
International Joint Conference on Natural Language Processing, pages 28–36,
Nagoya, Japan, 14-18 October 2013.

Learning a Replacement Model for Query Segmentation With
Consistency in Search Logs

Wei Zhang§∗, Yunbo Cao‡, Chin-Yew Lin ‡, Jian Su§, Chew-Lim Tan†
§Institute for Infocomm Research,‡Microsoft Research Asia

†National University of Singapore
{zhangw3,sujian}@i2r.a-star.edu.sg

{yunbo.cao,cyl}@microsoft.com, tancl@comp.nus.edu.sg

Abstract

Query segmentation is to split a query into
a sequence of non-overlapping segments that
completely cover all tokens in the query. The
majority of methods are unsupervised, how-
ever, they are usually not as accurate as su-
pervised methods due to the lack of guidance
from labeled data. In this paper, we propose
a new paradigm oflearning a replacement
model with consistency(LRMC), to enable un-
supervised training with guidance from search
log data. In LRMC, we first assume the ex-
istence of a base segmenter (an implementa-
tion of any existing approach). Then, we uti-
lize a key observation that queries with a sim-
ilar intent tend to haveconsistentsegmenta-
tions, to automatically collect a set of labeled
data from the outputs of the base segmenter by
leveraging search log data. Finally, we employ
the auto-collected data to train a replacement
model for selecting the correct segmentation
of a new query from the outputs of the base
segmenter. The results show LRMC can im-
prove state-of-the-art methods by an F-Score
of around 7%.

1 Introduction

Nowadayskeyword querieshave been adopted as
the de-facto query interface by most search en-
gines. Query tokens are not independent or un-
ordered symbols but rather ordered and structured
words and phrases with syntactic relationships.
Understanding the structure of a query is crucial
for achieving better search performance. Such
an understanding will also ease other search re-
lated applications such as query suggestion and
rewriting, where one is able to work on seman-
tic concepts instead of individual tokens.Query
segmentation(QS), a process of splitting a query
into a sequence of non-overlapping segments that
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completely cover all tokens, aims to address these
challenges. It requires that every segment ren-
dered is a phrase or a semantic unit. For exam-
ple, given a query “download adobe writer”, four
different ways of segmentation are possible. The
challenge is to determine which one is correct.

The majority of QS methods are unsupervised,
however, they are not as accurate as supervised
methods due to lack of guidance from labeled
data. On the other hand, supervised models suf-
fer from the problems: (1) new phrases/words are
introduced on the web daily, which quickly inval-
idate static supervised models trained on a certain
manually labeled set; (2) it is not feasible to de-
velop a set of labeled data covering all domains
on the web. In this paper, we propose a paradigm
of learning a replacement model with consistency
(LRMC), to enable unsupervised training and it
improves various unsupervised QS systems.

LRMC first assumes the existence of a base seg-
mentation system (hereafter referred to as ‘base
segmenter’) which can output top-n segmenta-
tions for any query. Then it tries to learn areplace-
ment modelcapable of selecting the correct seg-
mentation of a new query (if one exists) from the
output of the base segmenter. Our study on three
state-of-the-art systems (Section 5.2) shows that
for more than 35% of queries the correct segmen-
tations are not ranked as top-1 but included in the
top-5 results of the base segmenter, which implies
the potential of LRMC. The keys to our proposal
include: (a) how toautomaticallyacquire labeled
data (i.e., for a query in the labeled data, what its
correct segmentation is) and then (b) how to use
the labeled data to learn the replacement model.

Our method for the automatic acquisition of
the labeled data is motivated by the observation:
Queries with a similar intent tend to have consis-
tent segmentation results.In this paper, we say
that a set of queries have similar intents if and
only if they lead to the same set of web documents
(i.e., clicks). For example, when issuing to a web
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queries Rank-1 Segmentation Result Rank-2 Segmentation Result

download adobe writer download adobe| writer download | adobe writer
free adobe writer download free | adobe writer | download free| adobe| writer | download

free adobe writer free | adobe writer free adobe| writer

Table 1: Segmentation results for queries with a similar intent (Results in bold are considered correct.)

search engine any of the three queries in Table 1,
we search for the same set of web pages which
can provide ‘free download of Adobe writer’. We
denote such a set of queries as ‘query intent set’.
For the queries in the samequery intent set, natu-
rally we wish to explain them in the same way and
thus require that their segmentations be consistent
with each other. We say thatq1 and q2 are in-
consistent in segmentation if there exist more than
one common subsequence of tokens having differ-
ent segment boundaries. In Table 1, we also in-
clude the top-2 segmentation results that can pos-
sibly be generated by any base segmenter. If we
check only the ‘rank-1’ results, we observe that the
segmentation ‘download adobe| writer’ disagrees
with the other two. This means that we interpret
the same sequence of tokens differently for differ-
ent queries with a same intent, which is not what
we expect to have. Instead, we expect to have the
boldedsegmentations in which none of the indi-
vidual segments for one query disagrees with the
segments for another query. In this paper, we pro-
pose two methods for selecting such correct seg-
mentations from top-n segmentation results that
are about the samequery intent sets. With these
methods, we can automatically build up a training
data set, which allows us to train a reliable model.

