that polysemous adjectives do
not in fact have a homogeneous, differentiated profile: In a given corpus, most adjec-
tives are used predominantly in one of their senses, corresponding to one of the basic
classes, and thus the “hard” classification with three clusters fits better. For instance, the
qualitative-relational adjective irònic (‘ironic’) is mainly used as a qualitative adjective
in the corpus. Accordingly, it always appears in the qualitative clusters. Conversely,
militar (‘military’) is mostly used as a relational adjective, and is consistently assigned
to one of the relational clusters in all solutions. Thus, although polysemous adjectives
on average do show a mixed behavior, each lexical item tends to pattern with one of the
basic classes. An alternative conceptualization of regular polysemy and experimental
design is called for, and this will be the topic of the next section.

5. Second Model: Polysemous Adjectives Simultaneously Belong to
Different Classes

The experiments presented in the previous section pursued two goals: on the one hand,
to test the initial classification proposal; on the other, to test a model of regular polysemy
that treats polysemous adjectives in terms of separate classes. With respect to the first
goal, the experiments in this section rely on the results of the previous experiments, and
use the alternative classification described in Section 3.2. The alternative classification
has in addition been supported by a clustering experiment not reported here for space
reasons (see Boleda, Badia, and Batlle [2004] for details and discussion).

With respect to the second goal, we have shown that the first model is not suc-
cessful at modeling regular polysemy. Furthermore, the analysis of feature values
in the previous section suggests that the lack of success is not related to the spe-
cific technique used in the initial experiment, but to the properties of polysemous
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adjectives: the fact that they are used predominantly in one of their senses, and the
fact that the feature distributions of “polysemous classes” largely overlap with those of
the basic classes.

In the present experiments, we develop an alternative approach to regular poly-
semy that is based on the perspective that polysemous adjectives belong to more than
one semantic class, in the framework of multi-label classification. A typical example
of a multi-label classification task is Text Categorization (Schapire and Singer 2000),
where a document can be described via more than one label (e.g., Health and Local), so
that it effectively belongs to more than one of the target classes. The motivation for this
new approach is the fact that polysemous adjectives exhibit properties of all the classes
involved (see Section 3.3). The hypothesis is that the evidence found for a polysemous
adjective that is polysemous between, say, a relational and a qualitative use should be
strong enough for the adjective to be assigned to both the relational and the qualitative
classes. Note that by assigning the adjective to the two classes independently, we make
an implicit classification of the adjective as polysemous. The success of the approach will
depend on whether the different senses are sufficiently represented in the data, and it
will be especially challenging to distinguish between noise and evidence for a given
class.

5.1 Data and Gold Standard

The experiments reported in this section are based on a 16 million word fragment of
the CTILC corpus (see Section 4.1). We additionally use an adjective database (Sanromà
and Boleda 2010) with manually coded information about all adjectives occurring more
than 50 times in the corpus (2,296 lemmata). The database codes the derivational type
(deverbal, denominal, participial, non-derived) and suffix of each adjective.

A gold standard of 210 adjective lemmata (available in the Appendix) was selected
from this database for the experiments. The lemmata were randomly sampled in a
stratified fashion, balancing three factors of variability: frequency, morphological type,
and suffix. Thus, the gold standard contains an equal number of adjectives from three
frequency bands (low, medium, high), from the four derivational types, and from a
series of suffixes within each type. This samplingmethod is aimed at achieving semantic
variability.

Three experts assigned each of the 210 lemmata to one or two of the classes in the
alternative classification, namely, event-related, qualitative, or relational. The decisions
were reached by consensus and were based on expert knowledge together with the
examination of the information in the database, corpus examples, and the judgments
provided by 322 naive subjects in a large-scale annotation experiment.4

Table 7 shows the distribution of adjectives in the gold standard into classes ac-
cording to the three experts. These are the data used in the experiments presented in
this section. The proportion of polysemous adjectives is quite high, over 17%, with
qualitative-relational being the most frequent type of polysemy. Also note that 51%
of the adjectives are qualitative; this will be the baseline for the machine learning
experiments presented subsequently.

4 For details on the annotation experiment, see Boleda, Schulte imWalde, and Badia (2008). The experiment
yielded low inter-coder agreement scores (estimated κ 0.31–0.45, observed agreement 0.62-0.70). Note
that the consensus classification is sub-optimal in the sense that its replicability cannot be estimated.
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Table 7
Gold standard classification: Distribution and examples.

Class Label Example # %

qualitative Q tenaç, ‘tenacious’ 107 51.0
event E informatiu, ‘informative’ 37 17.6
relational R cranià, ‘cranial’ 30 14.3
qualitative-relational QR familiar, ‘familiar’ 23 11.0
qualitative-event QE sabut, ‘known’ 7 3.3
event-relational ER comptable, ‘countable’ 6 2.9
Total 210 100

Table 8
Feature sets. From left to right, each column depicts, for each feature set, an identifier, a
description of the type of information used, the total number of features, and one example
feature. Feature set morph contains two categorical features that are transformed into 25 if
binarization is applied; the remaining feature sets are numerical.

Feature set Description # Example

morph morphological (derivational) properties 2 (25) suffix
func syntactic function of the adjective 4 post-nom. modifier
uni uni-gram POS (1 word to left or to right) 24 −1noun
bi bi-gram POS (1 word to left and 1 to right) 50 −1noun+1adj
theor distributional cues of theoretical properties 18 gradable
Total 98 (121)

5.2 Features
5.2.1 Feature Definition.We define five feature sets based on different types of linguistic
information, to gain further insight into the properties of each class. In particular, we
are interested in the properties of event-related adjectives, for which we do not have a
description in the linguistic literature. Table 8 summarizes the properties of the feature
sets used for the present experiments.

Feature set morph represents derivational properties of adjectives, as encoded in
the adjective database. We include this type of information because of the relevance
of morphology for the new classification (see Section 4.5). Func encodes the syntactic
functions of the adjectives in the corpus, as explained in Section 4.1. Uni (for unigram)
and bi (for bigram) encode the distribution of the adjective in the corpus in terms of
the parts of speech of the surrounding words. Feature analysis of the first experiment
showed that the word preceding and following the target were the most informative,
so in the present experiment only a one-word window is taken into account. The
unigram distribution (uni) encodes each part of speech separately, as was done in the
first experiment, and the bigram distribution (bi) takes the left and right word jointly,
to avoid feature correlation effects. In the latter feature set, only the 50 most frequent
bigrams are considered, to avoid features that are too sparse.5

5 For a more detailed explanation of the information encoded in feature sets uni and bi, see Boleda (2007,
section 5.2.2).
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Table 9
New or revised features in feature set theor. Each row lists the property we aim to capture and
the features through which the property is encoded. The information relies on the information
in the corpus, which does not include full syntactic structure.

