
Proceedings of the The 8th International Joint Conference on Natural Language Processing, pages 425–429,
Taipei, Taiwan, November 27 – December 1, 2017 c©2017 AFNLP

Domain Adaptation for Relation Extraction with Domain Adversarial
Neural Network

Lisheng Fu Thien Huu Nguyen∗ Bonan Min† Ralph Grishman
New York University, New York, NY, USA
{lisheng, grishman}@cs.nyu.edu
∗ University of Oregon, Eugene, OR, USA

thien@cs.uoregon.edu
† Raytheon BBN Technologies, Cambridge, MA, USA

bonan.min@raytheon.com

Abstract

Relations are expressed in many domains
such as newswire, weblogs and phone
conversations. Trained on a source do-
main, a relation extractor’s performance
degrades when applied to target domains
other than the source. A common yet
labor-intensive method for domain adap-
tation is to construct a target-domain-
specific labeled dataset for adapting the
extractor. In response, we present an unsu-
pervised domain adaptation method which
only requires labels from the source do-
main. Our method is a joint model consist-
ing of a CNN-based relation classifier and
a domain-adversarial classifier. The two
components are optimized jointly to learn
a domain-independent representation for
prediction on the target domain. Our
model outperforms the state-of-the-art on
all three test domains of ACE 2005.

1 Introduction

Relation Extraction (RE) captures the semantic
relation between two entities within a sentence,
such as the Located relation between e1 and e2
in the sentence: “in the <e2>West Bank</e2>,
a <e1>passenger </e1>was wounded when an
Israeli bus came under fire.” The same relation
might be expressed differently across diverse doc-
uments, topics and genres. We often observed that
a relation extractor’s performance degrades when
applied to a domain other than the domain it is
trained on.

A simple method for domain adaptation
(Blitzer et al., 2006; Daume, 2007; Jing and Zhai,
2007) is to construct a labeled dataset for the tar-
get domain, and then adjust a trained model with
it. This is inefficient for relations - annotation is

laborious to obtain, not to mention that relation
mentions are sparse in the text. Take ACE 2004 as
an example, Personal/Social relations appear only
once on average per document. Such a method
will not scale to the open-ended set of possible do-
mains.

Among the features (Zhou et al., 2005) used for
relation extraction, shortest dependency path can
be applied cross-domain while argument-specific
features (e.g., entity types, lexical forms) are likely
to be more domain-specific. We hypothesize that
it is possible to learn both domain-invariant and
domain-specific representations with neural net-
works, and use the domain-invariant representa-
tion for many new domains.

In this paper, we propose to use a Do-
main Adversarial Neural Network (DANN)
(Ganin and Lempitsky, 2015; Ajakan et al., 2014)
to learn a domain-invariant representation for
relations. Our contributions are twofold:

• We propose a novel domain adaptation ap-
proach for relation extraction that learns
cross-domain features by itself and that re-
quires no labels in targets.

• Experiments on the ACE domains show that
our approach improves on the state-of-the-art
across all domains.

In the rest of the paper, we will first briefly sum-
marize related work, then describe the model (Sec-
tion 3). We will present experimental results and
conclusion at the end.

2 Related Work

There has been a lot of research on domain
adaptation in natural language processing
(Blitzer et al., 2006; Daume, 2007; Jing and Zhai,
2007; Glorot et al., 2011; Ajakan et al., 2014;

425

Ganin and Lempitsky, 2015). Most of the ex-
isting domain adaptation methods are based
on discrete feature representations and linear
classifiers. There is also recent work on do-
main adaptation for relation extraction including
feature-based systems (Nguyen and Grishman,
2014; Nguyen et al., 2014) and kernel-
based system (Plank and Moschitti, 2013).
Nguyen and Grishman (2014) and Nguyen et al.
(2014) both require a few labels in the target
domain. Our proposed method can perform
domain adaptation without target labels.

Some other methods also do not have such re-
quirement. Plank and Moschitti (2013) designed
the semantic syntactic tree kernel (SSTK) to learn
cross-domain patterns. Nguyen et al. (2015b) con-
structed a case study comparing feature-based
methods and kernel-based models. They presented
some effective features and kernels (e.g. word
embedding).We share the same intuition of find-
ing those cross-domain features, but our work dif-
fers from such previous work in that they manually
designed those features and kernels while we au-
tomatically learn cross-domain features from un-
labeled target-domain examples with neural net-
works. To our best knowledge, this is the first
work on neural networks for domain adaptation of
relation extraction.