The replacement model concerns aboutwhether
or not a ‘rank-1’ segmentationSa generated
by a base segmenter should be replaced by a
‘rank-k’ (k > 1) segmentationSb. The deci-
sion of the replacement can be made by collec-
tively considering one or multiple local transfor-
mations in the form of ‘wiwi+1 7→ wi|wi+1’ or
‘wi|wi+1 7→ wiwi+1’. ‘wiwi+1 7→ wi|wi+1’
means thatSa does not include a segment bound-
ary between tokenswi andwi+1 andSb does; Sim-
ilarly, ‘wi|wi+1 7→ wiwi+1’ means the reverse.
For example, for the first query in Table 1, we can
have the local transformations ‘download adobe
7→ download| adobe’ and ‘adobe|writer 7→ adobe
writer’. The proposed model estimates the score
of every local transformation using a binary clas-
sifier and then aggregates the individual scores to
reach its final decision.

We conduct extensive experiments using two
public data sets. The results show that (a) our

method for automatically constructing a set of la-
beled data with a base segmenter and a set of
query intent sets as inputs is effective, capable of
discovering correct segmentations missed by the
evaluated base segmenters for more than 20% of
queries (SeeM2 in terms ofAccqry in Table 3);
and (b) our replacement model benefits existing
QS approaches and boosts their performance sig-
nificantly (e.g. the improvement of> 7% F-Score
on the data WQ10-Majority in Table 4).

We summarize our contributions as follows: (1)
on the basis of the observation that queries with
a similar intent tend to have consistent segmen-
tations, we propose a method for automatically
collecting from search log data a set of labeled
data for QS. The method first groups queries in
search log data into what we call a ‘query intent
set’ and then select correct segmentations by ex-
amining the consistency among segmentations for
the queries in the same ‘query intent sets’. (2)
With the automatically-collected data, we develop
a ‘replacement model’ for the purpose of check-
ing whether or not a ‘rank-1’ segmentation gener-
ated by a base segmenter should be replaced by a
‘rank-k’ (k > 1) segmentation. (3) We conduct
extensive experiments with two publicly available
data sets and show that our proposal can effec-
tively boost the performance of state-of-the-art
systems (Hagen et al., 2010; Hagen et al., 2011).

2 Related Work

Bergsma and Wang (2007) considered the deci-
sion to segment or not between each pair of ad-
jacent words as a binary classification problem.
Guo et al. (2008), Yu and Shi (2009), and Kisel-
eva et al. (2010) used methods based on CRF. As
the cost of obtaining labeled data is high, they are
usually not feasible to develop a set of labeled data
covering all the domains on the web and then train
a scalable QS model for web search.

The work for web-scale QS are usually unsuper-
vised and utilized various statistics such as mutual
information (MI) and frequency count collected
from various sources such as web data, query logs,
and etc (Risvik et al., 2003; Jones et al., 2006;
Huang et al., 2010; Zhang et al., 2009). Li et
al. (2011) also used the language model estimated
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from click-through documents to backoff the gen-
erating process of QS. Tan and Peng (2008) used
n-gram frequencies from a large web corpus as
well as Wikipedia. Hagen et al. (2010) showed
that the raw n-gram could be exploited with an ap-
propriate normalization scheme and achieved sur-
prisingly good accuracy. Later, they enriched the
work by including the use of Wikipedia (Hagen
et al., 2011). In our evaluation, we compare our
proposal with the last two work which represent
state-of-the-art.

Our proposal is orthogonal to all the above ap-
proaches. LRMC assumes the existence of a base
segmenter (an implementation of any above ap-
proaches) and it focuses on how to leverage search
log data to learn a replacement model for improv-
ing the output of base segmenters.

3 Problem Settings

QS. Let q = [w1, w2, · · · , wn] denote a query
consisting of n keywords. A segments =
[wi, · · · , wj ](1 ≤ i ≤ j ≤ n) is a subsequence
of the query. A segmentationS = [s1|s2| · · · |sK ]
for queryq is then defined as a sequence of non-
overlapping segments. ‘|’ denotes a segmentation
boundary. If we assume there is no order depen-
dency ofs, we can then treatS as a set{sk}Kk=1.

