
Book Review

Natural Language Processing with Python

Steven Bird, Ewan Klein, and Edward Loper
(University of Melbourne, University of Edinburgh, and BBN Technologies)

Sebastopol, CA: O’Reilly Media, 2009, xx+482 pp; paperbound,
ISBN 978-0-596-51649-9, $44.99; on-line free of charge at nltk.org/book

Reviewed by
Michael Elhadad
Ben-Gurion University

This book comes with “batteries included” (a reference to the phrase often used
to explain the popularity of the Python programming language). It is the compan-
ion book to an impressive open-source software library called the Natural Language
Toolkit (NLTK), written in Python. NLTK combines language processing tools (token-
izers, stemmers, taggers, syntactic parsers, semantic analyzers) and standard data sets
(corpora and tools to access the corpora in an efficient and uniform manner). Al-
though the book builds on the NLTK library, it covers only a relatively small part
of what can be done with it. The combination of the book with NLTK, a growing
system of carefully designed, maintained, and documented code libraries, is an extra-
ordinary resource that will dramatically influence the way computational linguistics
is taught.

The book attempts to cater to a large audience: It is a textbook on computational lin-
guistics for science and engineering students; it also serves as practical documentation
for the NLTK library, and it finally attempts to provide an introduction to programming
and algorithm design for humanities students. I have used the book and its earlier
on-line versions to teach advanced undergraduate and graduate students in computer
science in the past eight years.

The book adopts the following approach:

� It is first a practical approach to computational linguistics. It provides
readers with practical skills to solve concrete tasks related to language.

� It is a hands-on programming text: The ultimate goal of the book is to
empower students to write programs that manipulate textual data and
perform empirical experiments on large corpora. Importantly, NLTK
includes a large set of corpora—this is one of the most useful and
game-changing contributions of the toolkit.

� It is principled: It exposes the theoretical underpinnings—both
computational and linguistic—of the algorithms and techniques that
are introduced.

� It attempts to strike a pragmatic balance between theory and applications.
The goal is to introduce “just enough theory” to fit in a single semester
course for advanced undergraduates, while still leaving room for practical
programming and experimentation.

� It aims to make working with language pleasurable.

Computational Linguistics Volume 36, Number 4

The book is not a reference to computational linguistics and it does not provide a
comprehensive survey of the theory underlying computational linguistics. The niche
for such a comprehensive review textbook in the field remains filled by Jurasky and
Martin’s Speech and Language Processing (2008). What the book does achieve very well is
to bring the “fun” in building software tools to perform practical tasks and in exploring
large textual corpora.

As a programming book describing practical state-of-the-art techniques, it belongs
to the glorious family of Charniak et al.’s Artificial Intelligence Programming (1987),
Pereira and Shieber’s Prolog and Natural Language Analysis (1987), and Norvig’s mind-
expanding Paradigms of Artificial Programming (1992). It differs from these books in its
scope (CL vs. AI) and the programming language used (Python vs. Lisp or Prolog).
Another key difference is in its organization: Whereas the classical books have a strict
distinction between chapters covering programming techniques and chapters introduc-
ing core algorithms or linguistic concepts, the authors here attempt to systematically
blend, in each section, practical programming topics with linguistic and algorithmic
topics. This mixed approach works well for me.

As the dates of these older classics indicate (they were published 20 to 25 years
ago), this book is important in closing a gap. The transition of the field from a symbolic
approach to data-driven/statistical methods in the mid 1990s has transformed what
counts as basic education in computational linguistics. Correspondingly, textbooks ex-
panded and introduced new material on probability, information theory, and machine
learning. The trend started with Allen’s (1995) textbook, which introduced a single
chapter on statistical methods. Charniak (1993) and Manning and Schütze (1999) fo-
cused uniquely on statistical methods and provided thorough theoretical material—but
there was no corresponding focus on programming techniques. Another impediment to
teaching was the lack of easy access to large data sets (corpora and lexical resources).
This made teaching statistical methods with hands-on exercises challenging. Combining
statistical methods for low-level tasks with higher levels (semantic analysis, discourse
analysis, pragmatics) within a one-semester course became an acrobatic exercise.

Although deciding on the proper proportion among mathematical foundations,
linguistic concepts, low-level programming techniques, advanced algorithmic methods,
and methodological principles remains challenging, this book definitely makes the life
of computational linguistics students and teachers more comfortable. It is split into five
sections: Chapters 1 to 4 are a hand-holding introduction to the scope of “language
technologies” and Python programming. Chapters 5 to 7 cover low-level tasks (tagging,
sequence labeling, information extraction) and introduce machine learning tools and
methods (supervised learning, classifiers, evaluation metrics, error analysis). Chapters
8 and 9 cover parsing. Chapter 10 introduces Montague-like semantic analysis. Chap-
ter 11 describes how to create and manage corpora—a nice addition that feels a bit out
of place in the structure of the book. Each chapter ends with a list of 20 to 50 exercises—
ranging from clarification questions to mini-programming projects.

