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Abstract

The research trend in Japanese predicate-
argument structure (PAS) analysis is shift-
ing from pointwise prediction models with
local features to global models designed
to search for globally optimal solutions.
However, the existing global models tend
to employ only relatively simple local fea-
tures; therefore, the overall performance
gains are rather limited. The importance
of designing a local model is demonstrated
in this study by showing that the per-
formance of a sophisticated local model
can be considerably improved with recent
feature embedding methods and a feature
combination learning based on a neural
network, outperforming the state-of-the-
art global models in F1 on a common
benchmark dataset.

1 Introduction

A predicate-argument structure (PAS) analysis is
the task of analyzing the structural relations be-
tween a predicate and its arguments in a text
and is considered as a useful sub-process for a
wide range of natural language processing appli-
cations (Shen and Lapata, 2007; Kudo et al., 2014;
Liu et al., 2015).

PAS analysis can be decomposed into a set of
primitive subtasks that seek a filler token for each
argument slot of each predicate. The existing
models for PAS analysis fall into two types: local
models and global models. Local models indepen-
dently solve each primitive subtask in the point-
wise fashion (Seki et al., 2002; Taira et al., 2008;
Imamura et al., 2009; Yoshino et al., 2013). Such
models tend to be easy to implement and faster
compared with global models but cannot handle
dependencies between primitive subtasks. Re-

cently, the research trend is shifting toward global
models that search for a globally optimal solution
for a given set of subtasks by extending those local
models with an additional ranker or classifier that
accounts for dependencies between subtasks (Iida
et al., 2007a; Komachi et al., 2010; Yoshikawa
et al., 2011; Hayashibe et al., 2014; Ouchi et al.,
2015; Iida et al., 2015, 2016; Shibata et al., 2016).

However, even with the latest state-of-the-art
global models (Ouchi et al., 2015, 2017), the best
achieved F1 remains as low as 81.4% on a com-
monly used benchmark dataset (Iida et al., 2007b),
wherein the gain from the global scoring is only
0.3 to 1.0 point. We speculate that one reason
for this slow advance is that recent studies pay too
much attention to global models and thus tend to
employ overly simple feature sets for their base lo-
cal models.

The goal of this study is to argue the impor-
tance of designing a sophisticated local model be-
fore exploring global solution algorithms and to
demonstrate its impact on the overall performance
through an extensive empirical evaluation. In this
evaluation, we show that a local model alone is
able to significantly outperform the state-of-the-art
global models by incorporating a broad range of
local features proposed in the literature and train-
ing a neural network for combining them. Our best
local model achieved 13% error reduction in F1

compared with the state of the art.

2 Task and Dataset

In this study, we adopt the specifications of the
NAIST Text Corpus (NTC) (Iida et al., 2007b), a
commonly used benchmark corpus annotated with
nominative (NOM), accusative (ACC), and dative
(DAT) arguments for predicates. Given an input
text and the predicate positions, the aim of the PAS
analysis is to identify the head of the filler tokens
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for each argument slot of each predicate.
The difficulty of finding an argument tends to

differ depending on the relative position of the
argument filler and the predicate. In particular,
if the argument is omitted and the corresponding
filler appears outside the sentence, the task is much
more difficult because we cannot use the syntactic
relationship between the predicate and the filler in
a naive way. For this reason, a large part of pre-
vious work narrowed the focus to the analysis of
arguments in a target sentence (Yoshikawa et al.,
2011; Ouchi et al., 2015; Iida et al., 2015), and
here, we followed this setting as well.

3 Model

Given a tokenized sentence s and a target predicate
p in s with the gold dependency tree t, the goal of
our task is to select at most one argument token â
for each case slot of the target predicate.

Taking xa = (a, p, s, t) as input, our model es-
timates the probability p(c|xa) of assigning a case
label c ∈ {NOM, ACC, DAT, NONE} for each token
a in the sentence, and then selects a token with
a maximum probability that exceeds the output
threshold θc for c. The probability p(c|xa) is mod-
eled by a neural network (NN) architecture, which
is a fully connected multilayer feedforward net-
work stacked with a softmax layer on the top (Fig-
ure 1).

g = softmax(Wn+1hn + bn+1) (1)

hi = ReLU(BN(Wihi−1 + bi)) (2)

h1 = ReLU(BN(W1m + b1)) (3)

m = [hpath, wp, wa, f(xa)] (4)

The network outputs the probabilities g of as-
signing each case label for an input token a, from
automatically learned combinations of feature rep-
resentations in input m. Here, hi is an i-th hidden
layer and n is the number of hidden layers. We
apply batch normalization (BN) and a ReLU acti-
vation function to each hidden layer.

