
Generation of Referring Expression Using Prefix Tree Structure

 Sibabrata Paladhi Sivaji Bandyopadhyay
 Department of Computer Sc. & Engg. Department of Computer Sc. & Engg.
 Jadavpur University, India Jadavpur University, India
 sibabrata_paladhi@yahoo.com sivaji_cse_ju@yahoo.com

Abstract

This paper presents a Prefix Tree (Trie)
based model for Generation of Referring
Expression (GRE). The existing algorithms
in GRE lie in two extremities. Incremental
algorithm is simple and speedy but less ex-
pressive in nature whereas others are com-
plex and exhaustive but more expressive in
nature. Our prefix tree based model not
only incorporates all relevant features of
GRE (like describing set, generating Boo-
lean and context sensitive description etc.)
but also try to attain simplicity and speed
properties of Incremental algorithm. Thus
this model provides a simple and linguisti-
cally rich approach to GRE.

1 Introduction

Generation of referring expression (GRE) is an
important task in the field of Natural Language
Generation (NLG) systems (Reiter and Dale,
1995). The task of any GRE algorithm is to find a
combination of properties that allow the audience
to identify an object (target object) from a set of
objects (domain or environment). The properties
should satisfy the target object and dissatisfy all
other objects in the domain. We sometimes call it
distinguishing description because it helps us to
distinguish the target from potential distractors,
called contrast set. When we generate any natural
language text in a particular domain, it has been
observed that the text is centered on certain objects
for that domain. When we give introductory de-
scription of any object, we generally give full
length description (e.g. “The large black hairy
dog”). But the later references to that object tend to
be shorter and only support referential communica-
tion goal of distinguishing the target from other
objects. For example the expression “The black
dog” suffices if the other dogs in the environment

are all non black. Grice, an eminent philosopher of
language, has stressed on brevity of referential
communication to avoid conversational implica-
ture. Dale (1992) developed Full Brevity algorithm
based on this observation. It always generates
shortest possible referring description to identify
an object. But Reiter and Dale (1995) later proved
that Full Brevity requirement is an NP-Hard task,
thus computationally intractable and offered an
alternative polynomial time Incremental Algo-
rithm. This algorithm adds properties in a prede-
termined order, based on the observation that hu-
man speakers and audiences prefer certain kinds of
properties when describing an object in a domain
(Krahmer et al. 2003). The Incremental Algorithm
is accepted as state of the art algorithm in NLG
domain. Later many refinements (like Boolean de-
scription and set representation (Deemter 2002),
context sensitivity (Krahmer et al 2002) etc) have
been incorporated into this algorithm. Several ap-
proaches have also been made to propose an alter-
native algorithmic framework to this problem like
graph-based (Krahmer et al. 2003), conceptual
graph based (Croitoru and Deemter 2007) etc that
also handle the above refinements. In this paper we
propose a new Prefix Tree (Trie) based framework
for modeling GRE problems. Trie is an ordered
tree data structure which allows the organization of
prefixes in such a way that the branching at each
level is guided by the parts of prefixes. There are
several advantages of this approach: 1) Trie data
structure has already been extensively used in
many domains where search is the key operation.
2) The structure is scalable and various optimized
algorithms are there for time, space optimizations.

 In this paper it is shown how scenes can be
represented using a Trie (section 2) and how de-
scription generation can be formalized as a search
problem (section 3). In section 4 the algorithm is
explained using an example scene. In section 5, the
basic algorithm is extended to take care of different
scenarios. The algorithm is analyzed for time com-

697

plexity in section 6 and conclusion is drawn in sec-
tion 7.

