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Abstract

We present a novel topic modeling ap-
proach to sentiment analysis for docu-
ments organized into hierarchical cate-
gories. In our approach, positive, nega-
tive, and subject matter topics are learned
and used to infer document labels. A
Markov chain Monte Carlo model pro-
cedure adapts the number and structure
of topics based on a minimum descrip-
tion length objective function. We ap-
ply our approach to Yelp.com business re-
views and Amazon.com book reviews and
demonstrate that 1) the model adaptation
procedure selects a high quality model
from the space of alternatives, and 2) the
resulting model performs well relative to
state of the art regression and topic model-
ing approaches.

1 Introduction

Selecting an appropriate model is an important
part of any machine learning endeavor. The model
must be chosen in a manner so as to balance two
objectives: 1) Be sufficiently rich to capture the
relevant patterns in the data, and 2) Be simple
enough to avoid spurious patterns in the training
data (overfitting). In natural language processing
tasks, there are often many modeling choices to
be made regarding what feature granularities and
interactions to consider. It is important to make
these decisions in a manner such that the resulting
model strikes a balance between these two some-
what contradictory objectives.

In order to appropriately make these choices,
we must consider not only the task involved but
also the training data available. With copious
data we can reliably calibrate complex models, but
with limited data complex models risk overfitting.
Many general model selection techniques exist in

which each candidate model is fit to the training
data and scored with respect to a particular cri-
terion. While these approaches allow us to com-
pare a small number of models in order to select
the most appropriate, they require calibrating each
model’s parameters to the training data. However,
when there are many modeling choices to be made
and thus a large space of alternative models, fitting
all of them to the training data is computationally
prohibitive.

In this paper, we present a novel topic mod-
eling approach for structured sentiment analysis
domains and an automatic model adaptation ap-
proach that takes advantage of categorical meta-
data. This model adaptation approach resolves the
structure of the metadata with the significant pat-
terns in the training data to determine the number
and range of latent topics.

We demonstrate our approach on Yelp.com
business reviews as well as Amazon.com book re-
views. We show that our model adaptation ap-
proach selects an appropriate model given a par-
ticular amount of training data, and the resulting
model is high quality relative to alternative regres-
sion and topic modeling approaches.

2 Background

Sentiment analysis, in which the opinion of the au-
thor is estimated from a document, has recently
grown in popularity. Many works have explored
unigram models (Pang and Lee, 2005; Snyder and
Barzilay, 2007). Higher-order n-gram models are
explored in (Pang and Lee, 2008; Baccianella et
al., 2009). In order to combat the high dimensional
feature space that accompanies such models, mod-
els restricting features based on part of speech pat-
terns (Baccianella et al., 2009) or opinion tem-
plates (root, modifiers, negation words) (Qu et al.,
2010) have been introduced.

Topic models are generative models in which
the words in a document are assumed to be asso-
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ciated with one of a number of abstract “topics.”
Latent Dirichlet allocation (Blei et al., 2003) is a
popular topic model in which the topic distribu-
tion per document is assumed to have a Dirich-
let prior. In supervised LDA (Blei and McAuliffe,
2007), the distribution of document topics is used
to produce a document label. (Zhao et al., 2010;
Titov and McDonald, 2008b; Titov and McDon-
ald, 2008a) focus on topic modeling based ap-
proaches to aspect-based sentiment summariza-
tion, identifying product features and the opinion
associated with each.

Model selection is the act of using data to
choose a statistical model from a set of candidates.
Often, this task is performed by fitting each can-
didate model to the training data and using a cri-
terion to score the models and select one. Popu-
lar criteria include the Akaike information crite-
rion (AIC) (Akaike, 1974), the Bayesian informa-
tion criterion (BIC) (Schwarz, 1978), and the min-
imum description length principle (MDL) (Rissa-
nen, 1978; Grunwald, 2007). Structural Risk Min-
imization (Vapnik, 1995) defines a general frame-
work in which a nested hierarchy of hypotheses
can be defined based on prior knowledge of the do-
main, such that a hypothesis balancing goodness
of fit with simplicity can be identified. The work
presented in this paper is closely related to the
model adaptation procedure presented in (Levine
et al., 2010), in which a hill-climbing approach is
used to explore a large space of generative models.