The input layer m for the feedforward network
is a concatenation of the three types of feature rep-
resentations described below: a path embedding
hpath, word embeddings of the predicate and the
argument candidate wp and wa, and a traditional
binary representation of other features f(xa).

3.1 Lexicalized path embeddings
When an argument is not a direct dependent of a
predicate, the dependency path is considered as

Figure 1: Network structure of our NN model

Figure 2: Path embedding

important information. Moreover, in some con-
structions such as raising, control, and coordina-
tion, lexical information of intermediate nodes is
also beneficial although a sparsity problem occurs
with a conventional binary encoding of lexicalized
paths.

Roth and Lapata (2016) and Shwartz et al.
(2016) recently proposed methods for embedding
a lexicalized version of dependency path on a sin-
gle vector using RNN. Both the methods embed
words, parts-of-speech, and directions and labels
of dependency in the path into a hidden unit of
LSTM and output the final state of the hidden unit.
We adopt these methods for Japanese PAS analy-
sis and compare their performances.

As shown in Figure 2, given a dependency path
from a predicate to an argument candidate, we first
create a sequence of POS, lemma, and dependency
direction for each token in this order by traversing
the path.1 Next, an embedding layer transforms
the elements of this sequence into vector represen-
tations. The resulting vectors are sequentially in-
put to RNN. Then, we use the final hidden state

1 We could not use dependency labels in the path since
traditional parsing framework in Japanese does not have de-
pendency labels. However, particles in Japanese can roughly
be seen as dependency relationship markers, and, therefore,
we think these adaptations approximate the original methods.
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For surface, lemma, POS,
predicate type of conjugated form,
p nominal form of nominal verb,

voice suffixes (-reru, -seru, -dekiru, -tearu)

For surface, lemma, POS, NE tag,
argument whether a is head of bunsetsu,
candidate particles in bunsetsu,
a right neighbor token’s lemma and POS

Between case markers of other dependents of p,
predicate whether a precedes p,
and whether a and p are in the same bunsetsu,
argument token- and dependency-based distances,
candidate naive dependency path sequence

Table 1: Binary features

as the path-embedding vector. We employ GRU
(Cho et al., 2014) for our RNN and use two types
of input vectors: the adaptations of Roth and La-
pata (2016), which we described in Figure 2, and
Shwartz et al. (2016), which concatenates vectors
of POS, lemma and dependency direction for each
token into a single vector.

3.2 Word embedding

The generalization of a word representation is one
of the major issues in SRL. Fitzgerald et al. (2015)
and Shibata et al. (2016) successfully improved
the classification accuracy of SRL tasks by gen-
eralizing words using embedding techniques. We
employ the same approach as Shibata et al. (2016),
which uses the concatenation of the embedding
vectors of a predicate and an argument candidate.

3.3 Binary features

Case markers of the other dependents Our
model independently estimates label scores for
each argument candidate. However, as argued
by Toutanova et al. (2008) and Yoshikawa et al.
(2011), there is a dependency between the argu-
ment labels of a predicate.

In Japanese, case markers (case particles) par-
tially represent a semantic relationship between
words in direct dependency. We thus introduce a
new feature that approximates co-occurrence bias
of argument labels by gathering case particles for
the other direct dependents of a target predicate.

Other binary features The other binary fea-
tures employed in our models have mostly been
discussed in previous work (Imamura et al., 2009;
Hayashibe et al., 2011). The entire list of our bi-
nary features are presented in Table 1.

4 Experiments

4.1 Experimental details

Dataset The experiments were performed on the
NTC corpus v1.5, dividing it into commonly used
training, development, and test divisions (Taira
et al., 2008).

Hyperparameters We chose the hyperparame-
ters of our models to obtain a maximum score in
F1 on the development data. We select 2, 000 for
the dimension of the hidden layers in the feedfor-
ward network from {256, 512, 1000, 2000, 3000},
2 for the number of hidden layers from {1, 2, 3, 4},
192 for the dimension of the hidden unit in GRU
from {32, 64, 128, 192}, 0.2 for the dropout rate
of GRUs from {0.0, 0.1, 0.2, 0.3, 0.5}, and 128 for
the mini-batch size on training from {32, 64, 128}.

We employed a categorical cross-entropy loss
for training, and used Adam with β1 = 0.9, β2 =
0.999, and ϵ = 1e − 08. The learning rate for
each model was set to 0.0005. All the model were
trained with early stopping method with a maxi-
mum epoch number of 100, and training was ter-
minated after five epochs of unimproved loss on
the development data. The output thresholds for
case labels were optimized on the training data.