2 Modeling GRE Using Trie Structure

In this section, it is shown how a scene can be rep-
resented using a trie data structure. The scheme is
based on Incremental algorithm (Reiter and Dale
1995) and incorporates the attractive properties
(e.g. speed, simplicity etc) of that algorithm. Later
it is extended to take care of different refinements
(like relational, boolean description etc) that could
not be handled by Incremental algorithm. Reiter
and Dale (1995) pointed out the notion of
‘PreferredAttributes ’ (e.g. Type, Size, Color etc)
which is a sequence of attributes of an object that
human speakers generally use to identify that ob-
ject from the contrast set. We assume that the ini-
tial description of an entity is following this se-
quence (e.g. “The large black dog”) then the later
references will be some subset of initial description
(like “The dog” or “The large dog”) which is de-
fined as the prefix of the initial description. So, we
have to search for a prefix of the initial full length
description so that it is adequate to distinguish the
target object. Following the Incremental version
we will add properties one by one from the
‘PreferredAttributes’ list. In our model, the root
consists of all entities in the domain and has empty
description. Then at each level, branching is made
based on different values of corresponding pre-
ferred attribute. The outgoing edge is labeled with
that value. For example, at the first level, branch-
ing is made based on different values of ‘Type’
attribute like ‘Dog’, ‘Cat’, ‘Poodle’ etc. A node in
Trie will contain only those objects which have the
property(s) expressed by the edges, constituting the
path from root to that node. After construction of
the Trie structure for a given domain in this way,
referring expression generation problem for an ob-
ject r is reduced to search the tree for a node which
consists of r and no other object. Description for r
can be found from the search path itself as we have
said earlier. Now we will introduce some notations
that we will use to describe the actual algorithm.
Let D be the Domain, r be the target object and P
be the ‘PreferredAttributes’ List. � Ni � = {d |
d∈D and d is stored at node Ni} where Ni is an i-th
level node. Obviously � No� = D since No is root
node. E(Ni, N

k
i+1) is an edge between parent node

Ni and Nk
i+1, k-th child of that node (considering an

enumeration among children nodes). Since every
edges in Trie are labeled, thus {E}⊆ {N} x L x
{N}, where {E} and {N} are set of all edges and
nodes respectively in the tree and L is the set of
attribute values. Let Val(E(Ni, Nk

i+1)) denotes the
label or value of the edge and � Val(E(Ni, N

k
i+1)) �

= {d | d∈D and d is satisfied by the edge value}
i.e. the set contains those objects who have this
property. We define � Nk

i+1 � = � Ni �
∩ � Val(E(Ni, N

k
i+1)) �where Ni and Nk

i+1 are par-
ent and child node respectively. Similarly � Nk

i � =
� Ni-1 � ∩ � Val(E(Ni-1, Nk

i)) � . Ultimately, we
can say that ∀ i � Ni � = � No�∩ � Val(E(No,N1))
� ∩ …… ∩ � Val(E(Ni-1,Ni)) � . Since our con-
struction is basically a tree, each node is reachable
from root and there exists a unique path from root
to that node. So, for each node in the tree we will
get some description. We will formulate referring
expression construction as search in the con-
structed tree for the node min(k){Nk} such that � Nk �
= {r }. If N k is leaf node then description of r will
be same with the full description but if it is an in-
termediate node then description is some proper
prefix of initial description. But the point is that, in
both cases the later reference is prefix of initial one
(as both “ab” and “abc” are prefixes of “abc”).

3 Basic Algorithm

Based on above discussions, algorithms are devel-
oped for construction of Trie from the domain and
generation of reference description for any object
in that domain. The Trie construction algorithm
ConstructTrie(D,P,T) is shown in figure 1, Refer-
ring expression generation algorithm MakeRe-
fExpr(r,p,T,L) is shown in figure 2, where T is a
node pointer and p is pointer to parent of that node.
Our algorithm MakeRefExpr returns set of attrib-
ute-values L to identify r in the domain. As dis-
cussed earlier, it is basically a node searching algo-
rithm. In course of searching, if it is found that an
intermediate node N doesn’t have r i.e. r ∉ � N �
then our search will not move forward through the
subtree rooted at N. Our search will proceed
through next level iff r ∈ � N � . For a node Nk, if
we get � Nk � = {r} then we have succeeded and
our algorithm will return L , set of descriptions for
that node. If there is no distinguishing description
exists for r , then ∅ (null) will be returned. We

698

would like to point out that our algorithm will find
out only one description that exists at the minimum
level of the tree. Moreover, a description is added
to L only if it is distinguishing i.e. the connecting
edge must remove some contrasting object(s).
Thus, the child node should contain less number of
objects than that of parent node. In this case, cardi-
nality of parent Ni (Card(Ni)) will be greater than
that of child (Card(Ni+1)). This condition is in-
cluded in our algorithm and if (Card (P→N)) >
Card (T→N) holds then only the value is added