3 Topic Modeling for Sentiment Analysis
in Structured Domains

Our approach takes advantage of hierarchical cat-
egorical metadata. Formally, this hierarchy forms
a tree structure, which we refer to as C (See Figure
1). Individual nodes in the tree are called cate-
gories, for which we use notation c. A categoriza-
tion, c, is a set of categories, c = {cd,1, cd,2, ...}.
c can be thought of as metadata about a prod-
uct/service being reviewed. For example, with re-
gard to a book review, c could equal {“Fiction”,
“Fiction\Drama”, “Fiction\Drama\Romance”, ...
}. c must be well formed. That is, if a node c ∈ C
appears in categorization c, all ancestors of c (in
the tree C) must also appear in c. c can contain
multiple distantly related categories. For exam-
ple, a particular book could belong to both “Fic-
tion\Poetry” and “Children\Humor.”

Documents, or examples, are denoted d =

Figure 1: A subtree of the category tree, C, corre-
sponding to the Amazon Books domain.

〈xd, cd, yd〉. xd = [wd,1, wd,2, ..., wd,|xd|] is a vec-
tor of words. Each word is an element from the
vocabulary, V = {w1, w2, ..., w|V |}. cd is the
document’s categorization. yd is a numeric rat-
ing from a discrete space ({1,2,3,4,5} for our do-
mains). The rating is an overall score given by the
document’s author to the product or service being
reviewed.

We are given a collection of documents, D, and
our goal is to learn a function f(〈x, c〉) to predict
rating ŷ from an unlabeled document so as to min-
imize the expected loss over the unknown distri-
bution of documents:

E (loss(y, f(〈x, c〉))) (1)

We use the squared error loss function.

3.1 Model Structure

We will start by presenting our generative docu-
ment topic model. In this model, each review is
composed of a mixture of topics, and each topic is
associated with a distribution over words. We use
t ∈ T to denote a topic, and Pt to denote t’s word
distribution. Within a document, each word is as-
sumed to be generated from a particular topic, al-
though which topic is unobservable. In many topic
model approaches, such as latent Dirichlet alloca-
tion (Blei et al., 2003), topics are learned in an
unsupervised or weekly supervised fashion (as is
the case with supervised LDA).

In our model, we assume each document is gen-
erated according to a rigid topic distribution (more
similar to labeled LDA (Ramage et al., 2011)).
Each document is a mixture of three topics: 1) a
positive topic (+), in which the reviewer is speak-
ing favorably about the product/service, 2) a nega-
tive topic (-), in which the reviewer is speaking un-
favorably, and 3) a subject topic (si) correspond-
ing to general text about the content/features of the
product.
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The proportion of positive words to negative
words is a function of the rating score. Subject
topics reflect the language used when discussing
a particular product or group of products, and do
not directly influence a document’s rating. Still,
learning these topics appropriately is crucial to the
performance of the model. When a word is indica-
tive of either the positive or negative topic, it is im-
portant to account for its probability in the subject
topic. For example, the word “good” may be less
indicative of a book review’s rating if the review
discusses a book about ethics. Furthermore, if
subject topics are not learned appropriately, words
related to the subject matter of products/services
with a disproportionate number of positive train-
ing reviews would be attributed to the positive
word topic. This will lead to poor performance
on unseen data. On the other hand, if these words
are correctly attributed to the subject topic, then
the high ratings will appropriately be attributed to
the unconditional positive words appearing in the
reviews.

What constitutes a subject worthy of having its
own topic? For books, should we only make broad
distinctions such as fiction vs. non-fiction? Should
we learn a unique subject topic for each book?
Should we use something in between these two ex-
tremes? In answering these questions, we need to
balance goodness of fit to the training data with
model simplicity. There is no optimal answer, it
is a function both of the domain (in that we need
to make the most “significant” distinctions), and
the amount of training data available to calibrate
our model (more training data allows us to reli-
ably learn the additional parameters introduced by
making additional distinctions).