Property Features

type of determiner NP headed by definite/indefinite/no determiner
agreement properties gender and number of the NP
syntactic function of head noun subject, object, complement to a preposition
complement-bearing adjective followed by a preposition
distance to the head linear distance (number of words)

Finally, feature set theor (for theoretical) generalizes and adds to the theoretical
properties used in the first experiment (Table 3 in Section 4.2). Upon inspection of
the clustering solutions (not reported here for space reasons), some further potentially
relevant distributional pieces of information cropped up that were included in the
theor features of the present experiment. The new features, summarized in Table 9,
cover several aspects of the noun phrases (NPs) in which adjectives occur: The type
of determiner of the NP, agreement properties (as these can correlate with semantic
properties), the syntactic function of the head noun, and the presence of a potential
adjective complement. The latter are usually headed by prepositions (El Joan està gelós
d’en Pere, ‘Joan is jealous of Pere’). Finally, feature distance to the head is a reformulation
of feature adjacent from Section 4.2. It encodes the mean distance of the adjective to
the head, in number of words, as this is a more general definition that alleviates data
sparseness.

As for feature values, they are computed as in the first experiment (see Equation (1)),
with the following exceptions: (1) morph features are of categorical type, so their values
are not numerical; (2) the two first features in Table 9, due to data sparseness consider-
ations, are computed as proportions over the use of the adjective as a nominal modifier
(see Equation (3), where amod is the number of occurrences of the adjective as modifier);
(3) the values for feature distance to the head, also in Table 9, do not range from 0 to 1 as
the other feature values, because they correspond to the mean distance to the head in
number of words. The data set used for the present experiments is available at the ACL
repository.6

va,i =
f (amod, i)
f (amod)

(3)

5.2.2 Feature Tuning. We test the effects of feature selection in the performance of the
classifiers. The features are selected according to their performance within the machine
learning algorithm used for classification. Accuracy for a given subset of features is
estimated by cross-validation over the training data. Because the number of subsets in-
creases exponentially with the number of features, this method is computationally very
expensive, so we use a best-first search strategy. We also experiment with binarization
of the two categorical features (suffix, derivational type).

6 http://aclweb.org/aclwiki/index.php?title=Database_of_Catalan_Adjectives_(Repository).
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5.3 Method

The classification task is approached with a two-level architecture.

1. The decision on the class of the adjective is decomposed into three binary
decisions: Is it qualitative or not? Is it event-related or not? Is it relational
or not?

2. A complete classification is achieved by merging the results of the binary
decisions. A consistency check is applied by which (a) if all decisions
are negative, the adjective is assigned to the qualitative class (the
most frequent one; this was the case for a mean of 4.6% of the class
assignments); (b) if all decisions are positive, we randomly discard
one (three-way polysemy is not foreseen in our classification; this was
the case for a mean of 0.6% of the class assignments).

This is the standard architecture for multi-label classification tasks (Schapire and Singer
2000; Ghamrawi and McCallum 2005), and it has also been applied to NLP problems
such as entity extraction and noun-phrase chunking (McDonald, Crammer, and Pereira
2005).

Note that in the present experiments we change both the classification and the
approach (unsupervised vs. supervised) with respect to the first set of experiments
presented in Section 4, which can be seen as a sub-optimal technical choice. After
the first series of experiments that required a more exploratory analysis, however, we
believe that we have now reached a more stable classification, which we can test by
supervised methods. In addition, we need a one-to-one correspondence between gold
standard classes and clusters for the approach to work, which we cannot guarantee
when using an unsupervised approach that outputs a certain number of clusters with
no mapping to the gold standard classes.

We test two types of classifiers. The first type are Decision Tree classifiers trained
on different types of linguistic information coded as feature sets. Decision Trees are one
of the most widely machine learning techniques (Quinlan 1993), and they have been
used in related work (Merlo and Stevenson 2001). They have relatively few parameters
to tune (a requirement with small data sets such as ours) and provide a transparent
representation of the decisions made by the algorithm, which facilitates the inspection
of results and the error analysis. We will refer to these Decision Tree classifiers as simple
classifiers, in opposition to the ensemble classifiers, which are complex, as explained
next.

The second type of classifier we use are ensemble classifiers, which have received
much attention in the machine learning community (Dietterich 2000). When building
an ensemble classifier, several class proposals for each item are obtained from multiple
simple classifiers, and one of them is chosen on the basis of majority voting, weighted
voting, or more sophisticated decision methods. It has been shown that in most
cases, the accuracy of the ensemble classifier is higher than the best individual
classifier (Freund and Schapire 1996; Dietterich 2000; Breiman 2001). The main reason
for the general success of ensemble classifiers is that they are more robust towards
the biases particular to individual classifiers: A bias shows up in the data in the form
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of “strange” class assignments made by one single classifier, which are therefore
overridden by the class assignments of the remaining classifiers.7

For the evaluation, 100 different estimates of accuracy are obtained for each feature
set using 10-run, 10-fold cross-validation (10x10 cv for short). In this schema, 10-fold
cross-validation is performed 10 times, that is, 10 different random partitions of the
data (runs) are made, and 10-fold cross-validation is carried out for each partition. To
avoid the inflated Type I error probability when reusing data (Dietterich 1998), the
significance of the differences between accuracies is tested with the corrected resampled
t-test as proposed by Nadeau and Bengio (2003).8

5.4 Results
5.4.1 Simple Classifiers. The accuracies for the simple classifiers are shown in Table 10.
Part A of the table lists the results for each of the binary decisions (qualitative/
non-qualitative, event/non-event, relational/non-relational). The accuracy for each de-
cision is computed independently. For instance, a qualitative-event adjective is judged
correct within the qualitative class iff the decision is qualitative; correct within the event
class iff the decision is event; and correct within the relational class iff the decision is
non-relational.

Part B reports the accuracies for the overall, merged class assignments, taking
polysemy into account (qualitative vs. qualitative-event vs. qualitative-relational vs.
event, etc.).9 In Part B, we report two accuracy measures: full and partial. Full accuracy
requires the class assignments to be identical (an assignment of qualitative for an adjec-
tive labeled as qualitative-relational in the gold standardwill count as an error), whereas
partial accuracy only requires some overlap in the classification of the machine learning
algorithm and the gold standard for a given class assignment (a qualitative assignment
for a qualitative-relational adjective will be counted as correct). The motivation for
reporting partial accuracy is that a class assignment with some overlap with the gold
standard is more useful than a class assignment with no overlap. The figures in the
discussion that follow refer to full accuracy unless otherwise stated.