3 Model

We formulate the relation extraction task as a
classification problem over all entity pairs (re-
lation candidates) in a sentence. The overall
structure of the model is shown in Figure 1.
The model will first convert a relation candidate
into a fixed-length matrix, then uses a single-
layer Convolutional Neural Network (CNN) with
dropout to learn its hidden representation repr.
On top of repr, it uses two decoders: a fully-
connected layer with dropout for predicting the re-
lation type (Zeng et al., 2014) (Section 3.1), and
another decoder with domain adversarial neural
network(Ganin and Lempitsky, 2015) to predict
its domain. The additional domain-adversarial de-
coder is used to enforce the feature layer to be
domain-invariant (Section 3.2).

3.1 CNN-based Encoder-Decoder Model for
Relations

Each sentence is truncated or padded to a fixed
length (ls) of tokens. Each token of the text is then

Figure 1: Model architecture

represented as the concatenation of its word em-
bedding, its position embedding and its entity type
embedding. They form the input layer:

Word embedding: We use pre-trained word
embedding from word2vec (Mikolov et al., 2013).
The size of the embedding is |V | · dw, where |V |
is the vocabulary size, and dw is the embedding
dimension.

Position embedding: For each token, we look
up its two position embeddings from the two posi-
tion embedding tables (randomly initialized) with
its relative distances to the two arguments, respec-
tively. The final embedding is the concatenation
of the two. The size of one embedding table is
(2 · ls −1) ·dp, where ls is the sentence length, and
dp is the embedding dimension.

Entity type embedding: For each token, we
look up its entity-type embedding from the entity-
type embedding table. Tokens outside the two en-
tity spans will be randomly initialized to the same
non-entity vector. Tokens within the two argu-
ments will be converted to the vector of the ar-
gument’s entity type. The size of the embedding
table is (|E| + 1) ∗ de, where |E| is the number of
entity types, and de is the embedding dimension.

Chunk embedding: Similar to entity type, we
have chunk embedding according to each token’s
chunk type. The size of embedding table is (|C|+
1) ∗ dc, where |C| is the number of chunk types,

426

and dc is the embedding dimension.
On dep path embedding: For each token, we

have a vector to indicate whether the token is on
the dependency path between the two entities. The
vector size is dd.

The input layer is a matrix with size (dw + 2 ·
dp + de + dc + dd) · ls. A standard convolution
layer with variable window sizes (feature maps)
is applied on this, following by max-pooling and
dropout. Each filter with the same window size
has the same filter size. The output is the feature
representation layer (repr) of size df · |W |, where
df is the filter size, and |W | is the size of the set
of window sizes. We add fully connected layers
to this feature representation with softmax to pre-
dict the relation type. The model is similar to that
in (Nguyen and Grishman, 2016), but with fewer
features.

3.2 Domain Adversarial Neural Network
How does domain adaptation work without any
labeled examples for the target domain? Follow-
ing Ganin and Lempitsky (2015) and Ajakan et al.
(2014), we use DANN to learn a representation
that is more general across domains and eliminat-
ing source-only distinctive features that are easily
learned with labeled source data.

It learns domain invariant features by jointly
optimizing the underlying feature layer from the
main learning task and the domain label predic-
tor. In this case, the main learning task is the re-
lation type prediction in Section 3.1. The domain
label predictor is a binary classifier that discrimi-
nates whether the example is from source or target.
The domain classifier consists of the gradient re-
versal layer (GRL) and a few fully connected lay-
ers. The GRL is defined as an identity function
with reversed gradient for backpropagation. For
input layer x:

GRL(x) = x, d
dxGRL(x) = −I

where I is the identity matrix.
We use a binary cross-entropy loss for the do-

main classifier:

Ldomain =
Ns+Nt∑

i=0
{dilog(d̂i) + (1− di)log(1−

d̂i)}
where diǫ{0, 1} is the domain label

{source, target}, and Ns, Nt stand for the
number of examples in source and target.