The chapters all include a mix of code and concepts. Chapter 1 sets the tone. In
a few pages, the reader is led into an interactive session in Python, exploring textual
corpora, computing insightful statistics about various data sets, extracting collocations,
computing a bigram model, and using it to generate random text. The presentation is
fun, exciting, and immediately piques the interest of the reader.

Chapter 2 covers one of the most critical contributions of the book. It presents
commonly used corpora packaged together with NLTK and Python code to read them.
The corpora include the Gutenberg collection, the Brown corpus, a sample of the Penn
Treebank, CoNLL shared task collections, SemCor, and lexical resources (WordNet and

768

Book Review

Verbnet). The important factor is that these resources are made thoroughly accessi-
ble, easily downloaded, and easily queried and explored using an excellent Python
programming interface. The NLTK Corpus Reader architecture is a brilliant piece of
software that is well exploited in the rest of the book.

Chapter 3 introduces programming techniques to deal with text, Unicode, down-
loading documents from various sources (URLs, RSS feeds) and excellent practical cov-
erage of regular expressions. It is typical of the book’s approach that regular expressions
are taught by example and through useful applications, and not through an introduction
to automata theory. The chapter ends with an excellent introduction to more advanced
topics in sentence and word segmentation, with examples from Chinese. Overall, this
chapter is technical but extremely useful as a practical basis.

I find Chapter 4 problematic. It is a chapter fully focused on programming, which
introduces some key techniques in Python (generators, higher-order functions) together
with basic material (what a function is, parameter passing). In my experience teaching
humanities students, the material is not sufficient for non-programmers to become suf-
ficiently proficient and not focused enough to be useful for experienced programmers.

Chapters 5 to 7 introduce the data-driven methodology that has dominated the
field in the past 15 years. Chapter 5 covers the task of part-of-speech tagging. The
linguistic concepts are clearly explained, the importance of the annotation schema is
well illustrated through examples (using a simplified 15-tag tagset and a complex
one with 50 or more tags). The chapter incrementally introduces taggers using dic-
tionaries, morphological cues, and contextual information. Students quickly grasp the
data-driven methodology: training and testing data, baseline, backoff, cross-validation,
error analysis, confusion matrix, precision, recall, evaluation metrics, perplexity. The
concepts are introduced through concrete examples and help the student construct and
improve a practical tool. Chapter 6 goes deeper into machine learning, with supervised
classifiers. The Python code that accompanies this chapter (the classifier interface and
feature extractors) is wonderful. The chapter covers a wide range of tasks where the
classification method brings excellent results (it reviews POS tagging, document clas-
sification, sequence labeling using BIO-tags, and more). The theory behind classifiers
is introduced lightly. I was impressed by the clarity of the explanations of the first
mathematical concepts that appear in the book—the presentation of the concept of
entropy, naive Bayes, and maximum entropy classifiers builds strong intuition about
the methods. (Although the book does not cover them, NLTK includes excellent code
for working with support vector machines and hidden Markov models.) Chapter 7
builds on the tools of the previous two chapters and develops competent chunkers and
named-entity recognizers. For a graduate course, the theoretical foundations would be
too superficial—and one would want to complement these chapters with theoretical
foundations on information theory and statistics. (I find that a few chapters from All of
Statistics [Wasserman 2010] and from Probabilistic Graphical Models [Koller and Friedman
2009] together with Chapter 6 of Foundations of Statistical NLP [Manning and Schütze
1999] on estimation methods are useful at this stage to consolidate the mathematical un-
derstanding.) Readers come out of this part of the book with an operational understand-
ing of supervised statistical methods, and with a feeling of empowerment: They have
built robust software tools, run them on the same data sets big kids use, and measured
their accuracy.

The next two chapters (8 and 9) cover syntax and parsing. They start with CFGs and
simple parsing algorithms (recursive descent and shift-reduce). CKY-type algorithms
are also covered. A short section on dependency parsing appears (Section 8.5), but
I found it too short to be useful. A very brief section is devoted to weighted CFGs.

769

Computational Linguistics Volume 36, Number 4

Chapter 9 expands CFGs into feature structures and unification grammars. The au-
thors take this opportunity to tackle more advanced syntax: inversion, unbounded
dependency.

The material on parsing is good, but too short. In contrast to the section on tag-
ging and chunking, the book does not conclude with a robust working parser. On
the conceptual side, I would have liked to see a more in-depth chapter on syntax—a
chapter similar in depth to Chapter 21 of Paradigms of AI Programming (Norvig 1992)
or the legendary Appendix B of Language as a Cognitive Process (Winograd 1983). In my
experience, students benefit from a description of clausal arguments, relative clauses,
and complex nominal constructs before they can properly gauge the complexity of
syntax. On the algorithmic side, there is no coverage of probabilistic CFGs. The material
on PCFGs is mature enough, and there is even excellent code in NLTK to perform tree
binarization (Chomsky normal form) and node annotation, which makes it possible to
build a competent PCFG constituent-based parser. The connection between probabilistic
independence and context-freeness is a wonderful story that is missed in the book.
Finally, I believe more could have been done with dependency parsing: transition-
based parsing with perceptron learning à la MaltParser (Nivre et al. 2007) is also mature
enough to be taught and reconstructed in didactic code in an effective manner.