Query Intent. There exist many definitions on
query intent. In this paper we introduce an op-
erational definition on query intent.

Definition 1 The query intent(s) of a queryq is
defined as the set of URLs (Urls(q)) which are
clicked forq by users of a web search engine.

Because most queries are ambiguous or multi-
faceted (Clarke et al., 2009), we manage to restrict
the number of intents into one or a few by group-
ing more queries together, which leads to the defi-
nition of ‘query intent set’.

Definition 2 A query intent setQINT is a set of
queries satisfying the following conditions:

a)
⋂

q∈QINT Urls(q) 6= ∅;

b) |QINT | > c.

where|QINT | denotes the number of elements in
QINT , and c is a parameter to control how spe-
cific a query intent is; a larger value forc usually
means that the query intent is more specific and
thus less ambiguous.

Query intent sets used in our experiments will
be detailed in Section 5.1.

4 Our Proposal

4.1 Overview of the Proposed Paradigm

First, the paradigm LRMC assumes the existence
of a base segmenter that is able to output top-n seg-
mentations for any query. Then it tries to learn a
replacement modelcapable of replacing the rank-
1 segmentation generated by this base segmenter
with one rank-k (k > 1) segmentation.

LRMC can be illustrated by the following
flowchart. First, a queryq is fed into a base seg-
menter. As a result, a set of segmentations{Si}

n
i=1

regardingq are generated. Subscripti denotes the
rank of the corresponding segmentation. Next,
{Si}

n
i=1 are fed into a replacement model. The re-

placement model tries every possible replacement
Si (i > 1) for the rank-1 segmentationS1 (as in-
dicated by the curved arrows). The trial ends with
two possible results: (a) None of the replacements
is valid (S1 cannot be replaced); and (b) one seg-
mentationS∗i (i

∗ > 1) is the most likely replace-
ment and thus chosen as the final segmentation for
q (e.g., the replacement of the solid curve).

q
base segmenter
−−−−−−−−−−−→

S1

S2

S3

· · ·

Sn

replacement model
−−−−−−−−−−−−−−→

S1

S2

S3

· · ·

Sn

LRMC is motivated by the following observa-
tion: for most cases, the correct segmentation for
a query is included in its top-n segmentation re-
sults already. Usually, there are not that many
likely segmentations for a query and thus correct
segmentations cannot be ranked too low by a base
segmenter. For example, for any base segmenter
in our experiment, more than 93% of queries can
have a segmentation that is agreed upon by at least
one of the annotators in its top-5 results. Given
this observation, what we have to do is not to gen-
erate or propose a new segmentation, but to tell
which segmentation is correct in the top-n results.

Next, we detail how the replacement model is
learned. Specifically, we first introduce how we
automatically extract from search log data a set
of labeled data with ‘consistency’ as a guidance
and then explain how a ‘replacement model’ can
be learned from this data set.

4.2 Consistency as Supervision

Assume that we have aquery intent setQINT =
{qi}

m
i=1. With a base segmenter, we generate the

top-n segmentation results{Sij} (1 ≤ j ≤ n) for
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each queryqi, which forms the following matrix:

SQINT =

(

S11 S12 S13 · · · S1n

S21 S22 S23 · · · S2n

· · · · · · · · · · · · · · ·

Sm1 Sm2 Sm3 · · · Smn

)

← q1
← q2
· · ·

← qm

What we manage to achieve is to collect a set
of ‘labeled’ data from{Sij}. In the ‘labeled’
data, each queryqi has only one segmentation
Sij∗ (Sij∗ ∈ {Sij}

n
j=1), which we consider ‘cor-

rect’. We make use of two types of strategies to
choose the ‘correct’ segmentations fromSQINT

(e.g., those underlined ones inSQINT , namely
S12, S22, · · · , Sm1).

Before explaining the two strategies, let us
first introduce how we measure the consistency
between two segmentations. Theconsistency
cst(S, S

′
) between segmentationsS andS

′
is de-

fined as the number of segments they share, i.e.,

cst(S, S
′

) = |S ∩ S
′

| (1)

The first strategy (M1) that we use as ‘super-
vision’ for the acquisition of the labeled data is
as follows: The correct segmentations for them
queries in the samequery intent setshould be
very consistent with or similar to each other al-
though the segmentations cannot be exactly the
same. Thus, the correct segmentations can be cho-
sen with the objective function:

(j∗1 , · · · , j
∗
m) = argmax

1≤j1 ,··· ,jm≤n

∑

1≤i<i
′
≤m

cst(Siji , Si
′
j
i
′

)

(2)

wherej∗i denote the index (or rank) of the correct
segmentation for queryqi.

