
Maximal Consistent Subsets

Robert Malouf∗
San Diego State University

Default unification operations combine strict information with information from one or more
defeasible feature structures. Many such operations require finding the maximal subsets of a set
of atomic constraints that are consistent with each other and with the strict feature structure,
where a subset is maximally consistent with respect to the subsumption ordering if no constraint
can be added to it without creating an inconsistency. Although this problem is NP-complete,
there are a number of heuristic optimizations that can be used to substantially reduce the size of
the search space. In this article, we propose a novel optimization, leaf pruning, which in some
cases yields an improvement in running time of several orders of magnitude over previously
described algorithms. This makes default unification efficient enough to be practical for a wide
range of problems and applications.

1. Introduction

In unification-based grammatical frameworks, it often desirable to combine information
from possibly inconsistent sources. Over the years, a number of default unification
operations have been proposed1, which combine a strict feature structure with one or
more defeasible feature structures. These operations preserve all information in the
strict feature structure, while bringing in as much information as possible from the
defeasible structures. Default unification has been used to address a wide variety of
linguistic knowledge representation problems, including lexical inheritance hierarchies
(Copestake 1993; Ginzburg and Sag 2001), lexical semantics (Lascarides and Copestake
1998), grammar induction (Briscoe 1999; Villavicencio 2002; Petersen 2004), anaphora
resolution (Grover et al. 1994; Prüst, Scha, and van den Berg 1994), and discourse
processing (Gurevych et al. 2003; Alexandersson, Becker, and Pfleger 2004), among
many others.

Although the various default unification operators differ in their particulars, most
involve something like Carpenter (1992)’s credulous default unification as one step.
The result of credulously adding the default information in G to the strict information
in F is:

cred-unify(F, G) ≡ {unify(F, G′), where G′ subsumes G and

G′ is maximal such that unify(F, G′) is defined}

∗ Department of Linguistics and Asian/Middle Eastern Languages, San Diego State University, 5500
Campanile Drive, San Diego, CA 92182-7727 USA, E-mail: rmalouf@mail.sdsu.edu.

1 For example, Bouma (1992), Carpenter (1992), Prüst (1992), Calder (1993), Lascarides and Copestake
(1999), Alexandersson and Becker (2001), and Ninomiya, Miyao, and Tsujii (2002). See Bouma (2006) for a
recent overview.

© 2007 Association for Computational Linguistics

Computational Linguistics Volume 33, Number 2

In other words, cred-unify(F, G) is the result of unifying F with the maximal consistent
subset(s) of the atomic constraints in G. A subset of constraints is maximally consistent
with respect to the subsumption ordering if no constraint can be added to it without cre-
ating an inconsistency. In general, there may be more than one subset of the constraints
in G that is consistent with F and maximal, so the result of credulous default unification
is a set of feature structures.

One example of the use of credulous default unification for the resolution of dis-
course anaphora comes from Grover et al. (1994). Consider the mini-discourse: Jessy likes
her brother. So does Hannah. To resolve the anaphoric predicate in the second sentence, we
can set up meaning representations for the source and the target:

Source:

REL like
AGENT 1 jessy

PATIENT

[
REL brother
THEME 1

]

 Target:

[
AGENT hannah

]

and credulously unify the source with the strict information in the target.
To proceed, we first decompose the source feature structure into the following five

atomic ground constraints:

{[
REL like

]
,
[

AGENT jessy
]

,
[

PATIENT|REL brother
]

,

[
PATIENT|THEME jessy

]
,
[

AGENT 1
PATIENT|THEME 1

]}

Then, we find the maximal subsets of the remaining constraints which are mutually
consistent with the target. This yields two solutions:

REL like
AGENT 1 hannah

PATIENT

[
REL brother
THEME 1

]

REL like
AGENT hannah

PATIENT

[
REL brother
THEME jessy

]

corresponding to the sloppy identity and the strict identity readings of the anaphoric
expression.

2. Algorithm

A key step for applying most default unification operators is finding the maximal con-
sistent subsets of a set of constraints C. Unfortunately, finding these maximal consistent
subsets is an expensive operation, and, in fact, is NP-complete. Let T = {T1, . . . , Tm} be
the set of conflicts in C, where a conflict is a minimal set of constraints that are mutually
inconsistent with the target. For this example, T consists of the two conflicts:

{{[
PATIENT|THEME jessy

]
,
[

AGENT 1
PATIENT|THEME 1

]}
,
{[

AGENT jessy
]}}

Removing any one of the constraints from a conflict Ti would break that conflict, so if we
could remove from C at least one member of each Ti, the remaining constraints would be

154

Malouf Maximal Consistent Subsets

mutually consistent with the target information. Finding the maximal consistent subsets
of C then is equivalent to finding the minimal subset C′ ⊂ C such that each Ti contains
at least one member of C′. This is the hitting subset problem, a classic NP-complete
problem (Karp 1972).