There exists a many-to-one relationship be-
tween documents and subject topics. The mapping
from document to subject topic is a function of the
document’s categorization, si = g(cd), si ∈ T .
We call the function g the topic mapping func-
tion. The range of g is the set of subject topics,
{s1, s2, ..., sN} ⊂ T . In Sections 3.1.1 and 3.1.2
we assume that g is fixed. In Section 3.2, we con-
sider exploring the space of alternative topic map-
ping functions.

We assume that in expectation, a fixed but un-
known fraction, α of each document is composed
of the subject topic. The remainder of the review is
composed of the positive and negative topics, and
the positive/negative ratio is related to the docu-

ment’s rating. Let ymin and ymax represent the
minimum and maximum scores in the rating scale.
For document d with score yd the expected frac-
tional breakdown into topics is as follows:

Positive: f+(yd) =(1− α)
yd − ymin
ymax − ymin

Negative: f−(yd) =(1− α)
ymax − yd
ymax − ymin

Subject: fs(yd) =α (2)

In total, a model M is composed of the topic
mapping function, the value α, and the word
distributions associated with each topic. M =
(g, α, P+, P−, Ps1 , Ps2 , ..., PsN ).

3.1.1 Training
Expectation maximization (Hastie et al., 2001) can
be used to train our topic model. The procedure
works by iteratively updating 1) the assignment of
words in each document to latent topics (Expec-
tation Step), and 2) the word distributions asso-
ciated with each topic (Maximization Step). EM
proceeds as follows:

Expectation Step
Each word is assigned an expected topic distri-

bution. For word i in document d:

qd,i(+) =
f+(yd)P+(wd,i)

Zd,i

qd,i(−) =
f−(yd)P−(wd,i)

Zd,i

qd,i(g(cd)) =
fs(yd)Pg(cd)(wd,i)

Zd,i

Zd,i =
∑

t∈{+,−,g(cd)}
ft(yd)Pt(wd,i) (3)

Maximization Step
Topic word distributions are updated so as to

maximize the likelihood of the training data. For
each topic t:

Pt(w) =

∑
d∈D

∑|xd|
i=1 Iw(wd,i)qd,i(t)

∑
d∈D

∑|xd|
i=1 qd,i(t)

(4)

where

Iw(wd,i) =

{
1 if wd,i = w
0 otherwise

(5)
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3.1.2 Inference
Given the trained topic models we use Bayes’ the-
orem to compute the probability that an unlabeled
document 〈xd, cd〉 is associated with a particular
rating. Let Td = {+,−, g(cd)}:

P (y|xd, cd) =
P (y)P (xd, cd|y)

P (xd, cd)

=
P (y)

∏|xd|
i=1

(∑
t∈Td ft(y)Pt(wd,i)

)

∑
y′ P (y′)

∏|xd|
i=1

(∑
t∈Td ft(y)Pt(wd,i)

)

(6)

For evaluation purposes, we output the expected
value of y and compute the squared error to the
true value.

3.2 Model Adaptation
In this section we introduce a Markov chain Monte
Carlo approach to selecting a topic mapping func-
tion g. Here, we stochastically explore the space
of topic mapping functions, driven by the mini-
mum description length principle and estimates of
the effect of modifications to g. This approach re-
sists local minima and efficiently finds a high qual-
ity topic mapping function.

3.2.1 Minimum Description Length
Objective

Our goal is to find a model that balances fit to the
training data with simplicity, and concentrates its
flexibility where most useful to capture relevant
patterns in the domain. We accomplish this by
utilizing a two part minimum description length
objective function. The objective is the sum of 1)
the description length (in bits) required to encode
the model and 2) the description length of the data
given the model.

L(M,D) = L(M) + L(D|M) (7)

where L(M) is a function of the number of
model parameters (≈ the product of the number
of topics and the vocabulary size) and L(D|M) is
the negative log likelihood of the data given the
model. Thus the goal is to jointly minimize the
complexity of the model and maximize the likeli-
hood of the data given the model, and the objective
can be rewritten as:

L(M,D) = β(N + 2)|V |+−log (l(D|M))
(8)

Figure 2: Two possible partitioning trees for the
Amazon.com Books category tree (Figure 1). Tree
b) is formed by splitting s2 in a) based on member-
ship in the “Computer\Software” category.

where β is a complexity penalty constant, which
is selected via cross-validation.