For the qualitative and relational classes, taking into account distributional infor-
mation allows for an improvement over the default morphology–semantics mapping
outlined in Section 4.5: Feature set all, containing all the features, achieves 75.5% accu-
racy for qualitative adjectives; feature set theor, with carefully defined features, achieves
86.4% for relational adjectives. In contrast, morphology seems to act as a ceiling for

7 The experiments discussed in this section were carried out with the Weka software package (Witten
and Frank 2011), version 3.6. The Decision Tree algorithm used is J48, the latest open source version of
C4.5 (Quinlan 1993), with default parameters (binary splits = False, confidence factor for pruning = 0.25,
minimum number of instances per leaf = 2, reduced-error pruning = False, subtree raising = True, unpruned =
False, use Laplace = False). AdaBoost has also been used with default parameters (base classifier = Decision
Stump, number of iterations = 10, random seed = 1, use resampling instead of reweighting = False, weight
threshold = 100). For Attribute Bagging, we used the Random Subspace algorithm, with J48 as base
classifier (parameters as before), bag size = 1/3, and random seed = 1. We experimented with different
values for the number of iterations (see Section 5.4.2).

8 Note that the corrected resampled t-test can only compare accuracies obtained under two conditions
(algorithms or, as is our case, feature sets); ANOVA would be more adequate. In the field of machine
learning, there is no established correction for ANOVA for the purposes of testing differences in
accuracy (Bouckaert 2004). Therefore, we use multiple t-tests instead, which increases the overall
error probability of the results for the significance tests.

9 Note that, for each adjective, only 10 different full classification proposals are obtained in each feature
set, because each adjective is only used once per run for testing. Therefore, while the per-class accuracy
for each feature set is assessed from 100 estimates (obtained via 10x10 cv), the accuracy of the different
feature sets for full classification is assessed comparing 10 accuracies. This holds for Tables 10 and 11.
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Table 10
Second model: Results with simple classifiers using different feature sets. The frequency
baseline (first row) is marked in italics. The last row, headed by all, shows the accuracy
obtained when using all features together for tree construction. The remaining rows follow the
nomenclature in Table 8; a FS subscript indicates that automatic feature selection is used as
explained in Section 4.2. For each feature set, we record the mean and the standard deviation
(marked by ±) of the accuracies. Best and second best results are boldfaced. Significant
improvements over the baseline are marked as follows: *p < 0.05; **p < 0.01; ***p < 0.001.

A: Per-class accuracy B: Overall accuracy

Qualitative Event Relational Full Partial

baseline 65.2 ± 11.1 76.2 ± 9.9 71.9 ± 9.6 51.0 ± 0.0 65.2 ± 0.0
morph 68.2 ± 11.1 87.3** ± 6.3 85.2*** ± 7.2 59.9*** ± 2.2 84.7*** ± 0.7
morphFS 72.5* ± 7.9 89.1** ± 6.0 84.2*** ± 7.5 60.6*** ± 1.3 87.8*** ± 0.4
func 75.1** ± 9.0 76.1 ± 9.8 82.8** ± 7.5 56.0*** ± 1.9 80.6*** ± 1.8
uni 64.2 ± 10.8 68.4 ± 12.0 82.1** ± 9.0 42.8 ± 2.7 74.8*** ± 2.6
uniFS 66.0 ± 9.3 75.1 ± 10.6 82.2** ± 7.5 52.9 ± 1.9 77.0*** ± 2.0
bi 63.8 ± 9.9 66.2 ± 9.8 78.2* ± 8.2 46.1 ± 2.3 77.8*** ± 1.8
biFS 67.4 ± 10.6 72.3 ± 10.2 83.0*** ± 8.3 52.3 ± 1.7 76.7*** ± 1.0
theor 71.8 ± 10.0 74.1 ± 9.9 86.4*** ± 7.6 54.8*** ± 1.7 81.8*** ± 1.8
all 75.5** ± 9.0 86.5** ± 6.4 86.0*** ± 6.5 62.5*** ± 2.5 87.6*** ± 2.5

event-related adjectives: The best result, 89.1%, is obtained with morphological features
using feature selection. As will be shown in Section 5.5, event-related adjectives do not
exhibit a differentiated distributional profile from qualitative adjectives, which accounts
for the failure of distributional features to capture this class. As could be expected,
the best overall result is obtained with feature set all, that is, by taking all features
into account: 62.5% full accuracy is a highly significant improvement over the baseline,
51.0%. The second best results are obtained with morphological features using feature
selection (60.6%), due to the high performance of morphological information with event
adjectives.

Also note that the POS feature sets, uni and bi, are not able to beat the baseline for
full accuracy: Results are 42.8% and 46.1%, respectively, jumping to 52.9% and 52.3%
when feature selection is used, still not enough to achieve a significant improvement
over the baseline. Thus, for this task and this set-up, it is necessary to use well motivated
features. In this respect, it is also remarkable that feature selection actually decreased per-
formance for themotivated distributional feature sets (func, sem, all; results not shown in
the table), and only slightly improved over morph (59.9% to 60.6% accuracy). Carefully
defined features are of high quality and therefore do not benefit from automatic feature
selection. Actually, Witten and Frank (2011, page 308) state that “the best way to select
relevant attributes is manually, based on a deep understanding of the learning problem
and what the [features] actually mean.”

In the partial evaluation condition, however, all feature sets achieve a highly signif-
icant improvement over the baseline (p < 0.001). Therefore, the classifications obtained
with any of the feature sets are more useful than the baseline, in the sense that they
present more overlap with the gold standard.

5.4.2 Ensemble Classifiers. Error analysis on the results using simple classifiers (not
reported for space reasons) revealed that the errors made by the different classifiers,
using different feature sets, are qualitatively quite different. This motivated the use
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Figure 2
Accuracy of the Attribute Bagging classifier as a function of the number of random partitions i.
Increasing i leads to a rapid increase of accuracy up to i = 30; after that, accuracy stabilizes and
experiences only a slight increase.

of Attribute Bagging (Ho 1998; Bryll, Gutierrez-Osuna, and Quek 2003), an ensemble
classifier (EC) in which the class assignments are obtained by majority voting over
randomly sampled feature subsets.10 Attribute Bagging has two main parameters: the
bag size (number of features used for each classification; it was set to 1/3 given results
reported in the literature, although varying this parameter did not affect the results
much), and the number of iterations i (we tested 3, 4, 5, 6, 10, 20, 30, 40, 50, 60, 70, 80, 90,
100; note that our total feature size is 121, see Table 8). Figure 2 shows that increasing i
leads to a rapid increase of accuracy up to i = 30; with higher i, accuracy experiments
only a slight increase.