The other strategy (M2) is on the basis of the
observation: Although at most only one top-n seg-
mentation can be correct for a query, most seg-
mentations are not totally incorrect, i.e., they in-
clude some correct segments while having some
incorrect segments as well. Thus, those incorrect
segmentations also provide some clues about what
can be correct. In addition, as the choices for ‘in-
correct segment’ are usually more than those for
correct segment, it is relatively hard for incorrect
segments to converge to a few. As a result, a cor-
rect segment should be more popular than any one
single incorrect segment. Given this discussion,
we can have the second objective function:
(j∗1 , · · · , j

∗
m) = argmax

1≤j1 ,··· ,jm≤n

(
∑

1≤i,i
′

≤m 1≤j
′

≤n

cst(Siji , Si
′
j
′ )

−
∑

1≤i≤m

cst(Siji , Siji))

(3)

Note thatcst(Siji , Siji) = |Siji |. Given one se-
lected segmentationSiji , the objective is to sum
up the consistencies between itself and any of the
rest in matrixSQINT . Thus, by this objective,
we choose the segmentations whose segments are
agreed with by most top-n segmentations.

Both strategies assume that correct segments are
more popular than incorrect segments in the top-
n output of one reasonably-performing base seg-
menter. Both strategies will fail if the assump-
tion is not true. Our experiments in Section 5.2,
in which both strategies are able to find more cor-
rect segmentations than the base segmenters, can
be seen as a support for the assumption.

4.3 Replacement Model

The replacement model is to tell whether or not a
segmentation ranked as top-1 by a base segmenter
should be replaced by another segmentation with
a rank ofj (1 < j ≤ n). For example, we have a
queryq whose top-n segmentations are{Sqj}

n
j=1.

Then, the input of the replacement model will be
a possible replacementSq1 7→ Sqj (j > 1) and the
output will be a label ‘1’ or ‘0’. Label ‘1’ means
Sq1 should be replaced bySqj and ‘0’ means ‘not’.

With that in mind, we can then make use of
‘consistency’ to create a labeled data set. For ex-
ample, if queryq belongs to a query intent set
QINT and its correct segmentation chosen by the
objective (2) or (3) isSqj∗ , we can generate the
labeled instance(s) as follows:

Dq =

{

{(Sq1 7→ Sqj, 0)}j 6=1 if j∗ = 1
{(Sq1 7→ Sqj∗, 1)} otherwise

(4)
By combining all such data sets together, we then
have the final labeled data setD = ∪

q
Dq. Note

that queryq can come from multiple query intent
sets (not just one single set).

Next, we explain how to use the above training
data to learn a replacement model.

The decision of whether or not to do the re-
placement ofSq1 7→ Sqj can be made by col-
lectively considering one or multiple local trans-
formations in the form of ‘wiwi+1 7→ wi|wi+1’
or ‘wi|wi+1 7→ wiwi+1’. ‘wiwi+1 7→ wi|wi+1’
means thatSq1 does not include a segment bound-
ary between tokenswi and wi+1 and Sqj does;
‘wi|wi+1 7→ wiwi+1’ means the reverse.

Let T (Sq1 7→ Sqj) denote the set of all possible
local transformations fromSq1 toSqj andx denote
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one element from the set (i.e., one local transfor-
mation). If we know the likelihoodf(x) of every
individual transformationx being valid, the score
of replacingSq1 by Sqj can then be estimated as
∑

x∈T (Sq1 7→Sqj)
f(x).

The likelihood of a local transformationx be-
ing valid can be estimated with a binary classi-
fier. We employ SVM as the classifier. Given
an instancex, SVM assigns a score to it based on
f(x) = w

T
x+ b, wherew denotes a weight vec-

tor andb denotes an intercept. Given a replace-
ment(Sq1 7→ Sqj, y) wherey ∈ {0, 1}, a set of
labeled data for the binary classifier is prepared
as:{x, y}x∈T (Sq1 7→Sqj). By considering all the re-
placements inD, we will have a final training data
set{(xi, yi)}

N
i=1 for SVM.

On the basis of that, we can do the replace-
ment as follows: If for certainj (j > 1)
∑

x∈T (Sq1 7→Sqj)
f(x) > 0, we will use the seg-

mentation withargmax
1<j≤n

∑

x∈T (Sq1 7→Sqj)
f(x) as

its index to replace the top-1 segmentation; Other-
wise, we will keep using the top-1 segmentation.