P->N and T->N respectively represents parent and
child node. After finding a distinguishing descrip-
tion for r, search will neither move further down

the tree nor explore the remaining branches of the
current node. Search will explore the next branch
only if the search in current branch returned NULL
description i.e. when L′ =∅ in the algorithm. If
we reach a leaf node and that contains r along with
other objects then it is not possible to distinguish
r ’. In that case, the algorithm returns NULL indi-
cating that no description exists at all. It has been
later shown that some distinguishing description
may still exist and the algorithm will be modified
to find that. It should be mentioned that once the
prefix tree is constructed offline, it can be used
repetitively to find description for any object in the
domain throughout the text generation phase. Our
MakeRefExpr() algorithm is very simple and it
doesn’t employ any set theoretic operation, which
is a non trivial task, to find current contrast set at
every steps of algorithm. In existing algorithms,
computing referential description for every object
require computing similar things (like finding cur-
rent contrast set, ruled out objects) again and again.
And it has to be repeated every time the object is
referred. It is not possible to generate description
once, store it and use it later because of the fact
that domain may also change in course of time
(Krahmer, 2002). That’s why every time we want
to refer to ‘r’, such rigorous set operations need to
be computed. But in our prefix tree structure, once
the tree is constructed, it is very easy to find de-
scription for that object using simple tree search
function. It is also very easy to add/delete objects
to/from domain. We have to follow just the initial
properties of that object to find the proper branch-
ing at each level, followed by addition /deletion of
that object to /from relevant nodes, which is essen-
tially a search operation. The disadvantage of our
algorithm is that space complexity is high but it
can be tackled using bit Vector representation of
individual nodes of the prefix tree. Besides, several
methods are there for compressing Trie structure.
But these optimization techniques are beyond the
scope of our current discussion.

4 Formalizing A Scene using Prefix Tree

Consider an example scene in figure 3, from
[Krahmer 2002]. In this scene, there is a finite do-
main of entities D. Let D = {d1, d2, d3, d4}, P =
{Type, Size, Color} and values are Type = {dog,
cat}; Size = {small, large}; Color = {black, white}.
A scene is usually represented as a database (or

ConstructTrie(D, P, T) {
 If (D = ∅ ∨ P =∅)
 Then Stop
 Else
 Create a node N at T
 Set � N � = D
 Extract front attribute A i from list P
 P′′′′ = P −−−− { A i }
 For each value Vj of attribute A i do
 Create Edge Ej with label Vj as T→→→→Nextj

 Dj
′′′′ = D ∩∩∩∩ � Val(E j) �

 ConstructTrie(Dj
′′′′ , P′′′′, T→→→→Nextj)

 End For
 End If
}

Figure 2. Expression Generation Algorithm

Figure 1. Prefix Tree Generation Algorithm

MakeRefExpr(r, P, T, L) {
 If (r ∉ � T→→→→N�)

 Then L ←←←← ∅
 Return L
 Else If ({r} = � T→→→→N �)
 L = L ∪∪∪∪ Val(P→→→→Ej)
 Return L
 Else If (isLeaf (T) ∧ {r } ⊂ � N �)

 Then L ←←←← ∅
 Return L
 Else {
 If (Card(P→→→→N) > Card (T→→→→N))
 Then L = L ∪∪∪∪ Val(P→→→→Ej)
 P = T
 For each outgoing edge T→→→→ Nextj (Ej) do
 L′′′′ = MakeRefExpr(r, P,T→→→→ Child j, L)
 If (L′′′′ ≠≠≠≠ ∅)
 Then Return L′′′′
 } }

699

knowledge base) listing the properties of each ele-
ment in D. Thus:
d1 : 〈 Type : dog 〉 , 〈 Size : small 〉 , 〈 Color: white 〉
d2 : 〈 Type : dog 〉 , 〈 Size : large 〉 , 〈 Color: white 〉
d3 : 〈 Type : dog 〉 , 〈 Size : large 〉 , 〈 Color: black 〉
d4: 〈 Type : cat 〉 , 〈 Size: small 〉 , 〈 Color: white 〉
Now it will be shown how our MakeRefExpr()
algorithm will find a description for a target object
r . Let r = {d1}. In the first phase, starting from
root, edge labeled D is traversed. Since d1 exists in
the node and D discards some objects (d4), D is
distinguishing description and it is added to L. In
the next phase the node connected by the edge la-
beled L does not contain d1 so search will not pro-
ceed further. Rather the node connected by the
edge labeled S contains d1. Since, d1 is the only
object, then we are done and the referring expres-
sion is “The small dog”. But for d2, we have to
search upto the leaf node which generates the de-
scription “The large white dog”.