Table 11 shows the results of Attribute Bagging, compared to the best simple clas-
sifier and human agreement (observed agreement, in percentage). The results obtained
with AdaBoost (a standard EC; default parameters) are also included as a sanity check.
The best results with Attribute Bagging, reported in the table, were obtained using
both feature selection and binarization (binarization did not improve results for the
remaining classifiers in Tables 10 and 11).

The Attribute Bagging EC with i = 5 achieves comparable accuracy to AdaBoost
with default parameters. Full accuracy results with the Attribute Bagging classifier with
i = 100 (69.1%) are significantly higher than those of the best simple classifier (62.5%; p <

0.0001) and the AdaBoost classifier (p = 0.01; recall however that we did not optimize
AdaBoost’s parameters). Ensemble classifiers are thus helpful for our task.

The best classifier in our experiments (Att. Bagg.FS,bin,i = 100) obtains 69.1% full and
89.0% partial accuracy. This is comparable to the agreement between the expert anno-
tation of the gold standard and naive subjects participating in a large-scale annotation
experiment (po = 0.68, or 68%, and κ = 0.55 for full accuracy, po = 0.85, or 85%, and κ =
0.72 for overlapping accuracy; see Boleda, Schulte imWalde, and Badia [2008] for details
on the comparison). If we view human agreement as an upper bound, we have reached

10 Grouping subsets according to linguistic considerations (i.e., building an EC over the feature subsets
listed in Table 8) improved upon the best simple classifier, but not upon Attribute Bagging.
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Table 11
Second model: Results of the ensemble classifiers, compared to the best simple classifier (first
row) and to the human agreement on the gold standard (last row). Att. Bagg. stands for Attribute
Bagging, and i corresponds to the number of iterations. Percentage human agreement is included
in the last row. An FS subscript indicates feature selection, and bin binarization. Columns as in
Table 10. Best and second best results are boldfaced. Significant improvements over the best
simple classifier are marked as follows: *p < 0.05, **p < 0.01, ***p < 0.001.

A: Per-class accuracy B: Overall accuracy

Qualitative Event Relational Full Partial

best simple (all) 75.5 ± 9.0 86.5 ± 6.4 86.0 ± 6.5 62.5 ± 2.5 87.6 ± 2.5
AdaBoost 82.0* ± 8.6 85.6 ± 7.1 88.0 ± 6.7 66.0* ± 1.9 89.9* ± 1.3
Att. Bagg.FS,bin,i=5 77.0 ± 8.7 85.8 ± 7.1 89.0 ± 6.5 66.3* ± 1.1 87.0 ± 1.5
Att. Bagg.FS,bin,i=100 81.0 ± 8.8 86.1 ± 6.9 90.1* ± 5.3 69.1*** ± 1.0 89.0 ± 1.0
Human agreement − − − 68 85

the maximum accuracy that could be obtained via machine learning for the present task.
Further improvements will need to be preceded by an improvement in the agreement
scores of human judges, that is, by a better definition of the classes and the classifying
task.

Finally, Table 11 shows that the best results are obtained for the relational class
(90.1%), followed by the event class (86.5%), and the qualitative class has the lowest
scores (at most 82%). The qualitative class contains attribute-denoting adjectives, but in
the present definition it is also populated with adjectives that simply do not fit into the
other classes (such as intensional adjectives, as explained earlier). Also, whereas some
adjectives in the class are prototypical qualitative adjectives such as gros ‘big’ or llarg
‘long’, others are unprototypical types of properties (subaltern ‘subordinate’, subsidiari
‘subsidiary’). This factor brings heterogeneity into the class, which justifies the relatively
poor performance of the classifier on this task. Significantly, also, ECs do not improve
upon simple classifiers for the event class; again, morphological information acts as
a ceiling and no combination of information serves to go beyond that ceiling, as will
become clear in the error analysis explained next.

5.5 Error Analysis

Table 12 depicts the contingency table of the classifications by the experts (rows) and
one randomly chosen run of the Attribute Bagging classifier with i = 100 (columns). The
table shows that there are two major sources of errors: First, the confusion between the
qualitative and event classes, which is responsible for 14 errors (see dark-gray shaded
cells in the table; also note that the related Q–QE and E–QE misclassifications account
for another 14 errors). To compare, note that the confusion between the qualitative and
relational classes only accounts for six of the errors, and there are no cases of confusion
between event and relational adjectives.

The second major source of errors is the overgeneration of polysemous adjectives
(see medium-gray shaded cells): there are 26 adjectives tagged as monosemous by the
experts and assigned a polysemous class by the system. To compare, the opposite case
(i.e., tagging polysemous adjectives as monosemous) accounts for 13 errors only (see
light-gray shaded cells). We next examine the two main types of errors in more detail.
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Table 12
Contingency table comparing the gold standard (rows) against run 2 of the Attribute Bagging
classifier with i = 100 (columns). Dark-gray cells highlight the confusion between the qualitative
and event classes; medium-gray cells highlight the overgeneration of polysemous adjectives;
light-gray cells highlight the opposite case, that is, the generation of monosemous adjectives
that should have been tagged as polysemous.

Q E R QR QE ER Total

Q 90 4 2 3 8 0 107
E 10 17 0 1 6 3 37
R 4 0 20 4 0 2 30
QR 5 0 4 13 0 1 23
QE 1 1 0 0 5 0 7
ER 0 0 2 1 0 3 6

Total 110 22 28 22 19 9 210

5.5.1 Distinguishing between Qualitative and Event Adjectives. Table 12 suggests that there
are difficulties in distinguishing event-related from qualitative adjectives. Feature anal-
ysis confirms that the distinction between these two classes is only partially possible
on morphological grounds, but not on distributional grounds. As for morphological
information, Figure 3 shows that most event-related adjectives are deverbal or participle
adjectives, although the reverse is not true: 14 deverbal and two participle adjectives are
qualitative.

In fact, the class distribution varies with the suffix (see Table 13): Some types, such
as -or and the participle, show a clear predominance of the event class (see dark-gray
shaded cells); other types, such as -ble, -iu, or -nt, are more spread in their distribution
(see light-gray shaded cells). Thus, the suffix seems to influence the resulting readings,
with some active-like suffixes building a much more transparent relation to the
event (creador ‘creating’, exportador ‘exporting’, recomanat ‘recommended’), and some
passive-like or stative suffixes being more prone to creating a stative meaning
(contingent ‘contingent’, formidable ‘formidable | terrific’, significatiu ‘significant’). The
aspectual class of the deriving verb (Vendler 1957) also plays a role: For instance,
although the meaning of abundant (‘abundant’) is related to that of the verb abundar
(‘abound’), it clearly has a more stative (property-like) meaning than many of the other
event adjectives, due to the fact that the deriving verb is stative. Correspondingly,

Figure 3
Derivational types in the qualitative (Q) and event-related (E) classes. The bars represent the
classes, and the colors the derivational types, as shown in the legend.
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Table 13
Contingency table of the most frequent deverbal suffixes (rows) and classification (columns).
Dark-gray cells highlight suffixes that mostly create event-related adjectives, and light-gray cells
indicate suffixes with a more spread class distribution.

