
Proceedings of the The 8th International Joint Conference on Natural Language Processing, pages 957–966,
Taipei, Taiwan, November 27 – December 1, 2017 c©2017 AFNLP

An Empirical Analysis of Multiple-Turn Reasoning Strategies
in Reading Comprehension Tasks

Yelong Shen†, Xiaodong Liu†, Kevin Duh‡, Jianfeng Gao†
† Microsoft Research, Redmond, WA, USA

‡ Johns Hopkins University, Baltimore, MD, USA
†{yeshen,xiaodl,jfgao}@microsoft.com ‡kevinduh@cs.jhu.edu

Abstract

Reading comprehension (RC) is a chal-
lenging task that requires synthesis of in-
formation across sentences and multiple
turns of reasoning. Using a state-of-the-art
RC model, we empirically investigate the
performance of single-turn and multiple-
turn reasoning on the SQuAD and MS
MARCO datasets. The RC model is an
end-to-end neural network with iterative
attention, and uses reinforcement learn-
ing to dynamically control the number of
turns. We find that multiple-turn reason-
ing outperforms single-turn reasoning for
all question and answer types; further, we
observe that enabling a flexible number
of turns generally improves upon a fixed
multiple-turn strategy. We achieve results
competitive to the state-of-the-art on these
two datasets.

1 Introduction

There is an old Chinese proverb that says: “Read
a hundred times and the meaning will appear.”
Several recent reading comprehension (RC) mod-
els have embraced this kind of multiple-turn strat-
egy; they generate predictions by making multiple
passes through the same text and integrating in-
termediate information in the process (Hill et al.,
2016; Dhingra et al., 2016; Sordoni et al., 2016;
Shen et al., 2016). While state-of-the-art results
have been achieved by these models, there has yet
to be an in-depth analysis of the impact of the
multiple-turn strategy to reasoning. This paper at-
tempts to fill this gap.

We provide empirical results and analysis on
two challenging RC datasets: the Stanford Ques-
tion Answering Dataset (SQuAD) (Rajpurkar
et al., 2016), and the Microsoft Machine Reading

Comprehension Dataset (MS MARCO) (Nguyen
et al., 2016). Given a question Q, the RC model
is to read passages P and produce an answer A,
which could be free-form text or one of the possi-
ble candidate spans in the passage.

The following example from SQuAD illustrates
the need for synthesis of information across sen-
tences and multiple turns of reasoning:

Q: What collection does the V&A Theator &
Performance galleries hold?

P : The V&A Theator & Performance gal-
leries opened in March 2009. ... They
hold the UK’s biggest national collection of
material about live performance.

To infer the answer (the underlined portion of the
passage P), the model needs to first perform coref-
erence resolution so that it knows “They” refers
“V&A Theator”, then extract the subspan in the
direct object corresponding to the answer. This
process can be modeled by the repeated process-
ing of intermediate states and input in a neural net.

To perform the analysis, we adopt the ReasoNet
model of Shen et al. (2016). This is an end-
to-end neural network that uses an iterative at-
tention mechanism to simulate multiple-turn rea-
soning in RC. It has achieved strong results on
cloze-style RC tasks like CNN/DailyMail (Her-
mann et al., 2015) and we extend it to SQuAD and
MS MARCO tasks. The advantage of using Rea-
soNet for our purpose is that it uses reinforcement
learning to dynamically determine the number of
turns for each question-passage pair. This enables
us to analyze the behavior of multiple-turn reason-
ing in neural network models.

We find that multiple-turn reasoning outper-
forms single-turn reasoning across the board for
various types of question and answer types. Fur-
thermore, the flexibility to dynamically decide the

957

SQuAD MS MARCO
query source crowdsourced user logs
answer (A) span of words free-form text
#questions (Q) 100K questions 100K queries
#passages (P) 23K paragraphs 1M paragraphs

Table 1: Dataset characteristics

number of turns generally improves over a fixed
multiple-turn strategy, where the number of turns
are set a priori. As an additional contribution, our
extension to the ReasoNet model achieves results
competitive with the state-of-the-art on SQuAD
and MS MARCO.

