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Abstract

This paper examines the usefulness of se-
mantic features based on word alignments
for estimating the quality of text simpli-
fication. Specifically, we introduce seven
types of alignment-based features com-
puted on the basis of word embeddings
and paraphrase lexicons. Through an em-
pirical experiment using the QATS dataset
(Štajner et al., 2016b), we confirm that
we can achieve the state-of-the-art perfor-
mance only with these features.

1 Introduction

Text simplification is the task of rewriting com-
plex text into a simpler form while preserving its
meaning. Systems that automatically pursue this
task can potentially be used for assisting reading
comprehension of less language-competent peo-
ple, such as learners (Petersen and Ostendorf,
2007) and children (Belder and Moens, 2010).
Such systems would also improve the performance
of other natural language processing tasks, such as
information extraction (Evans, 2011) and machine
translation (MT) (Štajner and Popović, 2016).

Similarly to other text-to-text generation tasks,
such as MT and summarization, the outputs of text
simplification systems have been evaluated sub-
jectively by humans (Wubben et al., 2012; Štajner
et al., 2014) or automatically by comparing with
handcrafted reference texts (Specia, 2010; Coster
and Kauchak, 2011; Xu et al., 2016). However, the
former is costly and not replicable, and the latter
has achieved only a low correlation with human
evaluation.

On the basis of this backdrop, Quality Estima-
tion (QE) (Specia et al., 2010), i.e., automatic eval-
uation without reference, has been drawing much
attention in the research community. In the shared

Metrics rlength rlabel

BLEU -0.765 0.245
METEOR -0.617 0.257
TER 0.741 -0.233
WER 0.757 -0.230

Table 1: The QATS training data shows that typ-
ical MT metrics are strongly biased by the length
difference between original and simple sentences
(rlength ), while they are less correlated with the
manually-labeled quality (rlabel ).

task on quality assessment for text simplification
(QATS),1 two tasks have been addressed (Štajner
et al., 2016b). One is to estimate a real-value qual-
ity score for given sentence pair, while the other
is to classify given sentence pair into one of the
three classes (good, ok, and bad). In the classifica-
tion task of the QATS workshop, systems based
on deep neural networks (Paetzold and Specia,
2016a) and MT metrics (Štajner et al., 2016a) have
achieved the best performance. However, deep
neural networks are rather unstable because of the
difficulty of training on a limited amount of data;
for instance, the QATS dataset offers only 505 sen-
tence pairs for training. MT metrics are incapable
of properly capturing deletions that are prevalent
in text simplification (Coster and Kauchak, 2011),
as they are originally designed to gauge seman-
tic equivalence. In fact, as shown in Table 1,
well-known MT metrics are strongly biased by the
length difference between original and simple sen-
tences, even though it is rather unrelated with the
quality of text simplification assessed by humans.

In order to properly account for the surface-
level inequivalency occurring in text simplifica-
tion, we examine semantic similarity features
based on word embeddings and paraphrase lexi-
cons. Unlike end-to-end training with deep neural
networks, we quantify word-level semantic corre-

1http://qats2016.github.io/shared.html
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spondences using two pre-compiled external re-
sources: (a) word embeddings learned from large-
scale monolingual data and (b) a large-scale para-
phrase lexicon. Using the QATS dataset, we em-
pirically demonstrate that a supervised classifier
trained upon such features achieves good perfor-
mance in the classification task.

2 Semantic Features Based on Word
Alignments

We bring a total of seven types of features
that are proven useful for the similar task, i.e.,
finding corresponding sentence pairs within En-
glish Wikipedia and Simple English Wikipedia
(Hwang et al., 2015; Kajiwara and Komachi,
2016). Specifically, we assume that some of these
features are useful to capture inequivalency be-
tween original sentence and its simplified version
introduced during simplification, such as lexical
paraphrases and deletion of words and phrases.

Throughout this section, original sentence and
its simplified version are referred to as x and y,
respectively.

2.1 AES: Additive Embeddings Similarity

Given two sentences, x and y, AES between them
is computed as follows.

AES(x, y) = cos

 |x|∑
i=1

x⃗i,

|y|∑
j=1

y⃗j

 (1)

where each sentence is vectorized with the sum
of the word embeddings of its component words,
x⃗i and y⃗j , assuming the additive compositionality
(Mikolov et al., 2013).

2.2 AAS: Average Alignment Similarity

AAS (Song and Roth, 2015) averages the co-
sine similarities between all pairs of words within
given two sentences, x and y, calculated over their
embeddings.

AAS(x, y) =
1

|x||y|
|x|∑
i=1

|y|∑
j=1

cos(x⃗i, y⃗j) (2)

2.3 MAS: Maximum Alignment Similarity

AAS inevitably involves noise, as many word
pairs are semantically irrelevant to each other.
MAS (Song and Roth, 2015) reduces this kind of

noise by considering only the best word alignment
for each word in one sentence as follows.