 Figure 3. Scene Representation

5 Extension of Basic Algorithm

5.1 Specifying Overlapping Values

Deemter (2002) has shown incompleteness of In-
cremental algorithm in case of overlapping values.
Due to vagueness of properties, sometimes it is
hard to classify an object in a particular class. Con-
sider the example scene D = {a,b,c,d} Color:
{Red(a,b); Orange(a,c,d)} Size: {Large(a,b);
Small(c,d)}. In this case a can not be properly clas-
sified by Color type. Incremental algorithm always
select Red(a,b) at first phase, since it rules out
maximum distractors and returns failure because it

can’t distinguish a from b at second phase. Deem-
ter(2002) suggested inclusion of all overlapping
values that are true of target while also removing
some distractors. So, referring expression for a is
“The red orange desk”. But it fails to obey Gricean
maxims of conversational implicature. We con-
sider the failure as ‘Early Decision’ problem and
defer the decision making in our model. We keep
in our mind the fact that human beings seldom take
instantaneous decision. Rather they consider all
opportunities in parallel and take decision in the
favor of the best one at later point of time. Since,
our algorithm searches in parallel through all
promising branches until some description is
found; it mimics the capabilities of human mind to
consider in parallel. Our algorithm will generate
“The large orange desk” which will help audiences
to better identify the desk. The execution sequence
is shown in figure 4.

 Figure 4. Dealing with overlapping values

5.2 Describing Set of Objects

Generation of referring description for a set of ob-
jects is very important in NLG. Deemter’s (2002)
suggestion can be easily incorporated into our
framework. We will represent target r as set of ob-
jects. Now our algorithm will try to find a node in
the tree which only consists of all objects in the set
r . In this way, we can find a distinguishing de-
scription for any set, for which description exists.
In figure 3, the description for the set {d2,d3} is
“The large dogs”. Thus, our basic algorithm is able
to describe set of objects. In case of set like {d2, d3,
d4} where there is no separate node consisting all
the object, we need to partition the set and find
description for individual set. In our case the pos-
sible partitions are {d2, d3} and {d4} for which
separate nodes exist.

700

5.3 Boolean Descriptions

Deemter (2002) shown that Incremental algorithm
is only intersectively complete. But he argues that
other Boolean combination of properties can be
used to generate description for an object. Consider
the example from (Deemter, 2002). Let D = {a, b,
c, d, e} Type: {Dog(a,b,c,d,e); Poodle(a,b)} Color:
{Black(a,b,c); White(d,e)} and r = {c}. In this sce-
nario Incremental algorithm is not able to indi-
viduate any of the animals. However a description
for c exists, “The black dog that is not a poodle”.
Since {c} = [[Black]] ∩ [[¬ Poodle]]. Deemter
(2002) has modified the Incremental algorithm by
adding negative values for each attribute. Now we
will show that our basic algorithm can be modified
to take care of this situation. In our basic algorithm
ConstructTrie() , we add branches at each level for
negative values also. In this case our simple rou-
tine MakeRefExpr() is able to find boolean de-
scription while remaining as close as to Incre-
mental algorithm. In figure 5, we show part of the
trie structure, which is generated for the above
scene. The dashed arrows show the alternative
search paths for node containing {c}.

Figure 5. Trie structure (Partial) incorporating
negation of properties

For referring objects using disjunction of proper-
ties we have do same thing as negations. We have
to extend our prefix tree structure by adding extra
edges at different levels for making implicit infor-
mation explicit as described in [Krahmer 2002].

5.4 Incorporating Context Sensitivity

Krahmer and Theune [2002] have added the notion
of context sensitivity into GRE. Earlier algorithms
assumed that all objects in environment are equally

salient. Krahmer and Theune refined the idea by
assigning some degree of salience to each object.
They proposed that during referring any object, the
object needs to be distinguished only from those
objects which are more salient (having higher sali-
ence weight). An object that has been mentioned
recently, is linguistically more salient than other
objects and can be described using fewer proper-
ties (“The dog” instead of “The large black hairy
dog”). They introduced the concept of centering
theory, hierarchical focus constraints in the field of
NLG and devised a constant function mapping sw:
D →→→→ℕ , where sw is salience weight function, D is
domain and ℕ is set of natural numbers. We can
incorporate this idea into our model easily. In each
node of the prefix tree we keep a field ‘salience
weight’ (sw) for each of the object stored in that
node in the form (di, swi). During describing an
object if we find a node that is containing r where
it is the most salient then we need not traverse
higher depth of the tree. So, we have to modify
MakeRefExpr() algorithm by adding more condi-
tions. If the current node is N and both 1) r∈ � N �
and 2) ∀ d∈ � N � (d ≠≠≠≠ r →→→→ sw(d) < sw(r)) hold
then r is the most salient and the edges constituting
the path from root to N represents distinguishing
description for r . In figure 6, a is most salient dog
and referred to as “The dog” whereas b is referred
to as “The small dog”.