In the following, Section 2 describes our two
RC tasks, Section 3 explains the model we used
for analysis, and Section 4 discusses results.

2 Reading Comprehension Tasks

We focus this study on two RC tasks which we be-
lieve require sophisticated reasoning.

SQuAD: SQuAD is a machine comprehension
dataset constructed on 536 Wikipedia articles
(23K paragraphs), with more than 100,000 ques-
tions. In contrast to prior datasets such as
(Richardson et al., 2013; Hermann et al., 2015),
SQuAD does not provide a multiple choice list of
answer candidates. Instead, the RC model must
select the answer from all possible spans in the
passage. Crowdsourced workers are asked to read
each passage (a paragraph), come up with ques-
tions, and then mark the answer spans.

There is a variety of questions and answers. The
authors of SQuAD described several types of rea-
soning required to answer questions: (a) lexical
variation between question (Q) and answer (A)
that can be solved by understanding synonyms,
(b) lexical variation that could be solved by world
knowledge, (c) syntactic variation between Q and
A sentence, and (d) multiple sentence reasoning
that require anaphora or higher-level fusion.

The 100K (question, passage, answer) tuples is
randomly partitioned into a training (80%), a de-
velopment (10%) and test set splits (10%). Two
evaluation metrics are used: Exact Match (EM),
which measures the percentage of span predic-
tions that matched any one of the ground truth an-
swer exactly, and Macro-averaged F1 score, which
measures the average overlap between the predic-
tion and the ground truth answer. Human perfor-
mance on the test set is 82.3% EM and 91.2% F1.

MS MARCO: MS MARCO is a large scale real-
world RC dataset that contains 100,000 queries
collected from anonymized user logs from the
Bing search engine. The characteristic of MS
MARCO is that all the questions are real user
queries and passages are extracted from real web
documents. The data is constructed as follows:
for each question/query Q, up to approximately
10 passages P are extracted from public web doc-
uments and presented to human judges. These
passages might potentially have the answer to the
question, and are selected through a separate in-
formation retrieval system. The judges write down
answers in free-form text, and according to the au-
thors of MS MARCO, the complexity of answer
varies from a single “yes/no” or entity name (e.g.
Q: “What is the capital of Italy”; A: Rome), to
long textual answers (e.g. Q: “What is the agenda
for Hollande’s state visit to Washington?”). Long
textual answers may need to be derived through
reasoning across multiple pieces of text.

The dataset is partitioned into a 82,430 train-
ing, a 10,047 development, and 9,650 test tuples.
Since the answer is free-form text, the evaluation
metrics of choice are BLEU (Papineni et al., 2002)
and ROUGE-L (Lin, 2004). To apply the same
RC model to both SQuAD (where answers are
text spans in P) and MS MARCO (where answer
are free-form text), we search for spans in MS
MARCO’s passages that maximizes the ROUGE-
L score with the raw free-form answers. Our train-
ing data uses these spans as labels, but we evalu-
ate our model with respect to the raw free-form
answers; this has an upper bound of 94.23 BLEU
and 87.53 ROUGE-L on the dev set. By this con-
struction, there are multiple number of passages to
read for each question, but the answer span might
only involve a few passages (i.e. the ones that in-
clude the max ROUGE substring). We describe
techniques to handle this case in Section 3.2.

3 Model: ReasoNet++

The reading comprehension task involves a ques-
tion/query Q = {q0, q1, ..., qm−1} and a passage
P = {p0, p1, pn−1} and aims to find an answer
span A = 〈astart, aend〉 in P . Here, m and n
denote the number of tokens in Q and P , respec-
tively, while astart and aend indicate the indices
of tokens in P . The learning process for reading
comprehension is to learn a function f(Q,P) →
A trained on a set of tuples 〈Q,P,A〉.

958

Figure 1: Architecture of ReasoNet++: The embedding/encoder layers compute representations for the
question Q and the passage document P . The aggregation layer uses co-attention to compute question-
aware passage information and passage-aware question information. Then a GRU combines these infor-
mation into memory cells and feeds them to the output layer. The output layer models the multiple-turn
reasoning mechanism, where intermediate results are stored in St and the answer is generated only when
the termination signal is triggered. Each St is a recurrent network state and models one turn of reasoning.