The loss of the whole model is the linear com-
bination of the task loss and the domain loss:

L = Lrelation + λ · Ldomain

where λ is the adaptation weight, and Lrelation

is the loss of the relation classifier.
During the training, half of the examples comes

from the source and half of them comes from
the target in a single batch. Only examples from
source have relation labels, while both source and
target examples have domain labels. As the result,
the source part is used to calculate the relation loss
Lrelation. The whole batch is used to calculate the
domain loss Ldomain

We choose the feature representation layer
(repr) from the relation model (Section 3.1) as the
input to GRL. During the training, while the pa-
rameters of the relation and domain decoders are
both optimized to minimize their errors, the param-
eters of repr are optimized to minimize the loss of
the relation decoder and to maximize (due to GRL)
the loss of the domain classifier. The latter en-
courages domain-invariant features to emerge for
domain adaptation.

In feature-based models, lexicon-level features
are often domain-specific such as a person’s name.
e.g. word-level features that contain Obama and
US can be indicators for employment relation. It
is true in many news articles, but not in general.
Instead of manually deciding whether to use the
feature or not, we can use DANN to read the target
domain text to make the decision depending on the
domain.

4 Experiements

4.1 Dataset

We use the ACE 2005 dataset to evaluate domain
adaptation by dividing its articles from its six gen-
res into respective domains: broadcast conversa-
tion (bc), broadcast news (bn), telephone conver-
sation (cts), newswire (nw), usenet (un) and we-
blogs (wl). Previous work (Gormley et al., 2015;
Nguyen and Grishman, 2016) uses newswire (bn
& nw) as the training set, half of bc as the devel-
opment set, the other half of bc, cts and wl as the
test sets. We use the same data split. Our model re-
quires unlabeled target domain instances. To meet
this requirement and avoid train-on-test, we also
split cts and wl when adapting to them. For all
three test domains, we use half of the dataset as
the development set, and the other half as the test
set (Table 1). We use the same training set and the
same preprocessing. This results in 43,497 entity
pairs for training. We also use the same label set
which is expanded by creating two relation types

427

for each asymmetric relation.

Split bc† wl cts
train nw & bn nw & bn nw & bn
dev half of bc half of wl half of cts
test half of bc half of wl half of cts

Table 1: Data split for the experiments. †This data
split is the same as several previous work

4.2 Configuration and Hyperparameters

We use word embedding pre-trained on newswire
with 300 dimensions from word2vec (Mikolov et
al. 2013). We fix the word embeddings during
the training because tuning did not show improve-
ment. We follow Nguyen and Grishman (2016) to
set the hyperparameters for CNN: the embedding
sizes (Section 3.1) de, dp, dd, dc, dd, = 50, the max
sentence length ls = 50, the set of filter window
sizes W = 2, 3, 4, 5, the number of filters for each
window size df = 150, and the dropout rate to be
0.5. We use one fully connected layer with 300 di-
mensions for the relation decoder before the soft-
max layer. We only use a softmax layer for domain
decoder. The learning rate is 0.001. We halve the
learning rate every two epoches. We use Adam as
the optimization method. The adaptation weight
is tuned to be 0.1 using the dev set. For all scores,
we run experiments 10 times and take the average.

4.3 Evaluation

Method bc wl cts avg
Gormley 2015 61.90 N/A N/A N/A
Nguyen 2016 63.26 N/A N/A N/A
CNN 64.44 54.58 57.02 58.64
CNN + DANN 65.16 55.55 57.19 59.30

Table 2: Adaptation to the bc domain. F1 scores
are reported on test sets with same splits. p-value
< 0.01 for bc CNN vs. CNN+DANN.

Our baseline CNN model achieved compa-
rable performance to the state-of-the-art rela-
tion extraction methods (Table 2). Compared
to (Gormley et al., 2015; Nguyen and Grishman,
2016), our baseline model already obtained higher
score on bc. They also reported higher scores
by ensemble with other models (feature-based or
multiple neural net models) which is not directly
comparable to a single model. Essentially, our

model can also serve as one of the base models
in the ensemble.