Chapter 10 is an introduction to computational semantics. It adopts the didactic
approach of Blackburn and Bos (2005) and covers first-order logic, lambda calculus,
Montague-like compositional analysis, and model-based inferencing. The chapter ex-
tends up to Discourse Representation Theory (DRT). As usual, the presentation is
backed up by impressively readable code and concrete examples. This is a very dense
chapter—with adequate theoretical material. It could have been connected to the ma-
terial on parsing, by combining a robust parser with the semantic analysis machinery.
This would have had the benefit of creating more cohesion and illustrating the benefits
of syntactic analysis for higher-level tasks.

Chapter 11 is an interesting addition on managing and constructing corpora. The
skills required for collecting and annotating textual material are complex, and the
chapter is a unique and welcome extension to the traditional scope of CL textbooks.

Overall this book is an excellent practical introduction to modern computational lin-
guistics. As a textbook for graduate courses, it should be complemented by theoretical
material from other sources, but the introduction the authors give is never too simplistic.
The authors provide remarkably clear explanations on complex topics, together with
concrete applications.

The book builds on high-quality code and makes significant corpora accessible.
Although I still use Lisp in class to present algorithms in the most concise manner,
I am happy to see how effective Python turns out to be as the main tool to convey
practical CL in an exciting, interactive, modern manner. Python is a good choice for this
book: It is easy to learn, open-source, portable across platforms, interactive (the authors
do a brilliant job of exploiting the exploratory style that only interpreters can provide
in interspersing the book with short code snippets to make complex topics alive),
and it supports Unicode, libraries for graph drawing and layout, and graphical user
interfaces. This allows the authors to develop interactive visualization tools that vividly
demonstrate the workings of complex algorithms. The authors exploit everything this
software development platform has to deliver in an extremely convincing manner.

The decision of which material to include in the book is in general well founded. The
authors manage to cover a range of issues from word segmentation, tagging, chunking,
parsing, to semantic analysis, and even briefly reach the world of discourse. I look
forward to an expanded edition of the book that would cover probabilistic parsing, text

770

Book Review

generation, summarization, and lexical semantics. I would also have liked to see some
coverage of unsupervised and semi-supervised learning methods.

For instructors, students, and researchers, this book, together with the excellent
NLTK library, is an important milestone. No one should learn computational linguistics
without it.

References
Allen, James, 1995. Natural Language

Understanding. Benjamin/Cummings,
Menlo Park, CA, 2nd edition edition.

Blackburn, Patrick, and Johan Bos. 2005.
Representation and Inference for Natural
Language: A First Course in Computational
Semantics. CSLI Publications, Stanford, CA.

Charniak, Eugene. 1993. Statistical Language
Learning. The MIT Press, Cambridge, MA.

Charniak, Eugene, Christopher K. Riesbeck,
Drew V. McDermott, and James R. Meehan.
1987. Artificial Intelligence Programming.
Lawrence Erlbaum Associates, Hillsdale,
NJ, 2nd edition edition.

Jurafsky, Daniel and James H. Martin.
2008. Speech and Language Processing: An
Introduction to Natural Language Processing,
Computational Linguistics, and Speech
Recognition. Prentice Hall, Upper Saddle
River, NJ, 2nd edition edition.

Koller, Daphne and Nir Friedman. 2009.
Probabilistic Graphical Models: Principles and
Techniques. The MIT Press, Cambridge, MA.

Manning, Christopher D. and Hinrich
Schütze. 1999. Foundations of Statistical
Natural Language Processing. The MIT
Press, Cambridge, MA.

Nivre, Joakim, Johan Hall, Jens Nilsson,
Atanas Chanev, Gülşen Eryiǧit, Sandra
Kübler, Svetoslav Marinov, and Erwin
Marsi. 2007. MaltParser: A language-
independent system for data-driven
dependency parsing. Natural Language
Engineering, 13(2):95–135.

Norvig, Peter. 1992. Paradigms of Artificial
Intelligence Programming: Case Studies
in Common Lisp. Morgan Kaufmann,
San Francisco, CA.

Pereira, Fernando C. and Stuart M. Shieber.
1987. Prolog and Natural-Language Analysis.
CSLI Publications, Stanford, CA.

Wasserman, Larry. 2010. All of Statistics:
A Concise Course in Statistical Inference.
Springer, New York, NY.

Winograd, Terry. 1983. Language as a
Cognitive Process. Addison-Wesley,
Reading, MA.

Michael Elhadad is an associate professor at Ben-Gurion University, Israel. He has been teach-
ing computational linguistics for 15 years. His research focuses on computational models of
Modern Hebrew, text summarization, and text generation. His address is Department of Com-
puter Science, Ben-Gurion University, Beer Sheva, 84105, Israel; e-mail: elhadad@cs.bgu.ac.il.

771