Our model ReasoNet++, is an extension of Rea-
soNet (Shen et al., 2016) with three enhancements:
(1) In the input layer, we added character and let-
ter 3-gram embeddings to improve robustness to
rare words. (2) We implemented co-attention (Seo
et al., 2016) in the aggregation layer to focus on
relevant words in both Q and P . (3) For the
MS MARCO task, which needs to handle multiple
passages, we incorporated an extra passage ranker
component. The architecture is shown in Figure 1.
In brief, the embedding/encoder layers first build
representations ofQ and P . The aggregation layer
uses co-attention to fuse information from the Q-
P pair. The output layer is a recurrent net that
maintains intermediate state and dynamically de-
cides at which turn to generate the answer.

3.1 Detailed description of ReasoNet++
Embedding Layer: We adopt three types of em-
beddings to represent input word tokens in Q and
P . For word embeddings, we use pre-trained
GloVe vectors (Pennington et al., 2014). To ad-
dress the out-of-vocabulary problem, we also in-
clude character and letter 3-gram embeddings.
Character embeddings are fed into a convolutional
neural network (CNN) as in (Kim, 2014), then
max-pooled to form a fixed-size vector for each
token. For letter 3-gram embeddings, we follow
Huang et al. (2013) by first hashing each word as
a bag of letter 3-gram, then feeding them into an-
other CNN. The concatenation of all embeddings
are then fed to a two-layer Highway Network (Sri-
vastava et al., 2015). Therefore, we obtain the

959

final embedding for the words in Q as a matrix
Eq ∈ Rd×m, and words in P as Ep ∈ Rd×n,
where d is the dimension of the embedding.

Encoding Layer: On the top of embedding
layer, we utilize a bidirectional Gated Recur-
rent Unit (GRU), a variety of the Long Short-
Term Memory Network (LSTM) (Hochreiter and
Schmidhuber, 1997), to encode the words in con-
text. We obtainHq ∈ R2d×m as the representation
of Q and Hp ∈ R2d×n as the representation of P .

Aggregation Layer: In this layer, we construct
the memory, a summary of information from both
the Q and P , for each word in P . A co-attention
mechanism (Seo et al., 2016), which attends to Q
and P simultaneously, is applied by first comput-
ing an alignment matrix in two directions: from Q
to P and from P to Q. The alignment matrix C
measures the similarity between Q and P :

C = fmatch(Hq, Hp) ∈ Rm×n (1)

The element at i-th row and j-th of the align-
ment matrix, Cij , indicates the similarity between
i-th word in the question and j-th word in the
passage. In detail, Cij = fmatch(Hq

:i, H
p
:j) is a

trainable scalar function that measures the simi-
larity between two input vectors, Hq

:i, which is
the i-th column vector of Hq, and Hp

:j , which is
the j-th column vector of Hp. We parameterize
fmatch(a, b) = wT

C [a; b; a ◦ b], where ◦ denotes
the Hadmard product, [;] indicates vector concate-
nation across rows, and wC ∈ R6d is a trainable
weight vector. We normalize C row-wise to pro-
duce the attention weight across the passage for
each word of the question:

Cq = softmax(C) ∈ Rm×n. (2)

To measure which context words in the P have the
closest similarity to the words in the Q, we define
an attention weight on the words in passage as:

cp = softmax(maxcol(C))T ∈ Rn. (3)

The final context representation of the P is:

U = fagg(Hp, HqCq,
i=m−1∑

i=0

Hp
:ic

p) ∈ R8d×n.