MAS(x, y) =
1
|x|

|x|∑
i=1

max
j

cos(x⃗i, y⃗j) (3)

As MAS is asymmetric, we calculate it for each
direction, i.e., MAS(x, y) and MAS(y, x), unlike
Kajiwara and Komachi (2016) who has averaged
these two values.

2.4 HAS: Hungarian Alignment Similarity

AAS and MAS deal with many-to-many and one-
to-many word alignments, respectively. On the
other hand, HAS (Song and Roth, 2015) is based
on one-to-one word alignments.

The task of identifying the best one-to-one word
alignments H is regarded as a problem of bipartite
graph matching, where the two sets of vertices re-
spectively comprise words within each sentence x
and y, and the weight of a edge between xi and yj

is given by the cosine similarity calculated over
their word embeddings. Given H identified us-
ing the Hungarian algorithm (Kuhn, 1955), HAS
is computed by averaging the similarities between
embeddings of the aligned pairs of words.

HAS(x, y) =
1
|H|

∑
(i,j)∈H

cos(x⃗i, y⃗j) (4)

where |H| = min(|x|, |y|), as H contains only
one-to-one word alignments.

2.5 WMD: Word Mover’s Distance

WMD (Kusner et al., 2015) is a special case of
the Earth Mover’s Distance (Rubner et al., 1998),
which solves the transportation problem of words
between two sentences represented by a bipartite
graph.2 Let n be the vocabulary size of the lan-
guage, WMD is computed as follows.

WMD(x, y) = min
n∑

u=1

n∑
v=1

Auveud(x⃗u, y⃗v)

(5)

subject to :
n∑

v=1

Auv =
1
|x| freq(xu, x)

n∑
u=1

Auv =
1
|y| freq(yv, y)

2Note that the vertices in the graph represent the word
types, unlike the token-based graph for HAS.
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where Auv is a nonnegative weight matrix repre-
senting the flow from a word xu in x to a word yv

in y, eud(·, ·) the Euclidean distance between two
word embeddings, and freq(·, ·) the frequency of a
word in a sentence.

2.6 DWE: Difference of Word Embeddings
We also introduce the difference between sentence
embeddings so as to gauge their differences in
terms of meaning and simplicity. As the represen-
tation of a sentence, we used the averaged word
embeddings (Adi et al., 2017).

DWE(x, y) =
1
|x|

|x|∑
i=1

x⃗i − 1
|y|

|y|∑
j=1

y⃗j (6)

2.7 PAS: Paraphrase Alignment Similarity
PAS (Sultan et al., 2014, 2015) is computed based
on lexical paraphrases. This feature has been
proven useful in the semantic textual similarity
task of SemEval-2015 (Agirre et al., 2015).

PAS(x, y) =
PA(x, y) + PA(y, x)

|x|+ |y| (7)

PA(x, y) =
|x|∑
i=1

{
1 ∃j : xi ⇔ yj ∈ y

0 otherwise

where xi ⇔ yj holds if and only if the word pair
(xi, yj) is included in a given paraphrase lexicon.

3 Experiment

The usefulness of the above features was evaluated
through an empirical experiment using the QATS
dataset (Štajner et al., 2016b).

3.1 Data
The QATS dataset consists of 505 and 126 sen-
tence pairs for training and test, respectively,
where each pair is evaluated from four different
aspects: Grammaticality, Meaning preservation,
Simplicity, and Overall quality. Evaluations are
given by one of the three classes: good, ok, and
bad.

We used two pre-compiled external resources to
compute our features. One is the pre-trained 300-
dimensional CBOW model3 to compute the fea-
tures based on word embeddings, while the other
is PPDB 2.0 (Pavlick et al., 2015)4 for PAS.

3https://code.google.com/archive/p/
word2vec/

4http://paraphrase.org/

3.2 Evaluation Metrics

Each system is evaluated by the three metrics as
in the QATS classification task (Štajner et al.,
2016b): Accuracy (A), Mean Absolute Error (E)
and Weighted F-score (F). To compute Mean Ab-
solute Error, class labels were converted into three
equally distant numeric scores retaining their rela-
tion, i.e., good = 1, ok = 0.5, and bad = 0.

3.3 Baseline Systems

As the baseline, we employed four types of sys-
tems from the QATS workshop (Štajner et al.,
2016b): two typical baselines and two top-ranked
systems. “Majority-class” labels all the sentence
pairs with the most frequent class in the training
data. “MT-baseline” combines BLEU (Papineni
et al., 2002), METEOR (Lavie and Denkowski,
2009), TER (Snover et al., 2006), and WER (Lev-
enshtein, 1966), using a support vector machine
(SVM) classifier.