4.4 Learning Features

In this section, we describe the features for rep-
resenting a local transformationx, which is in
the form of either ‘wi0wi0+1 7→ wi0 |wi0+1’ or
‘wi0 |wi0+1 7→ wi0wi0+1’. We utilize four cate-
gories of features which are possible indicators of
a transformation, representing a variety of infor-
mation such as lexical, syntactic, semantic and etc.
Contextual Features: Lexical. The left and
right tokens around the decision position,wi0 and
wi0+1, are a good signal of the transformation. In
the example of “google desktop| download”, the
token ‘download’ is separated from its left neigh-
bor. Such common query tokens in the training
data with the property of usually being separated
from or being connected to its left/right neighbor
can help predict new transformations (e.g. “adobe
writer download7→ adobe writer| download”). On
the basis of this observation, we adopt the left to-
kenwi0 and the right tokenwi0+1 as the features
for representing a transformationx. Furthermore,
sometimes one word alone can not perfectly char-
acterize a transformation. For example, to reject
the transformation “diet plan7→ diet | plan”, we
have to use the token bigram<diet plan>. Thus,
we include all the token bigrams in the form of<
wi0 wi0+1 > as features as well. As we all know,
lexical features usually suffer from a data sparse-

ness issue when used in various tasks (Bagga and
Baldwin, 1998; Sriram et al., 2010). Fortunately,
the web-scale training data we collect fromquery
intent sets(Section 4.2) enables us to have a good
coverage of lexical features.

Contextual Features: POS Tag. Bergsma et
al. (2007) show that part-of-speech (POS) tags are
useful in their segmentation classification. We also
exploit the POS tag pair ofwi0 andwi0+1 as fea-
tures. For example, intuitively, “NN NN7→ NN
| NN” is more likely to occur than “JJ NN7→ JJ
| NN”. The POS tags that we consider include
all types of POS tags. Note that this is different
from Bergsma et al. (2007). As their segmentation
model only takes care of noun phrase queries, their
POS tags are restricted to determiners, adjectives,
and nouns. The POS tagger by (Roth and Zelenko,
1998) is used in this paper.

Mutual Information (MI). Following previous
work (Section 2), we also adopt MI betweenwi0

andwi0+1 as our feature. The work (Bergsma and
Wang, 2007) also considered the case of a noun
phrase with multiple modifiers (e.g. “female bus
driver”). To make the segmentation decision be-
tween ‘female’ and ‘bus’,MI(‘female’, ‘driver’)
is more suitable to represent the information of
not separating them thanMI(‘female’, ‘bus’).
Thus, we also incorporateMI(wi0−1, wi0+1) and
MI(wi0 , wi0+2) into our feature set.

Most previous work on QS only can use word-
based MI as introduced above. However, in some
cases, the MI between tokens can not provide suf-
ficient information for a segmentation decision.
For instance, assume that we have the following
two queries with their correct segmentations: (1)
“download | call of duty | free”; (2) “duty free|
shops| sfo”. Only using the token-based mutual
informationMI(‘duty’, ‘free’) can not discrimi-
nate the two queries from each other and thus can
not give different segmentations for ‘duty free’ in
the two queries. In our work, as the query has been
segmented by a base segmenter, we propose to
also use the segment-based MI. In the ‘duty free’
example,MI(‘call of duty’, ‘free’) will be incor-
porated for the transformation decision related to
“download | call of duty free 7→ download| call
of duty | free”, where the token-basedMI(‘duty’,
‘free’) does not work.

Semantic Features.We define the semantic fea-
tures on the basis of segments. For a transforma-
tion ‘wi0wi0+1 7→ wi0 |wi0+1’ , let us denote the
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segment includingwi0wi0+1 (in the first segmen-
tation) ass1 and denote the segments including
wi0 andwi0+1 separately (in the second segmenta-
tion) ass2 ands3, respectively. To obtain seman-
tic labels for the above three segments, we make
use of a web-scale knowledge base of entities,
namely Freebase (Bollacker et al., 2008). First, we
map the three segments to the Freebase entities by
string matching, and then use the names or aliases
of the associated categories of the mapped entities
as their semantic labels. Finally, the semantic la-
bels fors1, s2 and s3 are used as features. Due
to the ambiguity, a phrase in a query may be mis-
takenly linked to a certain entity in the knowledge
base. Thus, the semantic features include some
noises. However, even with noises such features
can still contribute to QS. To illustrate how the se-
mantic features work, consider the query with the
assigned semantic label as follows,

[history of the]NULL [search engine]computer software genre

As pointed out by (Tan et al., 2008), QS ap-
proaches which are only based on statistical in-
formation (e.g.MI and frequencies of n-grams)
collected from the Web, cannot guarantee that the
resulting segments are meaningful ones. For the
query ‘history of the search engine’, a possible
segmentation is ‘history of the| search engine’,
as both ‘history of the’ and ‘search engine’ occur
on the web frequently. In contrast, semantic infor-
mation can distinguish ‘search engine’ from ‘his-
tory of the’, as ‘history of the’ is labeled as NULL
and ‘search engine’ is labeled as ‘computer soft-
ware genre’. Moreover, the learning algorithm can
also learn some implicit relations between trans-
formations and semantic labels, e.g. some partic-
ular combination of labels fors1, s2 ands3 may
often trigger or prevent a transformation.