3.2.2 Topic Mapping Functions
The topic mapping function g maps from catego-
rization c to a subject topic si ∈ T . We select a
particular g from the space of binary partitioning
trees, G. In a binary partitioning tree, each in-
ternal node references a category c, and each leaf
node references a subject topic si. See Figure 2.
Starting at the root, a categorization, c is recur-
sively assigned by each internal node to 1) the left
subtree if the referenced category c is in c, and
2) the right subtree otherwise, until a leaf (with
associated subject topic) is reached. For exam-
ple, within the book review domain, a node may
reference the category “Computers.” In this case,
computer books are recursively assigned a subject
topic by the left subtree, and all others by the right
subtree. We allow only well formed partitioning
trees: Any node in g that references a category c
with parent category parent(c) ∈ C must have an
ancestor that references parent(c). For example,
we do not allow a node in g to reference “Com-
puters\Software”, unless we have already condi-
tioned on the “Computers” category. This con-
straint guarantees that we partition the space of
categorizations into coherent regions (we would
never assign “Computer\Hardware” and “Fiction”
books to the same subject topic while assigning
“Computer\Software” to a different topic).

3.2.3 Adjacent Model Estimation
In order to guide the search through G, we con-
sider 2 types of modification operations: We can
1) Split a leaf based on category c ∈ C, splitting
one partition into two, adding an additional subject
topic to the model, or 2) Merge two leaves with the
same parent, combining two partitions into one,
removing a subject topic from the model.
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Given a particular g, there are a finite number of
possible merge and split operations to the leaves.
Key to our search is the fact that we can estimate
the change to the description length objective that
each possible modification will cause, using the la-
tent topic distributions assigned to each topic dur-
ing expectation maximization. Consider merging
two subject topics si and sj :

∆̂L = −β|V | −
∑

t∈{si,sj}

∑

w∈V
#t(w)log

Pmi,j (w)

Pt(w)

(9)

where

#t(w) =
∑

d∈D

|xd|∑

i=1

Iw(wd,i)qd,i(t)

Pmi,j (w) =

∑
t∈{si,sj}#t(w)

∑
t∈{si,sj}

∑
d∈(D)

∑|xd|
i=1 qd,i(t)

(10)

Now consider splitting subject topic si based on
category c:

∆̂L = β|V | −
∑

t∈{si,c,si,!c}

∑

w∈V
#t(w)log

Pt(w)

Psi(w)

(11)

where

#si,c(w) =
∑

d=(x,c,y)∈D
s.t.c∈c

|xd|∑

i=1

Iw(wd,i)qd,i(si)

Psi,c(w) =
#si,c(w)

∑
d=(x,c,y)∈D

s.t.c∈c

∑|xd|
i=1 qd,i(si)

#si,!c(w) =
∑

d=(x,c,y)∈D
s.t.c/∈c

|xd|∑

i=1

Iw(wd,i)qd,i(si)

Psi,!c(w) =
#si,!c(w)

∑
d=(x,c,y)∈D

s.t.c/∈c

∑|xd|
i=1 qd,i(si)

(12)

These estimates are upper bounds on the change
to the description length objective function. Incor-
porating these changes (and the associated word
distributions) and then retraining the model with
expectation maximization may further reduce the
objective. These bounds serve as a guide to esti-
mate the objective for models that have not been
fit to the training data, which will drive our search
through G for the optimal topic mapping function.

3.2.4 MCMC exploration
Markov chain Monte Carlo (Gilks et al., 1996)
stochastically steps through the space of alterna-
tive topic mapping functions. At each iteration
of MCMC, the topic model with the current topic
mapping function is fit to the training data and
the objective change associated with all possible
merges and splits is estimated. We then construct
a proposal distribution for alternative models that
can be reached with these operations. Limiting the
proposal distribution to these candidate models, as
in (Titov and Klementiev, 2011) and (Singh et al.,
2011) induces a decomposable, feasible computa-
tion. A model is sampled from this distribution
and adopted if certain criteria on its fitness are met.