An algorithm to find the maximal consistent subsets of C must check each subset of
C for consistency. One way to proceed is to construct a spanning tree of the boolean
lattice of subsets of C. This takes the form of a binomial tree, as in Figure 1 (Bird
and Hinze 2003). At each node, we keep track of k, the index of the constraint that
was removed from the parent set to create that subset. For example, subset {c1, c3}
was formed by removing c2 from {c1, c2, c3}, so k = 2. The descendants of a node are
constructed by successively dropping each of the constraints ci where k < i ≤ |C|. This
ensures that we will visit every subset of C exactly once.

The algorithm described by Grover et al. (1994) performs a breadth-first search
of the subset lattice, with one important optimization. Because the cardinality of the
subsets at each level is one greater than those on the level below it, a breadth-first
search of this tree will consider all larger sets before considering any smaller ones.
Furthermore, because each subset is produced by removing constraints from its parent
set, every node in a subtree is a subset of its root. This means that once a consistent set
is found, no descendants of that set can be maximal, and that subtree can be pruned
from the search space. However, consistent subsets that are maximal in their branch of
the tree may turn out not to be globally maximal. For example, in Figure 1, if {c1, c2}
is consistent and {c1, c3} is not, a breadth-first search would identify both {c1, c2} and
{c1} as consistent and (locally) maximal. A final post-check for set inclusion can remove
pseudo-maximal results like {c1}.

In addition to pruning branches rooted by a consistent subset (call this root prun-
ing), the organization of the search space into a binomial tree allows another valuable
optimization. The deepest leaf node in any subtree is the set formed from the root by
removing all constraints ck<i≤|C|, and every set in the subset is a superset of that deepest
leaf. Because no superset of an inconsistent set of constraints can be consistent, if the
foot of a subtree is inconsistent then clearly no node in the tree can be consistent, and
the entire tree can be skipped (call this leaf pruning). Taking both root pruning and
leaf pruning together, the only subtrees that need to be explored are those whose root is

Figure 1
Boolean lattice and binomial spanning tree for |C| = 3.

155

Computational Linguistics Volume 33, Number 2

inconsistent but whose deepest leaf is consistent. No other subtrees can possibly contain
a solution.

Figure 2 gives a breadth-first search algorithm that implements these optimiza-
tions. Like Grover et al. (1994), this algorithm requires a post-check to remove pseudo-
maximal subsets from results. A queue is used to keep track of subsets S that are yet to be
checked for consistency, along with the index k of the constraint that was last dropped,
and a flag leftmost that indicates whether that subset is the leftmost child. Because the
deepest leaf node of the leftmost child is the same as the deepest leaf node of the parent,
we are guaranteed that the deepest leaf of a leftmost child is consistent. Keeping track
of leftmost children allows us to avoid a substantial number of redundant consistency
checks.

3. Evaluation

The graphs in Figure 3 and Figure 4 show an empirical comparison between a breadth-
first search with root pruning (BFS-R) and a breadth-first search with root and leaf
pruning (BFS-RL) on randomly generated problems. The graphs show the number of
subsets that were checked for consistency, as it relates to |C|, the number of constraints,
and p, the probability that two members of C are consistent. Larger values for p generally
lead to fewer but larger maximal consistent subsets. All counts are averaged across 100
randomly generated sets of ground constraints. In generating random problems, we
make the simplifying assumptions that all constraints are consistent with any inde-
feasible information, and that a subset of constraints that are pairwise consistent is a
consistent subset.

The first thing to note in these graphs is that root pruning by itself provides very
little benefit. For most values of p, the number of subsets checked by BFS-R is very
close to the worst case maximum 2|C|. A possible reason for this is that root pruning

Figure 2
Find the maximal consistent subsets of C. Performs a breadth-first search of the subset tree, with
root and leaf pruning.