Rank, Direction and Position Features.Table 2
shows the values of these features. The rank fea-
ture is designed to distinguish among the different
segmentation rankings of a base segmenter. For
example, this feature can capture the intuition that
for a good base segmenter, top ranked segmenta-
tions should have more of a chance to be selected.
The direction feature is used to distinguish the two
kinds of transformations: ‘wiwi+1 7→ wi|wi+1’
and ‘wi|wi+1 7→ wiwi+1’. The position feature
considers decision positions, as transformations in
different positions may have different chances.

Rank j, the rank of the segmentation to which
we transform the top-1 segmentation.

Direction 1, if “wiwi+1 7→ wi|wi+1”; 0, reverse.
Positionleft

Positionright
Number of words from the decision po-
sition to the beginning/end of query.

Table 2: The ‘rank’, ‘direction’ and ‘position’ features

5 Experiments

5.1 Experimental Setup

Following Hagen et al. (2011), we evaluate a QS
system at three levels:Query Level:

Acc
qry =

#correctly segmented queries
#queries in the evaluation data set

(5)

Break Level. The decision of break is whether
or not to insert a segment boundary between
two tokens in the query. The break-level accu-
racy (Accbrk) is defined as the proportion of the
correctly-made decisions out of all such decisions.

Segment Level. Let Qeval denote the set of
queries.Ssys

q is the segmentation generated by a
system andSeval

q is given by a human. Then,

P
sg =

∑

q∈Qeval

|Ssys
q ∩ Seval

q |

|Ssys
q |

R
sg =

∑

q∈Qeval

|Ssys
q ∩ Seval

q |

|Seval
q |

F
sg =

2 · P sg ·Rsg

P seg +Rsg

(6)

We use two data sets as introduced in (Bergsma
and Wang, 2007) and (Hagen et al., 2010), denoted
as ‘Bergsma-Wang-07’ (BW07) and ‘Webis-
QSeC-10’ (WQ10). BW07 includes 500 test
queries which all were noun phrase queries. Each
query was segmented manually by three annota-
tors (denoted as annotator A, B, and C) respec-
tively. For 44% of the queries, all three annota-
tors agree on the segmentations. Such an agree-
ment between annotators cannot be considered as
‘strong’, which to some extent implies that hu-
man annotations may not be so reliable when used
for training a segmentation model capable of con-
sistently working over different queries. WQ10
includes 4,850 queries. Each query can be any
type of query, not necessarily a noun phrase query.
Each query was annotated by ten annotators.

We made use of the mining method in (Hu et
al., 2011) for collecting thequery intent sets. With
the search log data and clicks (Apr 1, 2009-Mar
31, 2010) as input, we finally obtained 9,412,308
query intent sets, which totally include 30,902,284
unique queries. The similar queries in each set
share more than 10 clicks. Each set includes 2∼11
queries. We denote this data set asQSet. Note
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that this data set does not have any annotations.
Thus, we also tried to construct another data set
(denoted asQSetann) by intersectingQSet with
WQ10. QSetann includes 1,554 queries. Every
query inQSetann is then associated with the hu-
man annotations from WQ10 and linked to at least
one query intent set inQSet.

As each query has more than one segmentation
due to different annotators, we select segmentation
as our reference under two schemes: ‘Majority ’
where the segmentations agreed upon by a major-
ity of the annotators are chosen as the reference,
and ‘Best’ where the annotated segmentations that
maximize the break accuracyAccbrk of the evalu-
ated segmenter are chosen as the reference.

We mainly utilized three unsupervised systems
as base segmenters. They are described in (Ha-
gen et al., 2010) , (Hagen et al., 2011) and (Risvik
et al., 2003), denoted asBaseH-1, BaseH-2 and
BaseCN respectively. They can represent the state-
of-the-art QS performance. For example,BaseH-2

on on data BW07(A) achieves69.2%F sg which
slightly outperforms the recent unsupervised sys-
tem (Li et al., 2011) (69.0%F sg).