(4)
In our experiment, we define fagg(B,C,D) =
[B;C;B ◦ C;B ◦ D]. Note that B,C,D are
matrices with the same dimension, ◦ denotes
the Hadmard product and ; indicates matrix con-
catenation across columns. Note that since

Hp, HqCq,
∑i=m−1

i=0 Hp
:ic

p are all 2d by n matri-
ces, U is a 8d by n matrix. Finally, to incorporate
the full context, the “memory cells” of the passage
are computed by a bidirectional GRU on top of U :

Mp = BiGRU(U) ∈ R2d×n (5)

Output Layer: This layer dynamically decides
when to stop reasoning and output the answer. A
recurrent neural network (Rumelhart et al., 1986;
Elman, 1990) is adopted to maintain the states of
the reasoning process. Formally, the t-th time step
of inference state is denoted as St, and the next
state is defined by St+1 = GRU(St, Xt). Note
that the Xt is an attention vector generated based
on the current state and the memory of the pas-
sage: Xt = fa(St,M

p) as in (Shen et al., 2016).
Specifically, the attention score at,i on a memory
vector mi ∈ Mp given a state St is computed as
at,i = softmaxi=1,...,|Mp|λcosine(w1mi, w2St),
where λ is set to 10 in our experiments and the pro-
jection matrices w1 and w2 map the memory vec-
tor and state into the same space, they are learned
during training. The attention vector Xt can be
written as Xt =

∑|M |
i at,imi. The initial state S0

of the inference is from the encoding representa-
tion of the question (we pick the last state of the
forward GRU and the backward GRU in the Hq).

The termination gate will produce a stochastic
random variable according to the current inference
state: Tt ∼ p(·|ft(St)), where ft is modeled by a
2d×10×10×10×1 feed-forward neural network.
Note Tt is a binary random variable: if Tt is true,
the recurrent net will stop and the answer model
will execute; otherwise it will generate an atten-
tion vector Xt+1 and update the next state St+1.

The answer module needs to output a span in
passage. We do this with two feedforward net-
works, one predicting the start point of the span
and the other predicting the end point, so predicted
answer at turn t is at = (yt

s, y
t
e):

yt
s = softmax(wT

s [Mp, (wT
psM

p) ◦ St]) (6)

yt
e = softmax(wT

e [Mp, (wT
peM

p) ◦ St]). (7)

wherews, we, wps andwpe are trainable model pa-
rameters. Since the termination state is discrete
and is not connected to the final output directly, we
use the Contrastive Reward method (Shen et al.,
2016) inspired by deep reinforcement learning
(Weissenborn, 2016; Mnih et al., 2014) for train-
ing.

960

3.2 Passage ranking extension

The MS MARCO dataset provides multiple pas-
sages per question/query. Our architecture in Fig-
ure 1 is built for a single passage-question pair,
so we need to extend it to handle multiple pas-
sages. We propose a solution using passage rank-
ing. Assume there are J passages, P (1), . . . , P (J).
First, our model runs independently on every
(P (j), Q)j=1,...,J pair, generating J different an-
swer spans (empty spans are possible). Then, we
multiply the probability of each answer span with
a score r(P (j), Q) provided by a passage ranker,
and output the answer with the maximum com-
bined score, similar to EpiReader (Trischler et al.,
2016). The passage ranker is a information re-
trieval model (Shen et al., 2014).1 It can be trained
on the same RC data, where documents with an-
swers are considered relevant and those that do not
are considered irrelevant.

All our MS MARCO results use the passage
ranking extension, unless otherwise mentioned.

4 Experiments
We seek to answer the following questions:

1. Is multiple-turn reasoning beneficial for RC?
(Section 4.1)

2. What types of questions/answers benefit most
from multiple-turn reasoning? (Section 4.2)

3. How many turns are employed in practice
by ReasoNet++, and what are the implica-
tions for dynamic versus fixed strategies in
multiple-turn reasoning? (Section 4.3)

In addition to the above analyses, we also
demonstrate that our ReasoNet++ achieves state-
of-the-art results (Section 4.4) and discuss some
ablation studies on model variants (Section 4.5).2

1Our implementation first hashes words into letter 3-gram
(50K dimension), then use a CNN with 256 hidden nodes
and the size of window 5, and lastly optimizes the similarity
between the vector representations of P and Q.