MCMC will converge to a probability distribu-
tion over models. By making better models (those
with a lower objective) more probable, the MCMC
chain will be driven towards higher quality mod-
els. We use an exponential distribution over mod-
els:

P (M) =
e−L(M,D)

ZP
(13)

with normalization factor ZP .
The proposal distribution,Q assigns some prob-

ability to all candidate models that can be reached
by a single merge or split to each of the leaves
in the current partitioning tree. In Q, splits and
merges to leaves without a common parent are in-
dependent by construction. Now, consider a par-
ticular leaf, l, that has the following possible splits,
S = {c1, c2, ..., cl}, and cannot be merged with
another leaf. For example, in Figure 2a, the leaf
corresponding to s1 meets this condition as it can-
not be merged to another leaf and has possible
splits {“Fiction\Drama”, “Fiction\Poetry”, “Non-
fiction”, “Computers”, “Children”, ... }. Let Ml

represent the subset of models where l is not split,
andMl,ci represent the subset of candidate models
where l has been split with respect to category ci.

Q(Ml) =
e−τL(M,D)

Zl

Q(Ml,ci) =
e−τL̂(Ml,ci

,D)

|S|Zl

Zl =

(
e−τL(M,D) +

∑

c∈S

1

|S|e
−L̂(Ml,c,D)

)
(14)

0 < τ ≤ 1 controls a balance between having
the proposal distribution completely influenced by
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the estimated objectives vs. a uniform proposal
distribution.

For all pairs of leaves that share a common par-
ent, we entertain a merge operation. In Figure 2a
the leaves corresponding to s2 and s3 meet this
criteria. Suppose two leaves, l and l′ have possible
splits S = {c1, c2, ..., cl} and S′ = {c′1, c′2, ..., c′l′}
respectively. In addition to the one merged alterna-
tive, there are w = (|S|+ 1)(|S′|+ 1) alternatives
that involve only splits to the two leaves. Let Ml,l′

represent the subset of candidate models where l
and l′ are merged

Q(Ml,l′) =
w−

1
2 e−τL̂(Ml,l′ ,D)

w−
1
2 e−τL̂(Ml,l′ ,D) + (Zl)(Zl′)

(15)

The factor of w−
1
2 accounts for the difference be-

tween the number of neighbors that the models
with l and l′ merged vs. split have. If the two
leaves are not merged, then the conditional proba-
bility for each of the (|S|+ 1)(|S′|+ 1) remaining
structural alternatives is computed in Equation 14.

A new topic mapping function g′ is sampled
from Q and fit to the training data via the expec-
tation maximization presented in Section 3.1.1. If
a random value sampled uniformly from U [0, 1) is
less than

P (Mg′)Q(g|g′)
P (Mg)Q(g′|g)

(16)

then g′ is accepted as the new topic mapping func-
tion gt+1. This guarantees that the Markov chain
will converge to the distribution P as t → ∞. Be-
cause the ratio P (Mg′)/P (Mg) appears in Equa-
tion 16, the normalization factor ZP in Equation
13 cancels out and does not need to be computed.

4 Empirical Evaluation

We perform a set of experiments to demonstrate
the following:

1) Given the topic model structure outlined in
Section 3.1, the model adaptation procedure in
section 3.2 selects a high performing topic map-
ping function while only evaluating a small frac-
tion of the total number of funtions.

2) The topic model resulting from model adap-
tation is high quality relative to alternative state-
of-the-art approaches.

4.1 Data
We demonstrate our approach to two structured
sentiment analysis datasets. First, we gathered a

collection of approximately 8,000 Yelp.com busi-
ness reviews from the greater New York area.
For this data, businesses are assigned into cate-
gories and subcategories based on the Yelp.com
business hierarchy. There are 22 primary cate-
gories {Arts and Entertainment, Education, Finan-
cial Services, Restaurants,...}, each with 6 to 100
subcategories (restaurants have the most subcat-
egories, {Japanese, Barbeque, Cafe, Fast Food,
Burgers, Ultra High Enc, Formal, Full Bar,...}).
Businesses can be assigned to multiple categories
and subcategories within the hierarchy.