As we focus on web QS, we did not compare
LRMC with supervised methods which are only
designed for one particular domain. For example,
Yu et al. (2009)’s method is for queries of rela-
tional databases. The work (Bergsma and Wang,
2007) and the supervised stage of (Bendersky et
al., 2009) are only for noun-phrases.

5.2 Consistency as Weak Supervision

LRMC relies on a training data which is automat-
ically collected with the help of query intent sets.
Thus, in this section, we evaluate the training set
collected byM1 andM2 (Section 4.2).

In the experiments, we first applied a base seg-
menter to the queries inQSetand then managed to
choose one segmentation as correct from the out-
put for each query with eitherM1 or M2. Last,
we evaluated the new output by checking only the
segmentations for the queries in subsetQSetann.
Some queries inQSetann may belong to different
intent-sets and in each intent-set may have differ-
ent segmentation labels as ‘correct’. In our eval-
uation, we randomly selected one of them as the
final label. Besides, we also included an ideal
methodOracle by which the correct segmenta-
tion can always be identified and used as the new
output if the segmentation exists in the top-n re-

sults of the base segmenter. Note thatOracle is
an upper-bound result obtained by directly match-
ing with human’s annotation and cannot be applied
to query intent setsQSet for collecting labeled
data. Table 3 provides the results, where top-k
(1 ≤ k ≤ 5) means that the input toM1/M2 is the
top-k results of the corresponding base segmenter.
Note that the top-1 results are the performance of
the base segmenters.

By checking the results ofOracle, we can find
that for every base segmenter, more than 35%
of the correct segmentations in the top-5 results
are not covered by the top-1 results (in terms of
Accqry). In addition, around 90% correct segmen-
tation boundaries (Accbrk) are included in the top-
5 results of the base segmenters. These findings
indicate the feasibility of our replacement model,
which tries to replace a rank-1 segmentation by a
rank-k (k > 1) segmentation.

From the table, we also see that bothM1 and
M2 are able to significantly perform better than
the base segmenters do (p < 0.05, t-test). This
can be observed through all the measures. For ex-
ample, usingAccqry as the evaluation metric, the
percentage of the correct segmentations thatM2
discovers more than the base segmenters do ranges
from 20.2% to 24.6%. These improvements prove
the underlying assumption that queries with a sim-
ilar intent tend to have consistent segmentation.
Besides, we can see thatM2 can reach a satisfied
performance to collect the labeled data. For exam-
ple, break-level accuracyAccbrk can reach 80%.

Table 3 also shows that M1 and M2 perform
best by using top 3 or 4 results from base seg-
menter. This finding indicates that our framework
should work with a reasonable base segmenter.

By comparing the results generated byM1 and
M2 with all three measures, we see thatM2 con-
sistently performs better thanM1, and the differ-
ence is statistical significant (p < 0.05, t-test).
This tells us that consistency should be calculated
with all the top-n segmentations rather than with
only the selected segmentations.

5.3 Query Segmentation

In this section, we investigate the effectiveness of
our LRMC which is a combination of data collect-
ing method and replacement model.

In the experiments, we first made use ofM2
to automatically collect the training data from the
query intent setsQSet. During the process of col-
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Segmenter Rank
Oracle M1 M2

Accqry Accbrk F sg Accqry Accbrk F sg Accqry Accbrk F sg

BaseCN

Top-1 38.7 67.9 51.7 38.7 67.9 51.7 38.7 67.9 51.7
Top-2 46.1 76.1 60.8 42.4 70.0 55.6 47.0 76.4 56.3
Top-3 67.3 85.6 74.9 58.8 81.3 68.3 58.8 81.0 68.1
Top-4 73.3 88.5 79.9 58.3 79.6 67.6 58.9 81.4 68.3
Top-5 75.2 89.5 81.5 44.6 72.1 57.6 59.6 61.0 60.2

BaseH-1

Top-1 42.9 69.7 53.8 42.9 69.7 53.8 42.9 69.7 53.8
Top-2 59.0 81.7 68.9 46.0 75.9 60.6 47.2 77.2 61.7
Top-3 72.5 87.8 78.5 63.2 83.0 70.8 65.3 82.5 72.0
Top-4 75.2 89.4 81.2 64.3 83.3 71.6 64.3 83.5 71.8
Top-5 77.9 90.6 83.2 59.0 81.7 68.7 63.0 82.1 70.0