Figure 6: Trie structure (Partial) representing Con-
text Sensitivity

5.5 Relational Descriptions

Relational descriptions are used to single out an
object with reference to other one. For example
“The cup on the table” is used to distinguish a cup
from other cups which are not on the table. Dale
and Haddock (1991) first offer the idea of rela-

701

tional description and extend Full Brevity algo-
rithm to incorporate this idea. Later Krahmer et al.
(2003) Graph based framework for generating rela-
tional description. We follow Krahmer (2002) and
denote relations as Spatial: {In(a,b); Left_of(c,d)}
etc. Then we treat ‘Spatial’ as another attribute and
consider ‘In’, ‘Left_of’ as different values for that
attribute. In this way, our basic algorithm itself is
capable of handling relational descriptions. The
only modification that we add that when a relation
R is included, the MakeRefExpr() should be
called again for the relatum. Thus, if Val(E(Ni,
Nk

i+1)) expresses a relation of r with r ′′′′ then we
have to call MakeRefExpr (r ′′′′,p,T,L) again to find
description for r′′′′.

5.6 Modeling Full Brevity

In this section, we will show that our prefix tree
structure can be so modified that it can generate
shortest possible description which is requirement
of Full Brevity (Dale, 1992). Consider a scene
where a domain is identified by set of n attributes
{A 1, A2…An}. We can generate n! number of dif-
ferent permutations of Ai’s ∀ i ∈ [1,n]. We con-
sider each permutation as different PreferredAt-
tributes list Pk and generate all possible prefix
trees Tk for each Pk ∀ k∈ [1,n!] for same domain
D. Now, we connect roots of all trees with a com-
mon dummy root node with edges having empty
description (ε). Now, if we search the branches of
new combined tree in parallel, it’s obvious that we
can always find the target node at lowest possible
level. Thus we can generate shortest length de-
scription using our algorithm.

6 Complexity of The Algorithm

Let the domain entities are identified by a number
of attributes and each attribute has on the average
k number of different values. So, our Con-
structTrie() algorithm takes Ο(ka) time. Now we
will consider different cases for analyzing the time
complexity of our MakeRefExpr() algorithm.
 1) In case of non overlapping properties, our
search tree will be pruned at each level by a factor
of k. Thus the time complexity will be Ο(logk(k

a))
= Ο(a) which is linear.
2) In case of overlapping properties, we have to
search whole tree in worst case (although in aver-
age cases also there will be large pruning, as found

from test cases) which will take Ο(ka) time.
3) In case of achieving full brevity requirement,
both time and space complexity will be exponen-
tial as in the original algorithm by Dale (1992).

7 Conclusions

In this paper, we present a new Prefix tree (Trie)
based approach for modeling GRE problems. We
construct the trie in such a way that a node at a par-
ticular level consists of only those objects which
are satisfied by values of the edges, constituting
the path from root to that node. We formulate de-
scription generation as a search problem. So, when
we reach the target node, the attribute values corre-
sponding to the edges in the path automatically
form the distinguishing description. Different sce-
narios of GRE problems like representation of set,
boolean descriptions etc. is taken care of in this
paper. We have shown that in simple non overlap-
ping scenarios, our algorithm will find distinguish-
ing description in linear time.

8 References

E. Krahmer and M. Theune. 2002. Efficient Context
Sensitive Generation of Referring Expressions. CSLI
Publ, Stanford : 223 – 264

E. Krahmer, S. van Erk and A. Verlag. 2003. Graph
based Generation of Referring Expressions Computa-
tional Linguistics, 29(1): 53-72

H. Horacek. 2004. On Referring to Set of Objects Natu-
rally. Proceedings of Third INLG, Brokenhurst, U.K:
70-79

M. Croitoru and van Deemter. 2007. A conceptual
Graph Approach to the Generation of Referring Ex-
pressions. Proceedings of IJCAI 2007 : 2456-2461

R. Dale and N. Haddock. 1991. Generating Referring
Expressions containing Relations. Proceedings of
Fifth ACL- EACL conference, 161-166

R. Dale. 1992. Generating Referring Expressions:
Building Descriptions in a Domain of Objects and
Processes. MIT Press

R. Dale and E. Reiter. 1995. Computational Interpreta-
tions of the Gricean Maxims in the generation of Re-
ferring Expressions. Cognitive Science (18): 233 –
263

van Deemter. 2002. Generating Referring Expressions:
Boolean Extensions of Incremental Algorithm. Com-
putational Linguistics 28(1): 37-52

702