Q E R QR QE ER Total

-ble 3 6 0 0 1 1 11
-iu 3 1 1 2 0 4 11
-nt 4 6 0 0 0 1 11
-or 1 10 0 0 0 0 11
participle 2 8 0 0 5 0 15

Total 16 36 3 2 7 6 70

abundant is classified as qualitative by the Attribute Bagging algorithm. This variation in
the morphology–semantics interface is also mirrored in the feature value distributions,
as will be shown subsequently.

As for distributional information, Figure 4 depicts the feature value distribution
for nine selected features across basic classes qualitative (Q), event-related (E), and
relational (R), excluding polysemous adjectives. The figure clearly shows that, whereas
relational adjectives tend to have a differentiated value distribution for many of
the features, the values for the event-related class in general overlap with those of
the qualitative class. In fact, of the 18 theoretically motivated features defined for the
experiments, only two exhibit statistically significant differences in the distribution
of the qualitative and event-related class according to a two-tailed t-test (α = 0.01; no
equality of variance assumed). These are pre-nominal and complement-bearing (graphs A
and I in Figure 4; df = 108.9/54.6, t = 3.56/−3.09, p-value = 0.0005/0.003, respectively).
These two features show that in general event-related adjectives appear less often than
qualitative adjectives in pre-nominal position and tend to bear more complements.
Both differences are presumably due to the fact that many event adjectives inherit
the argument structure of the deriving verb, with arguments expressed via PPs,
constituting heavier constituents that are placed after the head noun. This is but a slight
tendency and it is not homogeneous through the class, however.

The remaining features do not show differences between event and qualitative
adjectives, but rather properties of relational adjectives. In addition to the properties
that were already known, the figure shows that relational adjectives appear more often
in definite NPs acting as preposition complements (graphs E and H). Thus, the typical
syntactic context for a relational adjective is preposition + definite determiner + noun +
relational adjective). This type of adjective also appears slightly more often with feminine
head nouns, which could be due to the fact that, in Catalan, many abstract nouns ( fı́sica
‘physics’, capacitat ‘ability’) are feminine, for morphological reasons. These nouns are
often modified by relational adjectives to select for subtypes of the class of objects
denoted by the nouns (McNally and Boleda 2004).

Another difficulty in the distributional characterization of the event class is the
fact that it is quite heterogeneous, due to the variation at the morphology–semantics
interface discussed earlier. This can be traced in Figure 4 by the fact that for most of
the features, the box of the event class is larger than the box of the other two classes,
meaning that there is more variation within the event class than within the other two
classes.

604



Boleda, Schulte im Walde, and Badia Modeling Regular Polysemy in Catalan Adjectives

Figure 4
Feature value distribution across classes qualitative (Q), event-related (E), and relational (R) for
nine selected features (see Section 5.2 for the definition of these features).

To sum up, morphological features can quite reliably spot event-related adjectives,
but distributional information cannot. As a result, in the cases where morphology gives
thewrong prediction, nothing can be done on the distributional side to remedy this. This
results in the confusion of event-related and qualitative adjectives shown in Table 12.

5.5.2 Detecting Polysemous Adjectives. Recall from Table 12 that the system overgenerates
polysemous adjectives: There are 26 monosemous adjectives assigned to a polysemous
class. One of the reasons for this overgeneration is the procedure followed. The proce-
dure treats the decision on each of the basic classes as if they were all independent.
Thus, the probability for an adjective being polysemous amounts to the product of
the probabilities of the adjective belonging to each of the basic classes, as expressed
in Equation (4) for two arbitrary given classes, A and B.

p(AB) = p(A) ∗ p(B) (4)

Table 14 shows that the distribution of polysemous items predicted by Equation (4)
is more similar to the distribution obtained with the best machine learning classifier
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Table 14
Distribution of polysemous items and absolute numbers, according to the prediction
(Equation (4); first column), in the machine learning (ML) results shown in Table 12
(second column), and in the gold standard (GS; third column).

Predicted ML GS

QR 15 22 23
QE 19 19 7
ER 5 9 6

(ML) than to the distribution of polysemous items in the gold standard (GS) for the QE
cases. The distribution is estimated from the frequency over the 210 adjectives in the
gold standard, and shown as absolute numbers.

Both Equation (4) and the ML classifier assign 19 adjectives to the QE polysemy
type, although the gold standard contains only 7 QE adjectives. The equation predicts
fewer QR adjectives than observed in the data, but in this case the classifier produces a
similar number of QR adjectives than attested (22 vs. 23). Finally, the classifier produces
more ER adjectives than observed and also than predicted by Equation (4), but in
this case the numbers are so small that no clear tendencies can be observed. Thus,
the procedure followed can be said to cause the overgeneration of items for the QE
polysemy type, but it does not account for the other two polysemous classes.

Further qualitative analysis on the overgenerated polysemous adjectives (corre-
sponding to the middle-gray cells in Table 12; not reported because of space concerns)
showed that different types of evidence motivate the inclusion of monosemous adjec-
tives in two classes, causing them to be considered polysemous. This suggests that,
because polysemous adjectives exhibit only partial or limited evidence of each class,
the threshold for positive assignment to a class is lowered, resulting in the observed
overgeneration. Recall that at the beginning of this section, when introducing themodel,
we warned that it would be specially challenging to distinguish between noise and
evidence for a given class. We have indeed found this to be a challenge. The mentioned
effect is amplified by the procedure followed, which assumes that the class assignments
are independent, thus not adequately enough modeling the empirical distribution of
polysemy.

6. Discussion: Towards a Model for Regular Polysemy

The acquisition experiments presented in Sections 4 and 5 correspond to two differ-
ent underlying models of regular polysemy. Figure 5 represents the two models in a
simplified scenario with just two basic classes (A and B). The first model (Figure 5(a);
experiments in Section 4) treats polysemous words in terms of independent classes. The
second model (Figure 5(b); experiments in Section 5) treats polysemous words alike to
those of the basic classes: Polysemous assignments result frommembership in two basic
classes.