156

Malouf Maximal Consistent Subsets

Figure 3
Comparison of breadth-first search using root pruning alone (BFS-R) and in combination with
leaf pruning (BFS-RL). |C| is the number of ground constraints, p is the fraction of the ground
constraints which are pairwise consistent, and “Subsets visited” is the number of subsets of C
which were checked for consistency (on a logarithmic scale). All counts are based on the average
of 100 randomly generated problems.

will have the greatest effect when consistent subsets are found in the interior nodes of
the binomial search tree. However, the configuration of the search space is such that
most nodes are either leaves or very close to leaves, and only a few nodes have a large
number of descendants. Therefore, root pruning mostly removes very small subtrees
and has only a small effect on the overall cost of the algorithm.

The next observation to make is that for small values of |C| (in these experiments,
less than 7), BFS-RL is very slightly more expensive than BFS-R. In these cases, the
advantages of leaf pruning do not outweigh the cost of the extra consistency checks
required to implement it. As |C| increases, though, leaf pruning can offer substantial
improvements. For |C| = 19 and p = 0.1, leaf pruning eliminates more than 99.5% of
the search space, leading to a 185-fold improvement in running time. As p increases,
the benefits of leaf pruning do become more modest. Larger values of p mean fewer
inconsistent leaf nodes, so fewer subtrees are able to be eliminated. Even so, the savings

157

Computational Linguistics Volume 33, Number 2

Figure 4
Comparison of subsets visited by BFS-R and BFS-RL as a function of p for |C| = 15. All counts
are based on the average of 100 randomly generated problems.

from leaf pruning can still be dramatic: at |C| = 19 and p = 0.9, leaf pruning yields a
nearly five-fold improvement in speed.

Values of |C| and p that can be realistically expected will vary widely from ap-
plication to application. An anonymous reviewer reports that in one application, the
resolution of non-monotonic lexical inheritance for constraint-based grammars, p is
generally greater than 0.7. This may be due in part to the fact that most constraint-
based grammar development platforms do not support defaults (Copestake’s [2002]
LKB is a notable exception), and so grammar engineers tend to avoid the use of default
overriding. Ginzburg and Sag (2001) propose a more comprehensive use of defaults, and
grammars written following these principles would likely have a much lower value of
p. To my knowledge, however, these ideas have not yet made their way into any large-
scale grammar implementations.

Ninomiya, Miyao, and Tsujii (2002) describe experiments using default unification
for robust parsing and automatic grammar augmentation via a kind of explanation-
based learning. For this application, all features of a rule in the base XHPSG grammar
(Tateisi et al. 1998) are considered defaults that can be overridden if necessary to get a
successful parse of a sentence. In this case, |C| is likely very large and grows quickly
with the length of the sentences being parsed. The value of p will depend on the
coverage of the base grammar, but can be expected to be fairly close to 1.0 for most
domains. In situations such as this, where p is expected to fall close to the worst case
for leaf pruning, one could consider inverting the search direction of the algorithm in
Figure 2. Rather than beginning with C and removing constraints until a consistent
subset is found, we could instead begin with the empty subset and add constraints
until an inconsistency is found. In either case, the frontier in the search space between
consistent and inconsistent subsets is where maximally consistent subsets will be found,

158

Malouf Maximal Consistent Subsets

and leaf pruning can be used to eliminate regions of the search space that contain only
consistent or inconsistent subsets.

4. Conclusions

Finding the maximal consistent subsets of a set of ground constraints is an impor-
tant sub-problem for many natural language processing and knowledge representa-
tion tasks. Unfortunately, the problem is NP-complete, and in the worst case requires
checking all 2|C| subsets of C for consistency. Previously proposed algorithms have
produced approximate solutions (Boppana and Halldórsson 1992), or have weakened
the requirements to make finding a solution easier (Ninomiya, Miyao, and Tsujii 2002).

By using deepest leaf pruning, the algorithm described in the previous sections
improves on the method of Grover et al. (1994) and is able to achieve substantial gains
over the worst case running time for a large class of problems. An efficient method for
finding maximal consistent subsets can make default unification practical for problems
such as large-scale lexical representation, on-line discourse processing, or ontology
construction.

References
Alexandersson, Jan and Tilman Becker. 2001.

Overlay as the basic operation for
discourse processing in a multimodal
dialogue system. In Proceedings of the IJCAI
Workshop “Knowledge and Reasoning in
Practical Dialogue Systems,” pages 8–14,
Seattle, WA.

Alexandersson, Jan, Tilman Becker, and
Norbert Pfleger. 2004. Scoring for overlay
based on informational distance. In
Proceedings of KONVENS 2004, pages 1–4,
Vienna, Austria.