Initialization All the weight matrices in GRU
were initialized with random orthonormal matri-
ces. The word embedding vectors were initialized
with 256-dimensional Word2Vec2 vectors trained
on the entire Japanese Wikipedia articles dumped
on September 1st, 2016. We extracted the body
texts using WikiExtractor,3 and tokenized them
using the CaboCha dependency parser v0.68 with
JUMAN dictionary. The vectors were trained on
lemmatized texts. Adjacent verbal noun and light
verb were combined in advance. Low-frequent
words appearing less than five times were replaced
by their POS, and we used trained POS vectors
for words that were not contained in a lexicon of
Wikipedia word vectors in the PAS analysis task.

We used another set of word/POS embedding
vectors for lexicalized path embeddings, initial-
ized with 64-dimensional Word2Vec vectors. The
embeddings for dependency directions were ran-
domly initialized. All the pre-trained embedding
vectors were fine-tuned in the PAS analysis task.

The hyperparameters for Word2Vec are “-cbow
2https://code.google.com/archive/p/Word2Vec/
3https://github.com/attardi/wikiextractor
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All F1 in different dependency distance
Model Binary feats. F1 (σ) Prec. Rec. Dep Zero 2 3 4 ≥ 5

B all 82.02 (±0.13) 83.45 80.64 89.11 49.59 57.97 47.2 37 21
B −cases 81.64 (±0.19) 83.88 79.52 88.77 48.04 56.60 45.0 36 21

WB all 82.40 (±0.20) 85.30 79.70 89.26 49.93 58.14 47.4 36 23
WBP-Roth all 82.43 (±0.15) 84.87 80.13 89.46 50.89 58.63 49.4 39 24
WBP-Shwartz all 83.26 (±0.13) 85.51 81.13 89.88 51.86 60.29 49.0 39 22
WBP-Shwartz −word 83.23 (±0.11) 85.77 80.84 89.82 51.76 60.33 49.3 38 21
WBP-Shwartz −{word, path} 83.28 (±0.16) 85.77 80.93 89.89 51.79 60.17 49.4 38 23
WBP-Shwartz (ens) −{word, path} 83.85 85.87 81.93 90.24 53.66 61.94 51.8 40 24

WBP-Roth −{word, path} 82.26 (±0.12) 84.77 79.90 89.28 50.15 57.72 49.1 38 24
BP-Roth −{word, path} 82.03 (±0.19) 84.02 80.14 89.07 49.04 57.56 46.9 34 18
WB −{word, path} 82.05 (±0.19) 85.42 78.95 89.18 47.21 55.42 43.9 34 21
B −{word, path} 78.54 (±0.12) 79.48 77.63 85.59 40.97 49.96 36.8 22 9.1

Table 2: Impact of each feature representation. “− word” indicates the removal of surface and lemma
features. “− cases” and “− path” indicate the removal of the case markers of other dependents and binary
path features, respectively. The task Zero is equivalent to the cases where the dependency distance ≥ 2.

1 -window 10 -negative 10 -hs 0 -sample 1e-5 -
threads 40 -binary 0 -iter 3 -min-count 10”.

Preprocessing We employed a common exper-
imental setting that we had an access to the gold
syntactic information, including morpheme seg-
mentations, parts-of-speech, and dependency re-
lations between bunsetsus. However, instead of
using the gold syntactic information in NTC, we
used the output of CaboCha v0.68 as our input
to produce the same word segmentations as in the
processed Wikipedia articles. Note that the train-
ing data for the parser contain the same document
set as in NTC v1.5, and therefore, the parsing ac-
curacy for NTC was reasonably high.

The binary features appearing less than 10 times
in the training data were discarded. For a path se-
quence, we skipped a middle part of intermediate
tokens and inserted a special symbol in the center
of the sequence if the token length exceeded 15.

4.2 Results
In the experiment, in order to examine the impact
of each feature representation, we prepare arbi-
trary combinations of word embedding, path em-
bedding, and binary features, and we use them as
input to the feedforward network. For each model
name, W, P, and B indicate the use of word em-
bedding, path embedding, and binary features, re-
spectively. In order to compare the performance
of binary features and embedding representations,
we also prepare multiple sets of binary features.
The evaluations are performed by comparing pre-
cision, recall, and F1 on the test set. These values
are the means of five different models trained with

the same training data and hyperparameters.

Impact of feature representations The first
row group in Table 2 shows the impact of the case
markers of the other dependents feature. Com-
pared with the model using all the binary features,
the model without this feature drops by 0.3 point
in F1 for directly dependent arguments (Dep),
and 1.6 points for indirectly dependent arguments
(Zero). The result shows that this information sig-
nificantly improves the prediction in both Dep and
Zero cases, especially on Zero argument detection.