As can be seen in the figure, there are two main differences between the models.
First, the number of classes considered: Whereas the second model only considers n
classes, in the general case the first model will need to consider

n +

(
n
2

)
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Figure 5
The two models of regular polysemy tested in this article, assuming a simplified scenario with
just two basic classes (A and B). The rows represent three different cases: one monosemous
adjective of class A (MonosemousA), one monosemous adjective of class B (MonosemousB), and
one polysemous adjective (PolysemousAB). The columns represent the classes assumed in each
model: Three classes (a), or only two (b). The correct class assignments for each case are shown
as dashed rectangles.

classes (n monosemous classes plus
(

n
2

)
polysemous classes, all the possible two-

combinations of the monosemous classes). This formula assumes that only two-way
regular polysemy is allowed, as in this article; polysemy across three or more classes
would make the explosion of classes even worse. It is clear that the second model is
easier to learn.

The second difference concerns the way class assignments to polysemous words
are carried out. In the first model, polysemous words are assigned to one single, inde-
pendent class, whereas in the second they are assigned to each of the two basic classes
that give rise to the regular polysemy. Recall that the motivation for the first model was
that—given that regularly polysemous adjectives show a particular hybrid behavior—
we could expect that polysemous adjectives could be characterized as differentiated
classes. This expectation has clearly not been borne out. A further problemwith the first
model it that it in principle allows for a polysemous class AB whose properties do not
necessarily have anything to do with those of the basic classes A and B. The second
model, in contrast, enforces that polysemous adjectives exhibit properties of each of the
classes they participate in, which is both theoretically and empirically more adequate.
For these reasons, we believe that the secondmodel is more suitable to represent regular
polysemy than the first model.

The second model is also not completely satisfactory, however. As discussed in the
previous section, in the current implementation of the model the class assignments are
assumed to be independent (though this need not be the case in other instantiations of
the model). Also, in a way, it is at the opposite end of the scale with respect to the first
model: Whereas in the first model polysemous adjectives do not need to have anything
in common with the basic classes, in the second model a polysemous word is assumed
to be just like any other word in each of the basic classes. For instance, a qualitative-
relational adjective is assumed to function both as a full-fledged qualitative adjective
and a full-fledged relational adjective. By their very nature, polysemous words will
show only some evidence for each of the classes, as their occurrences (and thus their
properties) will be distributed across the two classes. Therefore, they will be untypical
members of at least one of the intervening classes.
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An alternative instantiation of the second model could use soft clustering (Pereira,
Tishby, and Lee 1993; Rooth et al. 1999; Korhonen, Krymolowski, andMarx 2003), which
assigns a probability to each of the classes and is thus not bound to a hard yes/no
decision, as our approach does. From a theoretical point of view (and for many practical
purposes such as dictionary construction), however, a distinction betweenmonosemous
and polysemous words is desirable, which adds a further parameter to be optimized
in a soft clustering setting. Overlapping clustering (Banerjee et al. 2005), which allows
for membership in multiple clusters, avoids this difficulty. Both methods have the
advantage that they do not assume independence of the decisions. The most serious
problem for the experiments presented in this article, however, would presumably also
be a problem for these settings: The fact that the skewed sense distribution of many
words makes it difficult to distinguish evidence for a particular class from noise. In
the soft clustering setting, for instance, it would be hard to distinguish whether 10%
evidence for class A and 90% for class B corresponds to polysemy with a skewed
distribution, to noise in the data, or simply to an untypical instance.

To sum up, the main problem for the models presented in this article is that nei-
ther model can capture the distributional connection between P(AB) and P(A), either
because AB and A are seen as unrelated atoms in the first place (first model), or because
AB is diluted into A and B (second model). A more refined statistical approach that can
model this interdependency is needed for further progress. Such a model should take
into account both the differences of polysemous adjectives with respect to the other
adjectives in the basic classes (first model) and their similarities (second model), thus
directly capturing their hybrid behavior.

7. Conclusion

This article has tackled the automatic induction of semantic classes for Catalan ad-
jectives, with a special emphasis on regular polysemy. To our knowledge, this is the
first time that such an endeavor has been carried out, as (1) related work on lexical
acquisition has focused on verbs (and, to a lesser extent, nouns) and onmajor languages
such as English and German; and (2) polysemy in general has been largely ignored in
lexical acquisition, and regular polysemy has only been sparsely addressed in empirical
computational semantics.

We have explored the relationship between observable cues and semantic proper-
ties for adjectives, and, specifically, the morphology–semantics and syntax–semantics
interfaces. We have showed that there is a systematic relation between the type of
denotation of an adjective and its morphological and distributional properties. Our
experiments have furthermore related the linguistic properties of adjectives as described
in the literature to the information that can be extracted from linguistic resources, such
as corpora or lexical databases. The presented results and analyses provide empirical
support for the qualitative and relational classes, defined in theoretical work, and bring
event-related adjectives into focus, a type of adjective that has been largely neglected in
the literature.

This article has focused on Catalan as a case study, but most of the properties
discussed (predicativity, gradability, complementation patterns), as well as the types
of polysemy explored, are relevant for a broader range of languages, specially Indo-
European languages (Dixon and Aikhenvald 2004). The approach does not require
deep-processing resources (full parsing, semantic tagging, semantic role labeling),
which makes it useful for lesser-researched languages.
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The experiments show that a major bottleneck for our purposes is the definition of
the classification itself: The machine learning results obtained have reached an upper
bound, as the best classifier has achieved 69.1% accuracy (against a 51.0% baseline), and
the human agreement is 68%. Thus, improvements in the computational task will need
to be preceded by improvements in the agreement scores, that is, by a better and clearer
definition of the classification and the classification task. We have shown that this is
by no means a trivial issue. In fact, low inter-coder agreement scores are a problem for
machine learning approaches to semantic and discourse-related phenomena in general.
This is in contrast to tasks such as POS tagging or syntactic parsing, where relatively
high inter-coder agreement scores are achieved. This state of affairs is probably due to
the fact that semantic and pragmatic phenomena are much less well understood than
morphological or syntactic phenomena.

Our experiments have highlighted a number of problems with the current classifi-
cation proposal. First, the distinction between event-related and qualitative adjectives.
The event class cannot be distinguished from the qualitative class with the distributional
information used in this article, and its members are not homogeneous. We have shown
that factors such as the aspectual class of the deriving verb or the suffix of the deverbal
adjective play a role in the semantic and syntactic behavior of these adjectives that
should be further explored. Also, a crucial type of evidence remains to be explored,
namely, the selectional preferences of adjectives. These may be a relevant clue to the dif-
ferences between qualitative and event-related adjectives. The second main problem is
the fact that the qualitative class contains adjectives that do not fit into the other classes,
constituting a sort of “catch-all” class. A natural extension for the work presented in
this article would be to define a finer-grained categorization including the problematic
cases discussed earlier. For instance, adjectives deriving from stative verbs could be
distinguished from those deriving from active verbs, and different types of qualitative
adjectives could be treated as different classes.