SimpleNets (Paetzold and Specia, 2016a) has
two different forms of deep neural network ar-
chitectures: multi-layer perceptron (SimpleNets-
MLP) and recurrent neural network (SimpleNets-
RNN). SimpleNets-MLP uses seven features of
each sentence: the number of characters, tokens,
and word types, 5-gram language model probabil-
ities estimated on the basis of either SUBTLEX
(Brysbaert and New, 2009), SubIMDB (Paet-
zold and Specia, 2016b), Wikipedia, and Simple
Wikipedia (Kauchak, 2013). SimpleNets-RNN,
which does not require such feature engineering,
uses embeddings of word N -grams.

SMH (Štajner et al., 2016a) has two types of
classifiers: logistic classifier (SMH-IBk/Logistic)
and random forest classifier (SMH-RandForest,
SMH-RandForest-b). Both are trained relying on
the automatic evaluation metrics for MT, such as
BLEU, METEOR, and TER, in combination with
the QE features for MT (Specia et al., 2013).

Instead of reimplementing the above baseline
systems, we excerpted their performance scores
from (Štajner et al., 2016b).

3.4 Systems with Proposed Features

We evaluated our proposed features in the su-
pervised classification fashion as previous work.
Specifically, we compared three types of super-
vised classifiers that had been also used in the
above baseline systems: SVM, MLP, and Rand-
Forest. Hyper-parameters of each system were de-
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System Grammaticality Meaning Simplicity Overall
A ↑ E ↓ F ↑ A ↑ E ↓ F ↑ A ↑ E ↓ F ↑ A ↑ E ↓ F ↑

Majority-class 76.2 18.3 65.9 57.9 29.0 42.5 55.6 29.4 39.7 43.7 28.2 26.5
MT-baseline 76.2 18.3 65.9 66.7 20.2 62.7 50.8 26.2 48.3 38.1 41.7 37.5
SimpleNets-MLP 74.6 17.1 68.8 65.9 21.0 63.5 53.2 27.0 49.8 38.1 32.5 33.7
SimpleNets-RNN (N = 2) 75.4 18.7 65.5 57.9 27.4 51.3 50.0 27.0 47.5 52.4 25.8 46.1
SimpleNets-RNN (N = 3) 74.6 19.1 65.1 51.6 28.2 46.6 52.4 25.0 50.0 47.6 27.8 40.8
SMH-IBk/Logistic 70.6 19.4 71.6 69.1 20.2 68.1 50.0 28.2 51.1 47.6 28.2 47.5
SMH-RandForest 75.4 17.5 71.8 65.9 20.6 64.4 52.4 27.8 53.0 44.4 31.8 44.5
SMH-RandForest-b 75.4 18.3 70.0 61.9 23.8 59.7 57.1 25.4 56.4 48.4 29.0 48.6
Best score among the above 76.2 17.1 71.8 69.1 20.2 68.1 57.1 25.0 56.4 52.4 25.8 48.6
Our SVM 76.2 18.3 65.9 65.1 22.2 58.3 57.1 27.8 43.9 57.9 23.4 57.7
Our MLP 68.3 24.6 66.9 59.5 25.4 56.4 59.5 23.4 58.2 52.4 25.8 51.9
Our RandForest 76.2 18.3 65.9 66.7 23.0 63.2 63.5 21.8 59.8 51.6 26.6 48.3
Our SVM w/ MT-baseline 76.2 18.3 65.9 66.7 21.0 63.7 57.1 27.0 46.9 47.6 29.0 46.8
Our MLP w/ MT-baseline 63.5 26.6 63.8 64.3 21.4 62.7 52.4 26.2 53.2 46.0 31.8 45.5
Our RandForest w/ MT-baseline 76.2 18.3 65.9 61.9 24.6 57.6 62.7 22.6 56.1 46.0 29.0 43.6

Table 2: Results on QATS classification task. The best scores of each metric are highlighted in bold.
Scores other than ours are excerpted from Štajner et al. (2016b).

Feature set C γ Grammaticality Meaning Simplicity Overall
ALL 1.0 0.1 76.2 65.1 57.1 57.9

-AES 1.0 0.1 76.2 65.1 57.1 57.1
-MAS(original, simple) 0.1 0.1 76.2 57.9 55.6 56.4
-MAS(simple, original) 1.0 0.1 76.2 64.3 57.1 54.8
-PAS 0.1 0.1 76.2 57.9 55.6 53.2
-DWE 0.01 1.0 76.2 57.9 55.6 51.6
-WMD 0.01 0.1 76.2 57.9 55.6 46.8
-AAS 0.1 0.1 76.2 57.9 55.6 45.2
-HAS 0.01 0.01 76.2 57.9 55.6 35.7

Table 3: Ablation analysis on accuracy. Features are in descending order of overall accuracy.

termined through 5-fold cross validation using the
training data, regarding accuracy in terms of over-
all quality as the objective.