2A note on hyperparameters: Throughout all experiments,
we use NLTK to tokenize P and Q, and employ pre-trained
case-sensitive 300 dimension GloVe embeddings3. A one
layer CNN with 100 dimensions and window size of 5 is
used to compute the character embeddings; a one layer CNN
with 100 dimension and window size of 1 is used for let-
ter 3-gram embeddings. The size of hidden nodes of all
GRU’s is set to 128. A five layers feedforward network
(2d(256)× 10× 10× 10× 1) is used for the terminate net-
work and the maximum number of reasoning turns in the re-
current net is capped at 5. To avoid overfitting, we adopt 0.15
dropout rate over the letter 3-gram and character embeddings,

SQuAD MS MARCO
Single model EM/F1 Score BLEU/ROUGE-L
Single turn 67.8/76.7 33.65/36.54
Fixed 5-turn 70.1/78.9 34.93/36.67
ReasoNet++ 70.8/79.4 38.62/38.01

Table 2: Main results—Comparison of sin-
gle turn to multiple turn reasoning strategies on
SQuAD and MS MARCO dev sets. Both multiple
turn strategies (fixed at 5, or dynamically decided
based on ReasoNet++) outperform Single turn in
all metrics. The dynamic strategy further improves
upon the fixed multiple 5-turn strategy.

Figure 2: Case study from SQuAD of answers
from multiple turns. In Turn 1, the model identi-
fies a span similar to the question. This is refined
and at Turn 3 a better answer becomes attainable.

4.1 Is multiple-turn reasoning beneficial?

In summary, yes. We compare three systems:

Single turn: the RC model only has one turn of
reasoning. This corresponds to a model like Fig-
ure 1 without termination nodes, where the output
layer always stops at St=1.

Fixed 5-turn: the RC model runs 5 turns of itera-
tive attention. This is Figure 1 without termination
nodes, where output layer always stops at St=5.

ReasoNet++ (Dynamic multiple-turn reason-
ing): this is the RC model in Figure 1, which can
decide from 1 to T turns based on the termination
probability on each Q-P pair at test time. We set
T = 5 to compare with the Fixed 5-turn system.

The main results are shown in Table 2. We ob-
serve that both multiple turn strategies (either fixed
at 5 turns, or dynamically decided based on Rea-
soNet++) outperform the single turn system in all
metrics. The dynamic strategy further improves
upon the fixed multiple 5-turn strategy. For ex-

and 0.25 dropout rate (Srivastava et al., 2014) over GRU net-
work. The model is optimized with AdaDelta (Zeiler, 2012)
with an initial learning rate 0.5.

961

(a) SQuAD

(b) MS MARCO

Figure 3: Score breakdown by answer length

ample, the F1 score on SQuAD improves from
76.7 to 78.9 when increasing the number of turns
from 1 to 5, and further improves to 79.4 with
dynamic multiple turns. On MS MARCO, we
see a ROUGE improvement from 36.54 (1-turn)
to 36.67(5-turn) and 38.62 (dynamic multi-turn).
These results convincingly show that multiple-turn
reasoning is helpful for SQuAD and MS MARCO
tasks. Figure 2 shows a case study of how answers
improve with each turn.

4.2 What types of questions/answers benefit
most from multiple-turn reasoning?

We find that improvements from multiple-turn rea-
soning is generally seen across the board, but
particularly helps questions with longer answers.
Figure 3 shows the score breakdown of Table 2
according to answer length (# of words). For
SQuAD, both ReasoNet++ and Fixed 5-turn out-
perform Single turn for all answer lengths, and
ReasoNet++ outperforms Fixed 5-turn for answer
lengths > 3. For MS MARCO, ReasoNet++ out-
performs Fixed 5-turn for answer lengths > 5;
on the other hand, there is almost no difference
among systems for short answers (0-4). We hy-

(a) SQuAD

(b) MS MARCO

Figure 4: Score breakdown by query/answer type

pothesize there is a correlation between answer
length and the difficulty of the question; for dif-
ficult questions there may be more potential for
multiple-turn reasoning to improve results.

We also visualize the score breakdown accord-
ing to question/answer type (Figure 4). For MS
MARCO, the questions are annotated by the type
of the correct answer: description (e.g. Q: “How
to cook a turkey”), numeric (e.g. Q: “Xbox one
release data”), entity, location, person. There is no
such annotation for the entire SQuAD dev data,
but we can classify questions by their first word:
What, Who, When, Which, etc. Similar to the
answer length results, we observe that multiple-
turn reasoning outperforms single turn for SQuAD
across the board, regardless of question type. For
MS MARCO, ReasoNet++ gave large improve-
ments over single turn in particular for descrip-
tion and location types. Descriptions tend to be
lengthy, so this again corroborates our hypothesis
that there may be more potential gains for ques-
tions requiring long answers.