As for regular polysemy, we have shown that polysemous adjectives exhibit a
hybrid behavior, with properties from all the classes involved in each type of regular
polysemy. We have empirically tested two models of the phenomenon aimed at
exploiting this hybrid behavior. The first model treats polysemous words in terms
of independent classes, and we have argued that it is not adequate, neither from
a theoretical nor from an empirical perspective. The second model assumes that
polysemous words belong to each of the basic classes participating in the regular
polysemy. This model is more adequate than the first one, as it accounts for the
properties of the basic classes found in polysemous words, but it fails to account for the
differences between polysemous and monosemous words. To improve on the modeling
of regular polysemy, we plan to move to token-based (word-in-context) models
(Schütze 1998; Erk and Padó 2010), as opposed to type-based models as we have done
in this article. This should in turn shed light into the problem of distinguishing between
evidence for a particular class from noise, discussed previously.

Finally, at a methodological level, we have illustrated how the broad coverage,
large-scale, radically empirical approaches developed in computational linguistics can
be of use to uncover phenomena and facts that are relevant for the study of language,
providing complementary evidence to the analytic tools traditionally used by linguists.
Most prominently, we have shown that (1) by randomly sampling the set of words to be
analyzed, new or neglected phenomena emerge; (2) the feature representation typically
used by machine learning algorithms provides an empirical handle to the linguistic
properties of words that can be explored in different ways (e.g., to test hypotheses
about the morphology-syntax and semantics-syntax interfaces); (3) machine learning
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experiments provide a framework for the systematic evaluation of different models
of the phenomenon under study (in our case, both adjective classification and regular
polysemy). Computational linguistic studies are also inherently limited in several
aspects, such as the type of evidence that can be used or the ways in which it can be
used. Despite these limitations, we believe that empirical computational linguistics
approaches are a gold mine of new knowledge about language.

Appendix: Gold Standard Data

In the following, we include the lemmata that were manually classified for the first and
second set of experiments, respectively (Sections 4 and 5). For details on the classes and
the methodology, see the body of the article. The translation of the adjectives has been
carried out with the help of the Spanish–English/English–Spanish Collins Dictionary
(3rd edition) and Google Translator.11 Different senses are separated with a vertical bar
(‘|’), different translations of the same sense with a comma (‘,’). Whenever possible,
we have included adjective equivalents; many of the relational adjectives, however, are
equivalent to attributive uses of nouns. Such nominal translations have been marked
with (attr.).

Recall that the gold standard for the second experiment, together with its feature
values, is available at the ACL repository (see URL in footnote 6).

Gold standard for the experiments with the first model (Section 4).

� intensional (I): mer ‘mere’, presumpte ‘alleged’.

� qualitative (Q): accidental ‘accidental’, accidentat ‘uneven, rough | injured’,
alienant ‘alienating’, anticlerical ‘anticlerical’, avergonyit ‘ashamed’, bastard
‘bastard’, benigne ‘benign’, caracurt ‘short-faced’, coherent ‘coherent’,
colpidor ‘striking’, contradictori ‘contradictory’, cosmopolita ‘cosmopolitan’,
destructor ‘destructive’, diversificador ‘diversifying’, duratiu ‘durative’,
escàpol ‘fleeing’, esfereı̈dor ‘terrifying’, evident ‘evident’, exempt ‘exempt’,
expeditiu ‘expeditious’, fortuı̈t ‘fortuitous’, gradual ‘gradual’, grandiós
‘grand’, gratuı̈t ‘free | gratuitous’, honest ‘honest’, implacable ‘implacable’,
infreqüent ‘infrequent’, innoble ‘ignoble’, inquiet ‘anxious | restless’,
insalvable ‘insuperable’, inservible ‘useless’, invers ‘inverse’, irreductible
‘unyielding’, laberı́ntic ‘labyrinthine’, llaminer ‘sweet-toothed | appetising’,
malalt ‘ill’, morat ‘purple’, negatiu ‘negative’, nombrós ‘numerous’, penós
‘distressing’, preeminent ‘pre-eminent’, preponderant ‘preponderant’,
raonable ‘reasonable’, real ‘real’, representatiu ‘representative’, sobrenatural
‘supernatural’, subsidiari ‘subsidiary’, supraracional ‘supra-rational’, trivial
‘trivial’, uniforme ‘uniform’, usual ‘usual’, utòpic ‘Utopian’, vitalista
‘vitalist(ic)’.

� relational (R): adquisitiu ‘acquisitive’, alfabètic ‘alphabetical’, carbònic
‘carbonic’, cervical ‘neck (attr.), cervical’, climatològic ‘climatologic’,
col·laborador ‘collaborating’, curatiu ‘curative’, diofàntic ‘diophantic’,
formatiu ‘formative’, freudià ‘Freudian’, governatiu ‘governmental’,
indicador ‘indicating’, onomàstic ‘name (attr.), onomastic’, parlant ‘talking’,

11 http://translate.google.com.
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penitenciari ‘penitentiary, prison (attr.)’, periglacial ‘periglacial’, pesquer
‘fishing’, petri ‘stony’, preescolar ‘preschool (attr.)’, protector ‘protecting’,
salvador ‘rescueing’, sociocultural ‘sociocultural’, sud-africà ‘South African’,
tàctil ‘tactile’, terciari ‘tertiary’, terminològic ‘terminological’, topogràfic
‘topographic(al)’, toràcic ‘thoracic’, vaginal ‘vaginal’, valencianoparlant
‘Valencian-speaking’, ventral ‘ventral’, veterinari ‘veterinary’, vocàlic
‘vocalic, vowel (attr.)’, xinès ‘Chinese’.

� intensional-qualitative (IQ): antic ‘ancient | former’.
� qualitative-relational (QR): alemany ‘German’, celest ‘celestial | sky blue’,

contaminant ‘pollutant’, cultural ‘cultural’, femenı́ ‘female (attr.) | feminine’,
irònic ‘irony (attr.) | ironic’, menorquı́ ‘Menorcan’, militar ‘war (attr.) |
military’, sonor ‘sound (attr.) | sonorous’, triomfal ‘triumphal | triumphant’,
viril ‘man (attr.) | virile, manly’.

Gold standard for the experiments with the second model (Section 5).