For the SVM classifier, we used the RBF kernel.
The trinary classification was realized by means
of the one-versus-the-rest strategy. For a given set
of features, we examined all the combinations of
hyper-parameters among C ∈ {0.01, 0.1, 1.0} and
γ ∈ {0.01, 0.1, 1.0}; for the full set of features,
C = 1.0 and γ = 0.1 were chosen.

As for the MLP classifier, among 1 to 3 lay-
ers with all the combinations of dimensionality
among {100, 200, 300, 400, 500} and “ReLu” for
the activation function among {Logistic, tanh,
ReLu}, the 2-layer one with 200 × 200 dimen-
sionality was optimal. We used Adam (Kingma
and Ba, 2015) as the optimizer.

For the RandForest classifier, we examined all
the combinations of the following three hyper-
parameters: {10, 50, 100, 500, 1000} for num-
ber of trees, {5, 10, 15, 20,∞} for the maximum
depth of each tree, and {1, 5, 10, 15, 20} for the
minimum number of samples at leaves. The op-
timal combination for the full set of features was
(500, 15, 1).

3.5 Results

Experimental results are shown in Table 2. The
SVM classifier based on our features greatly out-
performed the state-of-the-art methods in terms of
overall quality. The RandForest classifier some-
how achieved the best simplicity scores ever, even
though we had optimized the system with respect
to the accuracy of overall quality. As we ex-
pected, MLP did not beat the other two classi-
fiers, presumably due to the scarcity of the train-
ing data. The bottom three rows reveal that the
performance in terms of overall quality was de-
teriorated when MT-baseline features were incor-
porated on top of our feature set. This suggests
that word embeddings are superior to surface-level
processing in finding corresponding words within
sentence pairs.

Focusing on the overall quality, we conducted
an ablation analysis of the SVM classifier. The
analysis revealed, as shown in Table 3, that HAS,
AAS, and WMD were the most important fea-
tures. This can be explained by the role of word
alignments during the computation. Since MT
metrics, such as BLEU, rely only on surface-
level matches, they are insensitive to meaning-
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Original
While historians concur that the result it-
self was not manipulated, the voting pro-
cess was neither free nor secret.

Simple
Most historians agree that the result was
not fixed, but the voting process was nei-
ther free nor secret.

Hungarian
Alignment

(while, but), (concur, agree),
(itself, most), (manipulated, fixed),
and identical word pairs.

Table 4: An example of word alignment. Differ-
ences between the original and simplified versions
are presented in bold. This is a sentence pair from
good class on overall quality. HAS using word-
level similarity reaches 0.85, while BLEU is 0.54.

Feature rlength rlabel

AES -0.661 0.185
AAS -0.335 0.318
MAS(original, simple) -0.817 0.226
MAS(simple, original) 0.092 -0.090
HAS 0.061 -0.050
WMD 0.788 -0.215
PAS -0.120 -0.039

Table 5: Correlation between each feature and the
difference of sentence length and the manually-
labeled quality. Note that DWE cannot be in-
cluded, as it is not a scalar value but the differential
vector between original and simplified sentences.

preserving rewritings from original sentence to
simple one. On the other hand, as exemplified
in Table 4, HAS and some other features can de-
tect the linkages between complex words and their
simpler counterparts. As a result of properly cap-
turing the alignments between such lexical para-
phrases, our system successfully classified this
sentence into good in terms of overall quality.

We expected that AAS could yield noise, as it
involves irrelevant pairs of words, but in fact, it
contributed to the QATS task. We speculate that it
helps to evaluate the appropriateness of substitut-
ing a word to other one considering the semantic
matching with the given context, as in lexical sim-
plification (Biran et al., 2011) and lexical substitu-
tion (Melamud et al., 2015; Roller and Erk, 2016;
Apidianaki, 2016).

The contribution of WMD was expected as it
was proven effective in the sentence alignment
task of English Wikipedia and Simple English
Wikipedia (Kajiwara and Komachi, 2016).

Table 5 shows that some of our semantic sim-
ilarity features are also strongly biased by the
length difference between original and simple sen-
tences, as MT metrics (cf. Table 1). Nonetheless,

HAS was not biased by the length difference al-
most at all, and AAS and WMD highly correlated
with the manually-labeled quality.

4 Conclusions

We presented seven types of semantic similarity
features based on word alignments for quality esti-
mation of text simplification. Unlike existing MT
metrics, our features can flexibly deal with word
alignments, taking deletions and paraphrases into
account. Our SVM classifier based on these fea-
tures achieved the best performance on the QATS
dataset.
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