We trained DANN to read the development set
of bc to adapt to this domain. Although the gain
seems to be small, the improvement is statistically
significant (p-value < 0.01). We ran an instance-
based sign test on the combination of the output
of 10 experiments. We have 10 observations of
each instance in the original dataset. we treat them
as different examples when calculating the signif-
icance. While DANN improves bc significantly,
we also want to find out how it works on other do-
mains. In the original split used by previous work,
wl and cts do not have dev and test split. We,
therefore, created the data split by ourselves and
compare the results to our own baseline model.
We observe similar improvement on wl, but not
on cts. By doing some feature engineering on the
embedding layer, we found that the Chunk em-
bedding and On dep path embedding improves the
cts a lot. The model obtains 52.96 (without) and
57.02 (with) these embeddings. With DANN, it
obtains 53.74 (+0.78) and 57.19 (+0.17). The ef-
fective hand-designed cross-domain features from
the embedding layer could make the room for im-
provement smaller.

Given a group of documents, our approach is
to let the DANN read more unlabeled documents
from the same domain and train the relation de-
coder along with it. Then, we obtain a better
model for this domain. This also means that we
will have to train different models for different do-
mains. Ideally, we would like to have a model
that can work on all domains at the same time.
To test this, we try to adapt to the three domains
in the dataset at the same time. Under this set-
ting, DANN reads unlabeled data from all three
domains along with the supervised relation model.
As the result (Table 3), the model tends to learn
something in between. It performs better on bc
and wl, but worse on cts. It is not very surprising
since DANN will force the representation layer to
be domain-invariant. To really lift the performance
of all the domains with a single model, the model
needs to capture some domain-specific representa-
tion as well. This would be hard to achieve without
labels from the target domains, but still an interest-
ing direction to investigate. Under the current sit-
uation, it would be better to train separate models
that are adapted to each domain.

428

Method bc wl cts avg
CNN 64.33 54.58 57.02 58.64
+ DANN (all) 64.94 55.17 56.08 58.73
+ DANN (each) 65.16 55.55 57.19 59.30

Table 3: F1 scores on adaptation to all three do-
mains at the same time and adaptation to each do-
main individually.

5 Conclusion

Our model successfully obtains improvement on
all three test domains of relations at ACE 2005. It
uses a domain adversarial neural network to learn
cross-domain features. It does not require hand-
crafted features for domain adaptation. It can be
a useful tool for relation extraction since labeled
data is always hard to acquire.

References
Hana Ajakan, Pascal Germain, Hugo Larochelle,

Franois Laviolette, and Mario Marchand. 2014.
Domain-adversarial neural networks. In arXiv.

John Blitzer, Ryan McDonald, and Fernando Pereira.
2006. Domain adaptation with structural correspon-
dence learning. In EMNLP.

Hal Daume. 2007. Frustratingly easy domain adapta-
tion. In ACL.

Yaroslav Ganin and Victor Lempitsky. 2015. Unsu-
pervised domain adaptation by backpropagation. In
ICML.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Domain adaptation for large-scale sentiment
classification: A deep learning approach. In ICML.

Matthew R. Gormley, Mo Yu, and Mark Dredze. 2015.
Improved relation extraction with feature-rich com-
positional embedding models. In EMNLP.

Jiang Jing and ChengXiang Zhai. 2007. Instance
weighting for domain adaptation in nlp. In ACL.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In ICLR.

Minh Luan Nguyen, Ivor W. Tsang, Kian Ming Adam
Chai, and Hai Leong Chieu. 2014. Robust domain
adaptation for relation extraction via clustering con-
sistency. In ACL.

Thien Huu Nguyen and Ralph Grishman. 2014. Em-
ploying word representations and regularization for
domain adaptation of relation extraction. In ACL.

Thien Huu Nguyen and Ralph Grishman. 2016. Com-
bining neural networks and log-linear models to im-
prove relation extraction. In Proceedings of IJCAI
Workshop on Deep Learning for Artificial Intelli-
gence (DLAI).

Thien Huu Nguyen, Barbara Plank, and Ralph Grish-
man. 2015b. Semantic representations for domain
adaptation: A case study on the tree kernel-based
method for relation extraction. In ACL-IJCNLP.

Barbara Plank and Alessandro Moschitti. 2013. Em-
bedding semantic similarity in tree kernels for do-
main adaptation of relation extraction. In ACL.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou,
and Jun Zhao. 2014. Relation classification via con-
volutional deep neural network. In COLING.

GuoDong Zhou, Jian Su, Jie Zhang, and Min Zhang.
2005. Exploring various knowledge in relation ex-
traction. In ACL.

429