962

Figure 5: Distribution on the number of turns by
ReasoNet++on the SQuAD dev set. Note that start
points are often decided before end points, and
most answer spans are generated after 3 turns.

4.3 How many turns of reasoning are
employed in practice?

We are interested in understanding the number of
turns determined by ReasoNet++. When does it
decide to terminate? In Figure 5, we plot the dis-
tribution of turns until the model decides on start
points and end points (of the answer span).

First, note the start point is often decided before
the end point, e.g. the start is already determined
at turn 3 for approximately 20% of the questions ,
but the end does not get predicted until turn 4 or 5.
Intuitively, we think it is easier to first identify the
start of an answer, then use that signal as interme-
diate state St to identify the end point.

Second, there is almost no termination at turns 1
or 2, implying the model prefers more iterations of
reasoning. Most terminations are done at step 4 or
5, which explains the relatively close performance
results between Fixed 5-turn and ReasoNet++.

4.4 Comparison with state-of-the-art

Our ReasoNet++ model, which is an extension
of ReasoNet (Shen et al., 2016), achieves scores
competitive with state-of-the-art results. The offi-
cial leaderboard results are shown in Table 3 (MS
MARCO) and Table 4 (SQuAD) Results are di-
vided by whether we use an individual model or
an ensemble of models. For SQuAD, the Rea-
soNet++ ensemble model achieves the best EM
and F1 test score among all published works,
and places second if we include r-net. Simi-
larly, the ReasoNet++ individual model results are
in the top 1 or 2 ranks, competitive with pub-
lished works like Zhang et al. (2017) and Weis-

System
BLEU/ROUGE-L

Dev Set Test Set
ReasoNet++ Individual 38.62/38.01 39.86/38.81
Match-LSTM -/- 40.72/37.33
FastQA Ext 35.0/34.4 33.93/33.67
FastQA 34.9/33.0 33.99/32.09
Human Performance -/- 46/47

Table 3: Official MS MARCO leaderboard per-
formance on April 5, 2017.

senborn et al. (2017). For MS MARCO (Table 3),
ReasoNet++ ranks first in test ROUGE and sec-
ond in test BLEU (after Match-LSTM (Wang and
Jiang, 2016)). Note that some of the models on
the leaderboard use multiple-turn reasoning, while
others do not. But we refrain from drawing con-
clusions about multiple-turn reasoning by compar-
ing across models, due to other confounding vari-
ables, e.g. different embeddings and network ar-
chitectures.

4.5 Ablation studies and model variants

We now present some ablation studies to
demonstrate the differences between our Rea-
soNet++ and the original ReasoNet (Shen et al.,
2016) in which we are based on.4

First, Table 5 shows the improvement from
adding sub-word level modeling to ReasoNet,
which only used word embeddings. We observe
marked improvements of update number +1.1 F1
in SQuAD and +0.9 ROUGE in MS MARCO.
Although these improvements are not as large as
those we achieved with multiple-turn reasoning,
they are are still considerable and imply that robust
representations of words is an important building
block to strong RC models.

Secondly, Table 6 shows the impact of passage
ranking—this is only relevant for MS MARCO,
which contains multiple passages for each ques-
tion/query. Recall that the RC model needs to read
approximately 10 passages to answer each query,
and on average only one or two passage contain
answer spans. ReasoNet++ extracts answer spans
from each passage independently, then combines
with an IR model to output the final answer. If we
assume oracle ranking from the IR model, we can
achieve 62 BLEU / 63 ROUGE, suggesting that

4Due to time constraints, we only perform ablation studies
on the embedding and passage ranking enhancements, and
leave the study of the impact of co-attention to future work.