BaseH-2

Top-1 39.6 68.3 52.2 39.6 68.3 52.2 39.6 68.3 52.2
Top-2 51.6 78.5 64.2 45.6 74.0 59.4 45.4 73.5 59.2
Top-3 69.4 86.4 76.3 61.0 80.1 69.4 64.2 83.4 71.2
Top-4 74.1 88.9 80.5 59.2 78.9 69.0 63.1 82.2 70.0
Top-5 76.7 90.1 82.5 59.8 78.0 67.2 67.1 66.3 66.5

Table 3: Consistency as weak supervision onQSetann (Majority)

lecting the data, we took only the top-3 segmenta-
tions as input. The training data set collected by
M2 contains around 45 million instances (pairs of
segmentations). Then, all this labeled data is used
to train the replacement model as introduced in
Section 4.3. We made use of LIBSVM (Chang and
Lin, 2011) and a linear kernel in our experiment.
Finally, we applied the learned replacement mod-
els to the evaluation data sets BW07 and WQ10.

Table 4 reports the QS results1. Following pre-
vious work (Bergsma and Wang, 2007; Hagen et
al., 2011), we report four groups of results with the
data BW07. In each of the first three groups, only
the reference segmentations from annotator A, B
or C are used. The fourth group is ‘Best’ of BW07.
We also report two groups of results (‘Majority ’
and ‘Best’) with the data WQ10. Comparing
each pair of ‘Base’ and ‘LRMC’, we can see that
LRMC proposed in this paper can be successfully
spliced onto different base segmenters and signif-
icantly improves them over different data sets un-
der the three evaluation metricsAccqry, Accbrk

and F sg. (p < 0.05, t-test). Especially, the
state-of-the-art systemsBaseH-1 andBaseH-2 have
been significantly improved by LRMC. The im-
provements prove that the automatically-collected
labeled data can guide QS and our replacement
model can take advantage of the data.

6 Conclusions and Future Work

We have proposed a paradigm LRMC for QS.
LRMC assumes the existence of a base segmenter

1Note that the results for the base segmentersBaseH-1 and
BaseH-2 are not exactly same as those reported in (Hagen et
al., 2011) although they are very close. For example,BaseH-1

andBaseH-2 on WQ10 achieve 73.4%F sg and 74.2%F sg in
the original paper. Ours are 71.2% and 72.1%. The reasons
are as follows: For BW07, they used a cleaned version of the
data set; for WQ10, they released just a subset of the data
used in their experiments.

Data Set Measure
BaseCN BaseH-1 BaseH-2

Base LRMC Base LRMC Base LRMC

Accqry 53.4 55.3 55.2 56.7 53.8 55.4
BW07 Accbrk 79.3 81.4 80.2 81.9 79.5 81.7
(A) F sg 66.5 69.6 67.5 70.2 66.7 69.8

Accqry 37.4 40.2 39.8 41.1 37.8 39.8
BW07 Accbrk 73.7 74.9 74.7 76.4 73.8 75.4
(B) F sg 54.3 58.3 55.6 58.7 54.5 58.1

Accqry 41.6 44.2 43.8 46.7 42.0 46.9
BW07 Accbrk 74.1 75.2 75.0 78.6 74.2 78.6
(C) F sg 56.9 60.4 58.0 62.3 57.1 62.4

Accqry 62.2 67.2 64.6 66.2 65.6 66.8
BW07 Accbrk 85.1 90.0 86.1 87.3 87.6 88.7
(Best) F sg 74.5 79.6 75.8 78.4 78.6 79.5

Accqry 30.0 38.5 31.8 40.1 30.3 39.8
WQ10 Accbrk 65.3 72.1 66.2 74.0 65.5 73.1
(Majority) F sg 47.5 55.1 48.5 55.8 47.7 55.6

Accqry 52.8 60.4 57.0 67.9 59.1 67.6
WQ10 Accbrk 80.5 84.7 83.5 89.6 84.4 89.5
(Best) F sg 67.8 72.7 71.2 79.0 72.1 78.8

Table 4: Performance on query segmentation

and then learns how to select correct segmenta-
tions from the output of the base segmenter. The
replacement model is trained by a labeled data set
which can be automatically collected fromquery
intent sets, instead of relying on any human anno-
tation. There exist two interesting directions for
future work: (1) we observe that there is still a big
gap in performance between the proposed meth-
ods andOracle. According to our analysis, most
of the gap is caused by that the incorrect segmenta-
tions for some similar queries also happen to have
a high consistency when measured by either pro-
posed strategy. Thus, it is worth studying other
methods that can address such performance gap.
(2) we would like to further explore the concept
of query intent sets. In this paper, we assume that
similar intent queries tend to have similar segmen-
tations. A reasonable next step is to explore the
idea that similar intent queries tend to have similar
labels, which can be useful for the task of tagging
query segments with semantic labels.
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