Second, we utilize 20,000 Amazon.com book
reviews, extracted from the data set first pre-
sented in (Qu et al., 2010). Categorical distinc-
tions in these domains are related to the Ama-
zon.com product hierarchy. A small portion of
the product hierarchy appears in Figure 1. Books
can be assigned to multiple distantly related cate-
gories. For example, the book Six Wives of Henry
VIII belongs to “History\Europe\England\Tudor
and Stuart,” “Biographies and Memoirs\Specific
Groups\Women” and three other categories

For each domain, we have at most one review
corresponding to any particular business/book.
This allows for a broad coverage of the space of
categorizations.

4.2 Results and Discussion

To compensate for extreme variations in the train-
ing data we apply two smoothing steps. First, we
found that for longer reviews, the assumption that
each word is drawn independently from the docu-
ment’s topics is too strong, and so for reviews with
more than 35 words, we scale the term counts such
that the total is 35. Second, because of the large
size of the vocabulary, after training, some rare
words have zero or near zero probability in some
of the topics. When these words are observed dur-
ing inference, they have a very strong effect on
the document’s expected rating. We found that
smoothing the subject topics with the overall word
distribution across topics stabilizes the predicted
ratings and improves performance. The amount
of smoothing could be optimized to maximize the
likelihood of the test data, but we found that per-
formance varied little for a wide range of values
and so we choose a 1 to 1 smoothing.

From each dataset, we sample a subset of size
1000 for cross validation parameter tuning and
use the remaining examples for experimentation.
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Figure 3: Learning curves for three model sam-
pling approaches on Yelp.com test data with 500
training examples (averaged over 20 trials).

The validation data is used to learn the values of
α, the subject topic fraction, and β, the complex-
ity penalty. We found that setting τ , the MCMC
smoothing factor, equal to .1 worked well across
our datasets. For each trial, then, disjoint training
and test sets are sampled from the remaining data.

First, we apply our Markov chain Monte Carlo
model adaptation procedure along with greedy and
random alternatives to demonstrate the necessity
of a directed and stochastic approach. In the
greedy approach, at each iteration we estimate
the objective for all candidate models that can be
reached with a single split/merge to each subject
topic and adopt the model with the minimum es-
timate. For the random approach, at each itera-
tion we start with the simplest topic mapping func-
tion (mapping all categorizations to one subject
topic), and uniformly at random add distinctions
until the model has the same number of subject
topics as the optimal model found by the MCMC
approach. We choose this instead of sampling at
random from all possible topic mapping functions
as the vast majority of such functions have nearly
as many subject topics as training examples. For
each approach, at iteration i, we chart the test
mean squared error for the best (lowest objective)
model observed during training in iterations 1 to i.

Figure 3 charts the per iteration mean squared
error on the Yelp test data for the three model
adaptation approaches. The greedy approach ini-
tially makes the fastest progress, but it is suscepti-
ble to local minima, and it levels off before being
overtaken by the MCMC approach. As the random
approach does not leverage the data in determining
what distinctions to make, it fails to make progress

Figure 4: A representative partitioning tree
learned from 500 training examples on the
Yelp.com data.

at the rate of the other approaches. Its poor per-
formance is indicative of the importance of having
an efficient directed model adaptation approach, as
high performing models are few and far between,
even if we limit our search to models of the appro-
priate complexity level (number of subject topics).
Figure 4 shows a representative partitioning tree
learned from the Yelp.com dataset.

Next we compare our approach to alternative re-
gression and topic modeling approaches. In or-
der to implement regression, we 1) Form a vector
of unigram (and optionally bigram) occurrences
normalized to length 1 (which we found to work
better than unnormalized or frequency vectors),
and 2) Form a vector corresponding to categori-
cal membership with one element for each node
in category tree C. For each example, we set each
element in the vector to value γ if the example be-
longs to the corresponding category, and 0 other-
wise. The feature vector is the concatenation of
these two vectors. We tested three regression ap-
proaches: ridge regression, lasso, and ε-support
vector regression with a quadratic kernel (Chang
and Lin, 2001). In each case, the cross valida-
tion dataset is used to tune the value of γ and
the regularization parameter (for ridge regression
and lasso) or ε and the cost parameter (for εSVR).
We found that in all cases, lasso and εSVR were
ouperformed by ridge regression, and so omit their
results.