� qualitative (Q): absort ‘absorbed’, aleatori ‘random’, altiu ‘haughty’, ample
‘wide’, animal ‘animal’, anòmal ‘anomalous’, baix ‘low’, benigne ‘benign’,
bord ‘infertile (plant) | stroppy (person)’, caduc ‘deciduous’, calb ‘bald’,
capaç ‘able’, cardinal ‘cardinal’, caut ‘cautious’, cèlebre ‘famous’, concret
‘concrete’, conservador ‘conservative’, contingent ‘contingent’, cru ‘raw |
crude’, curull ‘full’, decisiu ‘decisive’, deficient ‘deficient, defective’, deliciós
‘delicious’, desproporcionat ‘disproportionate’, dificultós ‘difficult’, esquerre
‘left’, excels ‘sublime’, exquisit ‘exquisite’, fluix ‘weak | loose’, foll ‘crazy’,
formidable ‘formidable | terrific’, franc ‘frank’, fresc ‘fresh’, gros ‘big’, gruixut
‘thick’, humil ‘humble’, igual ‘equal, alike’, imperfecte ‘imperfect’, impropi
‘improper’, incomplet ‘incomplet’, inhumà ‘inhuman’, insuficient
‘insufficient’, integral ‘integral | wholegrain’, ı́ntegre ‘entire’, intel·ligent
‘intelligent’, intern ‘intern’, lı́quid ‘liquid’, llarg ‘long’, llis ‘smooth’, mal
‘bad’, màxim ‘maximum’, menor ‘minor | smaller | younger’, mı́nim
‘minimum’, moll ‘wet’, morat ‘purple’, mutu ‘mutual’, notori ‘notorious’,
ocult ‘hidden’, opac ‘opaque’, paradoxal ‘paradoxical’, peculiar ‘peculiar’,
perillós ‘dangerous’, pertinent ‘pertinent’, pessimista ‘pessimistic’, plàcid
‘placid’, precoç ‘precocious’, predilecte ‘favorite’, primari ‘primary’, primitiu
‘primitive’, propens ‘prone’, pròsper ‘prosperous’, prudent ‘prudent’,
punxegut ‘sharp-pointed’, quadrat ‘square’, reaccionari ‘reactionary’, recent
‘recent’, recı́proc ‘reciprocal’, remarcable ‘remarkable’, responsable
‘responsible’, rı́gid ‘rigid’, roent ‘burning’, sant ‘saint’, semicircular
‘semicircular’, seriós ‘serious’, significatiu ‘significant’, silenciós ‘silent’,
similar ‘similar’, simplista ‘simplistic’, subaltern ‘subordinate’, sublim
‘sublime’, subsidiari ‘subsidiary’, subterrani ‘underground’, superflu
‘superfluous’, tenaç ‘tenacious’, terrible ‘terrible’, tı́pic ‘typical’, titular
‘titular, official’, tort ‘bent’, total ‘total’, tou ‘soft’, triangular ‘triangular’,
vague ‘vague’, ver ‘true’, viciós ‘vicious’, vigorós ‘vigorous’, viril ‘virile’,
vulgar ‘vulgar’.

� event-related (E): abundant ‘abundant’, abundós ‘plentiful’, acompanyat
‘accompanied’, admirable ‘admirable’, contradictori ‘contradictory’,
convincent ‘convincing’, creador ‘creative’, divergent ‘divergent’, encarregat
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‘in charge’, exigent ‘demanding’, exportador ‘exporting’, immutable
‘immutable’, imperceptible ‘imperceptible’, informatiu ‘informative’, irat
‘angry’, matiner ‘who gets up early’, motor ‘motor’, oblidat ‘forgotten’,
orientat ‘oriented’, picat ‘pricked |minced | offended’, preferible ‘preferable’,
productor ‘producing’, promès ‘promised’, protector ‘protecting, protective’,
receptor ‘receiving’, recomanat ‘recommended’, regulador ‘regulating’,
resultant ‘resulting’, revelador ‘revealing’, salvador ‘savior’, satisfactori
‘satisfactory’, sospitós ‘suspicious | suspect’, temible ‘fearsome’, treballador
‘working’, variable ‘variable’, victoriós ‘victorious’, vivent ‘living’.

� relational: americà ‘American’, angular ‘angular’, atòmic ‘atomic’, barcelonı́
‘Barcelonian’, calcari ‘calcareous’, causal ‘causal’, ciutadà ‘city (attr.)’,
conflictiu ‘conflict (attr.)’, corporatiu ‘corporate’, cranià ‘skull (attr.)’, diari
‘daily’, elèctric ‘electric(al)’, epistemològic ‘epistemological’, escènic ‘scenic’,
estacional ‘seasonal’, fangós ‘muddy’, imperial ‘imperial’, lleidatà ‘Leridan’,
manresà ‘Manresan’, marxià ‘Marx (attr.)’, melòdic ‘melodic’, mercantil
‘mercantile’, obrer ‘working-class, labour (attr.)’, ontològic ‘ontological’,
pasqual ‘paschal’, peninsular ‘peninsular’, renaixentista ‘Renaissance (attr.)’,
respiratori ‘respiratory’, terrestre ‘terrestrial’, viari ‘road (attr.)’.

� event-qualitative (EQ): animat ‘animate | lively’, cridaner ‘who usually
shouts | loud-colored’, embolicat ‘wrapped up |messy’, encantat ‘charmed |
happy’, obert ‘opened | open’, raonable ‘that can be reasoned on |
reasonable, fair’, sabut ‘known | wise’.

� event-relational (ER): comptable ‘countable | account (attr.)’, cooperatiu
‘cooperative | cooperative (attr.)’, digestiu ‘digestive | digestion (attr.)’,
docent ‘teaching | educational’, nutritiu ‘nutritive | nutritional’, vegetatiu
‘vegetative | vegetation (attr.)’.

� qualitative-relational (QR): alegre ‘cheerful’, amorós ‘lovely | love (attr.)’,
anarquista ‘anarchistic | anarchist’, capitalista ‘capitalistic | capitalist’,
catalanista ‘Catalanistic | Catalanist’, comunista ‘communistic | communist’,
diürn ‘diurnal, day (attr.)’, eròtic ‘erotic | love (attr.)’, familiar ‘familiar |
family (attr.)’, feminista ‘feminist | feminism (attr.)’, humà ‘humane |
human’, infantil ‘childish | child (attr.)’, intuı̈tiu ‘intuitive | intuition (attr.)’,
local ‘local | place (attr.)’, nocturn ‘nocturnal, night (attr.)’, poètic ‘poetic,
idealized | poetry (attr.)’, professional ‘(worker) who works well |
professional, job (attr.)’, revolucionari ‘revolutionary | revolution (attr.)’,
sensitiu ‘sensitive | sensation (attr.)’, socialista ‘socialistic | socialist’, turı́stic
‘touristy | tourist (attr.)’, unitari ‘unitary | union (attr.)’, utilitari ‘utilitarian |
utility (attr.)’.
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