963

Ensemble model results: Dev Set (EM/F1) Test Set (EM/F1)
r-net* -/- 76.9/84.0
ReasoNet++ (Ensemble model) 75.4/82.9 75.0/82.6
BiDAF (Seo et al., 2016) 73.3/81.1 73.7/81.5
Multi-Perspective Matching (Wang et al., 2016) 69.4/78.6 73.8/81.3
Dynamic Coattention Networks (Xiong et al., 2016) 70.3/79.4 71.6/80.4
Match-LSTM with Ans-Ptr (Wang and Jiang, 2016) 67.6/76.8 67.9/77.0
Fine-Grained Gating(Yang et al., 2017) 62.4/73.4 62.4/73.3
Individual model results:
r-net* -/- 72.3/80.7
jNet (Zhang et al., 2017) -/- 70.6/79.8
Ruminate Reader* -/- 70.6/79.5
ReasoNet++ (Individual model) 70.8/79.4 70.6/79.36
Document Reader* -/- 70.7/79.35
FastQAExt (Weissenborn et al., 2017) 70.3/78.5 70.8/78.9
RaSoR (Lee et al., 2016) 66.4/74.9 70.0/77.7
BiDAF (Seo et al., 2016) 67.7/77.3 68.0/77.3
Iterative Co-attention Network* -/- 67.5/76.8
Dynamic Coattention Networks (Xiong et al., 2016) 65.4/75.6 66.2/75.9
Match-LSTM with Bi-Ans-Ptr (Wang and Jiang, 2016) 64.1/73.9 64.7/73.7
Attentive CNN context with LSTM* -/- 63.3/73.5
Dynamic Chunk Reader (Wang and Jiang, 2016) 62.5/71.2 62.5/71.0
LR baseline (Rajpurkar et al., 2016) 40.0/51.0 40.4/51.0
Human Performance 80.3/90.5 82.3/91.2

Table 4: Official SQuAD leaderboard performance on April 5, 2017. Asterisk * denotes unpublished
works. Results are sorted by Test F1.

System
SQuAD MS MARCO

EM/F1 Score BLEU/ROUGE
word+char+3gram 70.8/79.4 38.62/38.01
word+char 70.4/79.1 38.37/37.91
word 69.9/78.3 37.77/37.14

Table 5: Comparison of input embeddings:
the addition of character (char) and letter tri-
gram (3gram) embeddings to word embeddings
(word) clearly improve results on SQuAD and MS
MARCO development sets.

BLEU/ROUGE-L
Oracle passage selection 62.83/63.17
Passage ranking 38.62/38.01

Table 6: Effect of multiple passages per query in
MS MARCO.

better passage ranking models (e.g. via joint train-
ing with RC models) is fruitful as future work.

5 Conclusion

This paper empirically investigates the perfor-
mance of single-turn and multiple-turn reasoning
on two challenging reading comprehension tasks:
SQuAD and MS MARCO. To perform the anal-
ysis, we adopt the neural network model of Shen
et al. (2016), which employs iterative attention and
uses reinforcement learning to dynamically con-
trol the number of turns. We find that multiple-
turn reasoning outperforms single-turn reasoning
for all question and answer types; further, we ob-
serve that enabling a flexible number of turns gen-
erally improves upon a fixed multiple-turn strat-
egy. While our analysis is based on a single
model, we believe the conclusions will be valuable
for most RC methods using attention-based neu-
ral network. Our model extension to (Shen et al.,
2016) achieves results competitive to the state-of-
the-art on both tasks. As future work, we plan to
investigate the impact of even deeper layers of rea-
soning and explore fast training methods to make
such methods practical for large-scale datasets.

964

References
Bhuwan Dhingra, Hanxiao Liu, William W Cohen,

and Ruslan Salakhutdinov. 2016. Gated-attention
readers for text comprehension. arXiv preprint
arXiv:1606.01549 .

Jeffrey L Elman. 1990. Finding structure in time. Cog-
nitive science 14(2):179–211.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems. pages 1693–
1701.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason
Weston. 2016. The goldilocks principle: Reading
children’s books with explicit memory representa-
tions. ICLR .