For the supervised latent Dirichlet allocation
approach, as the space of labels is numeric and
discrete, we can treat the task either as a regression
problem (Blei and McAuliffe, 2007), or as a mul-
ticlass classification problem (Wang et al., 2009).
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Yelp.com Data Amazon.com Data
Training Examples Training Examples

500 1000 2000 4000 6000 500 1000 2000 4000 6000
TMSD, MCMC 1.207 1.062 .983 .915 .870 1.243 1.161 1.090 1.019 .981
TMSD, Simple 1.252 1.108 1.017 .951 .893 1.300 1.256 1.158 1.075 1.027
TMSD, Complex 1.284 1.123 —- —- —- 1.281 1.198 —- —- —-
RR, Uni 1.319 1.182 1.103 1.020 .949 1.337 1.265 1.145 1.081 1.033
RR, Uni/Bi 1.285 1.164 1.059 .971 .903 1.310 1.237 1.119 1.041 1.001
SLDA 1.664 1.649 1.606 1.556 1.479 1.621 1.632 1.607 1.581 1.555

Figure 5: Mean Squared Error for 1) the presented topic model for structured domains (TMSD) using
MCMC Model Adaptation (MCMC), the simplest topic mapping function (Simple), or the most com-
plex topic mapping function (Complex), 2) ridge regression (RR) with unigrams (Uni) or unigrams and
bigrams (Uni/Bi), and 3) multiclass supervised latent Dirichlet allocation (SLDA). Results are averaged
over 10 trials, each with 1000 test examples. The MCMC approach significantly outperforms all other
approaches for each training set size (Yelp.com: p < .01, Amazon.com: p < .05).

We used an open source implementation of each
approach, (Chang, 2010) and (Wang, 2009), and
found that utilizing the multiclass approach and
predicting the expected rating based on the pos-
terior likelihood of each class outperformed the
regression approach, so we present these results.
The cross validation data is used to learn the num-
ber of latent topics and Dirichlet distribution pa-
rameter.

For the Markov chain Monte Carlo approach, in
order to hasten learning for this comparison, start-
ing from the simplest topic mapping function, we
perform a greedy model adaptation until reaching
an estimated local minimum, and then apply 50
additional iterations of MCMC model adaptation.

Figure 5 shows the average mean squared error
for each approach for various amounts of training
data. Our topic model with model adaptation has
lower error than each of the alternatives. Paired t-
tests reveal that the differences are statistically sig-
nificant in all cases (p < .01 for all Yelp.com and
p < .05 for all Amazon.com tests). Using MCMC
model adaptation also outperforms using either the
simplest topic mapping function or the most com-
plex mapping function (which maps each distinct
training categorization to a different subject topic).

Ridge regression with unigrams uses the same
word and categorical representations as our ap-
proach. However, it is unable to entertain the non-
linear relationships between document categoriza-
tions and words and is outperformed in all cases.
Bigrams improve the performance of ridge regres-
sion, especially for larger amounts of training data.
This suggests that accounting for word ordering

could potentially improve the performance of our
topic model as well. sLDA is unable to take
advantage of the categorical information during
topic construction, and with the limited training
data available, its performance is marginally bet-
ter than guessing the mean label (MSE: 1.675 for
Yelp.com data and 1.660 for Amazon.com data).

5 Conclusion

We present an approach to sentiment analysis for
structured domains. In our approach, positive,
negative, and subject topics are learned and used
to infer document labels. Partitioning tree based
topic mapping functions define the number and
structure of subject topics. A Markov chain Monte
Carlo model adaptation procedure explores the
space of topic mapping functions based on a min-
imum description length objective. We demon-
strate the approach on two sentiment analysis do-
mains and show that the model adaptation proce-
dure efficiently finds a high performance model
that leverages the categorical structure of the doc-
uments to outperform other regression and topic
modeling approaches.
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