Bird, Richard and Ralf Hinze. 2003.
Functional pearl: Trouble shared is trouble
halved. In Proceedings of the 2003 ACM
SIGPLAN Workshop on Haskell, pages 1–6,
Uppsala, Sweden.

Boppana, Ravi and Magnús M. Halldórsson.
1992. Approximating maximum
independent sets by excluding subgraphs.
BIT Numerical Mathematics, 32(2):180–196.

Bouma, Gosse. 1992. Feature structures and
nonmonotonicity. Computational
Linguistics, 18(2):183–204.

Bouma, Gosse. 2006. Unification: Classical
and default. In Keith Brown, editor,
Encyclopedia of Language and Linguistics.
Elsevier, New York.

Briscoe, E. J. 1999. The acquisition of
grammar in an evolving population of
language agents. Electronic Transactions in
Artificial Intelligence. Special Issue: Machine
Intelligence, 3(035):47–77.

Calder, Jonathan. 1993. Feature-value logics:
Some limits on the role of defaults. In C. J.

Rupp, Mike Rosner, and Rod Johnson,
editors, Constraints, Language and
Computation. Academic Press, London,
pages 20–32.

Carpenter, Bob. 1992. Skeptical and
creduluous default unification with
applications to templates and inheritance.
In Ted Briscoe, Anne Copestake, and
Valerie de Paiva, editors, Default
Inheritance within Unification-Based
Approaches to the Lexicon. Cambridge
University Press, Cambridge, UK,
pages 13–37.

Copestake, Ann. 1993. Defaults in lexical
representation. In E. J. Briscoe,
A. Copestake, and V. de Paiva, editors,
Inheritance, Defaults and the Lexicon.
Cambridge University Press, Cambridge,
UK, pages 223–245.

Copestake, Ann. 2002. Implementing Typed
Feature Structure Grammars. CSLI
Publications, Stanford, CA.

Ginzburg, Jonathan and Ivan A. Sag. 2001.
Interrogative Investigations. CSLI
Publications, Stanford, CA.

Grover, Claire, Chris Brew, Marc Moens,
and Suresh Manandhar. 1994. Priority
union and generalisation in discourse
grammar. In Proceedings of the 32nd Annual
Meeting of the Association for Computational
Linguistics, pages 17–24, Las Cruces,
New Mexico.

Gurevych, Iryna, Robert Porzel, Elena Slinko,
Norbert Pfleger, Jan Alexandersson,
and Stefan Merten. 2003. Less is more:
Using a single knowledge representation

159

Computational Linguistics Volume 33, Number 2

in dialog systems. In Proceedings of the
HLT-NAACL 2003 Workshop on Text
Meaning, pages 14–21, Edmonton, Alberta.

Karp, Richard. 1972. Reducibility among
combinatorial problems. In R. E. Miller
and J. W. Thatcher, editors, Complexity of
Computer Computations. Plenum Press,
New York, pages 85–103.

Lascarides, Alex and Ann Copestake. 1998.
Pragmatics and word meaning. Journal of
Linguistics, 34:387–414.

Lascarides, Alex and Ann Copestake. 1999.
Default representation in constraint-based
frameworks. Computational Linguistics,
25:55–105.

Ninomiya, Takashi, Yusuke Miyao, and
Jun’ichi Tsujii. 2002. Lenient default
unification for robust processing within
unification based grammar formalisms.
In Proceedings of the 19th International
Conference on Computational Linguistics
(COLING), pages 1–7, Taipei, Taiwan.

Petersen, Wiebke. 2004. A set-theoretic
approach for the induction of inheritance
hierarchies. Electronic Notes in Theoretical
Computer Science, 53:296–308.

Prüst, Hub. 1992. On Discourse Structuring,
VP Anaphora and Gapping. Ph.D. thesis,
University of Amsterdam.

Prüst, Hub, Remko Scha, and Martin
van den Berg. 1994. Discourse grammar
and verb phrase anaphora. Linguistics and
Philosophy, 17(3):261–327.

Tateisi, Yuka, Kentaro Torisawa, Yusuke
Miyao, and Jun’ichi Tsujii. 1998.
Translating the XTAG English grammar
to HPSG. In Proceedings of the Fourth
International Workshop on Tree Adjoining
Grammars and Related Frameworks (TAG+4),
pages 172–175, Philadelphia, PA.

Villavicencio, Aline. 2002. The Acquisition
of a Unification-Based Generalised Categorial
Grammar. Ph.D. thesis, Cambridge
University.

160