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. 2013. Learning deep
structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM
international conference on Conference on informa-
tion & knowledge management. ACM, pages 2333–
2338.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP). Association for Com-
putational Linguistics, Doha, Qatar, pages 1746–
1751. http://www.aclweb.org/anthology/D14-1181.

Kenton Lee, Tom Kwiatkowski, Ankur Parikh, and Di-
panjan Das. 2016. Learning recurrent span repre-
sentations for extractive question answering. arXiv
preprint arXiv:1611.01436 .

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries.

Volodymyr Mnih, Nicolas Heess, Alex Graves, et al.
2014. Recurrent models of visual attention. In
Advances in neural information processing systems.
pages 2204–2212.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. Ms marco: A human generated machine
reading comprehension dataset. arXiv preprint
arXiv:1611.09268 .

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics. Association for Computational
Linguistics, pages 311–318.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computa-
tional Linguistics, Doha, Qatar, pages 1532–1543.
http://www.aclweb.org/anthology/D14-1162.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text pages 2383–2392.
https://aclweb.org/anthology/D16-1264.

Matthew Richardson, Christopher J.C. Burges, and
Erin Renshaw. 2013. MCTest: A challenge dataset
for the open-domain machine comprehension of
text. In Proceedings of the 2013 Conference on Em-
pirical Methods in Natural Language Processing.
Association for Computational Linguistics, Seattle,
Washington, USA, pages 193–203.

David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams. 1986. Learning representations by back-
propagating errors. Cognitive modeling 5(3):1.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional attention
flow for machine comprehension. arXiv preprint
arXiv:1611.01603 .

Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng,
and Grégoire Mesnil. 2014. A latent semantic model
with convolutional-pooling structure for information
retrieval. In Proceedings of the 23rd ACM Inter-
national Conference on Conference on Information
and Knowledge Management. ACM, pages 101–
110.

Yelong Shen, Po-Sen Huang, Jianfeng Gao, and
Weizhu Chen. 2016. Reasonet: Learning to stop
reading in machine comprehension. arXiv preprint
arXiv:1609.05284 .

Alessandro Sordoni, Philip Bachman, Adam Trischler,
and Yoshua Bengio. 2016. Iterative alternating neu-
ral attention for machine reading. arXiv preprint
arXiv:1606.02245 .

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search 15(1):1929–1958.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen
Schmidhuber. 2015. Highway networks. arXiv
preprint arXiv:1505.00387 .

Adam Trischler, Zheng Ye, Xingdi Yuan, Philip
Bachman, Alessandro Sordoni, and Kaheer Sule-
man. 2016. Natural language comprehension
with the epireader. In Proceedings of the 2016
Conference on Empirical Methods in Natural
Language Processing. Association for Computa-
tional Linguistics, Austin, Texas, pages 128–137.
https://aclweb.org/anthology/D16-1013.

965

Shuohang Wang and Jing Jiang. 2016. Machine com-
prehension using match-lstm and answer pointer.
arXiv preprint arXiv:1608.07905 .

Zhiguo Wang, Haitao Mi, Wael Hamza, and Radu
Florian. 2016. Multi-perspective context match-
ing for machine comprehension. arXiv preprint
arXiv:1612.04211 .

Dirk Weissenborn. 2016. Separating answers from
queries for neural reading comprehension. arXiv
preprint arXiv:1607.03316 .

Dirk Weissenborn, Georg Wiese, and Laura Seiffe.
2017. Fastqa: A simple and efficient neural ar-
chitecture for question answering. arXiv preprint
arXiv:1703.04816 .

Caiming Xiong, Victor Zhong, and Richard Socher.
2016. Dynamic coattention networks for question
answering. arXiv preprint arXiv:1611.01604 .

Fan Yang, Zhilin Yang, and William W Cohen.
2017. Differentiable learning of logical rules
for knowledge base completion. arXiv preprint
arXiv:1702.08367 .

Matthew D Zeiler. 2012. Adadelta: an adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701 .

Junbei Zhang, Xiaodan Zhu, Qian Chen, Lirong
Dai, and Hui Jiang. 2017. Exploring ques-
tion understanding and adaptation in neural-
network-based question answering. arXiv preprint
arXiv:1703.04617 .

966