The second row group compares the impact
of lexicalized path embeddings of two different
types. In our setting, WBP-Roth and WB com-
pete in overall F1, whereas WBP-Roth is partic-
ularly effective for Zero. WBP-Shwartz obtains
better result compared with WBP-Roth, with fur-
ther 0.9 point increase in comparison to the WB
model. Moreover, its performance remains with-
out lexical and path binary features. The WBP-
Shwartz (ens)−{word, path} model, which is the
ensemble of the five WBP-Shwartz−{word, path}
models achieves the best F1 score of 83.85%.

To highlight the role of word embedding and
path embedding, we compare B, WB, BP-Roth,
and WBP-Roth models on the third row group,
without using lexical and path binary features.
When we respectively remove W and P-Roth from
WBP-Roth, then the performance decreases by
0.23 and 0.21 in F1. Roth and Lapata (2016)
reported that F1 decreased by 10 points or more
when path embedding was excluded. However, in
our models, such a big decline occurs when we
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Dep Zero
Model ALL ALL NOM ACC DAT ALL NOM ACC DAT

On NTC 1.5

WBP-Shwartz (ens) −{word, path} 83.85 90.24 91.59 95.29 62.61 53.66 56.47 44.7 16
B 82.02 89.11 90.45 94.61 60.91 49.59 52.73 38.3 11
(Ouchi et al., 2015)-local 78.15 85.06 86.50 92.84 30.97 41.65 45.56 21.4 0.8
(Ouchi et al., 2015)-global 79.23 86.07 88.13 92.74 38.39 44.09 48.11 24.4 4.8
(Ouchi et al., 2017)-multi-seq 81.42 88.17 88.75 93.68 64.38 47.12 50.65 32.4 7.5

Subject anaphora resolution on modified NTC, cited from (Iida et al., 2016)

(Ouchi et al., 2015)-global 57.3
(Iida et al., 2015) 41.1
(Iida et al., 2016) 52.5

Table 3: Comparisons to previous work in F1

omit both path and word embeddings. This result
suggests that the word inputs at both ends of the
path embedding overlap with the word embedding
and the additional effect of the path embedding is
rather limited.

Comparison to related work Table 3 shows the
comparison of F1 with existing research. First,
among our models, the B model that uses only
binary features already outperforms the state-of-
the-art global model on NTC 1.5 (Ouchi et al.,
2017) in overall F1 with 0.6 point of improvement.
Moreover, the B model outperforms the global
model of Ouchi et al. (2015) that utilizes the basic
feature set hand-crafted by Imamura et al. (2009)
and Hayashibe et al. (2011) and thus contains al-
most the same binary features as ours. These re-
sults show that fine feature combinations learned
by deep NN contributes significantly to the perfor-
mance. The WBP-Shwartz (ens)−{word, path}
model, which has the highest performance among
our models shows a further 1.8 points improve-
ment in overall F1, which achieves 13% error re-
duction compared with the state-of-the-art grobal
model (81.42% of (Ouchi et al., 2017)-multi-seq).

Iida et al. (2015) and Iida et al. (2016) tackled
the task of Japanese subject anaphora resolution,
which roughly corresponds to the task of detect-
ing Zero NOM arguments in our task. Although
we cannot directly compare the results with their
models due to the different experimental setup, we
can indirectly see our model’s superiority through
the report on Iida et al. (2016), wherein the repli-
cation of Ouchi et al. (2015) showed 57.3% in F1,
whereas Iida et al. (2015) and Iida et al. (2016)
gave 41.1% and 52.5%, respectively.

As a closely related work to ours, Shibata et al.
(2016) adapted a NN framework to the model of

Ouchi et al. (2015) using a feedforward network
for calculating the score of the PAS graph. How-
ever, the model is evaluated on a dataset annotated
with a different semantics; therefore, it is difficult
to directly compare the results with ours.

Unfortunately, in the present situation, a com-
prehensive comparison with a broad range of prior
studies in this field is quite difficult for many his-
torical reasons (e.g., different datasets, annotation
schemata, subtasks, and their own preprocesses or
modifications to the dataset). Creating resources
that would enable a fair and comprehensive com-
parison is one of the important issues in this field.

5 Conclusion

This study has argued the importance of design-
ing a sophisticated local model before exploring
global solution algorithms in Japanese PAS anal-
ysis and empirically demonstrated that a sophisti-
cated local model alone can outperform the state-
of-the-art global model with 13% error reduction
in F1. This should not be viewed as a matter of
local models vs. global models. Instead, global
models are expected to improve the performance
by incorporating such a strong local model.

In addition, the local features that we employed
in this paper is only a part of those proposed in the
literature. For example, selectional preference be-
tween a predicate and arguments is one of the ef-
fective information (Sasano and Kurohashi, 2011;
Shibata et al., 2016), and local models could fur-
ther improve by combining these extra features.
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