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Abstract. Recent work on Conditional Random Fields (CRFs) has
demonstrated the need for regularisation when applying these models
to real-world NLP data sets. Conventional approaches to regularising
CRFs has focused on using a Gaussian prior over the model parameters.
In this paper we explore other possibilities for CRF regularisation. We
examine alternative choices of prior distribution and we relax the usual
simplifying assumptions made with the use of a prior, such as constant
hyperparameter values across features. In addition, we contrast the effec-
tiveness of priors with an alternative, parameter-free approach. Specifi-
cally, we employ logarithmic opinion pools (LOPs). Our results show
that a LOP of CRFs can outperform a standard unregularised CRF and
attain a performance level close to that of a regularised CRF, without
the need for intensive hyperparameter search.

1 Introduction

Recent work on Conditional Random Fields (CRFs) has demonstrated the need
for regularisation when applying these models to real-world NLP data sets ([8],
[9]). Standard approaches to regularising CRFs, and log-linear models in general,
has focused on the use of a Gaussian prior. Typically, for simplicity, this prior is
assumed to have zero mean and constant variance across model parameters. To
date, there has been little work exploring other possibilities. One exception is
Peng & McCallum [8]. They investigated feature-dependent variance for a Gaus-
sian prior, and explored different families of feature sets. They also compared
different priors for CRFs on an information extraction task.

In the first part of this paper, we compare priors for CRFs on standard
sequence labelling tasks in NLP: NER and POS tagging. Peng & McCallum
used variable hyperparameter values only for a Gaussian prior, based on feature
counts in the training data. We use an alternative Bayesian approach to mea-
sure confidence in empirical expected feature counts, and apply this to all the
priors we test. We also look at varying the Gaussian prior mean. Our results
show that: (1) considerable search is required to identify good hyperparameter
values for all priors (2) for optimal hyperparameter values, the priors we tested
perform roughly equally well (3) in some cases performance can be improved
using feature-dependent hyperparameter values.
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As can be seen, a significant short-coming of using priors for CRF regular-
isation is the requirement for intensive search of hyperparameter space. In the
second part of the paper we contrast this parameterised prior approach with
an alternative, parameter-free method. We factor the CRF distribution into a
weighted product of individual expert CRF distributions, each focusing on a
particular subset of the distribution. We call this model a logarithmic opinion
pool (LOP) of CRFs (LOP-CRFs).

Our results show that LOP-CRFs, which are unregularised, can outperform
the unregularised standard CRF and attain a performance level that rivals that
of the standard CRF regularised with a prior. This performance may be achieved
with a considerably lower time for training by avoiding the need for intensive
hyperparameter search.

2 Conditional Random Fields

A linear chain CRF defines the conditional probability of a label sequence s
given an observed sequence o via:

p(s | o) =
1

Z(o)
exp

(
T+1∑
t=1

∑
k

λkfk(st−1, st,o, t)

)
(1)

where T is the length of both sequences, λk are parameters of the model and Z(o)
is the partition function that ensures (1) represents a probability distribution.
The functions fk are feature functions representing the occurrence of different
events in the sequences s and o.

The parameters λk can be estimated by maximising the conditional log-
likelihood of a set of labelled training sequences. The log-likelihood is given by:

LL(λ) =
∑
o

p̃(o)
∑
s

p̃(s|o)

[
T+1∑
t=1

λ · f(s,o, t)

]
−

∑
o

p̃(o) log Z(o; λ)

where p̃(s|O) and p̃(o) are empirical distributions defined by the training set. At
the maximum likelihood solution the model satisfies a set of feature constraints,
whereby the expected count of each feature under the model is equal to its
empirical count on the training data:

Ep̃(o,s)[fk] − Ep(s|o)[fk] = 0, ∀k

In general this cannot be solved for the λk in closed form so numerical routines
must be used. Malouf [6] and Sha & Pereira [9] show that gradient-based algo-
rithms, particularly limited memory variable metric (LMVM), require much less
time to reach convergence, for some NLP tasks, than the iterative scaling meth-
ods previously used for log-linear optimisation problems. In all our experiments
we use the LMVM method to train the CRFs.

For CRFs with general graphical structure, calculation of Ep(s|o)[fk] is in-
tractable, but for the linear chain case Lafferty et al. [5] describe an efficient
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dynamic programming procedure for inference, similar in nature to the forward-
backward algorithm in hidden Markov models.

Given a trained CRF model defined as in (1), the most probable labelling
under the model for a new observed sequence o is given by argmaxsp(s|o). This
can be recovered efficiently using the Viterbi algorithm.

3 Parameterised Regularisation: Priors for CRFs

Most approaches to CRF regularisation have focused on the use of a prior distri-
bution over the model parameters. A prior distribution encodes prior knowledge
about the nature of different models. However, prior knowledge can be difficult
to encode reliably and the optimal choice of prior family may vary from task to
task. In this paper we investigate the use of three prior families for the CRF.

3.1 Gaussian Prior

The most common prior used for CRF regularisation has been the Gaussian. Use
of the Gaussian prior assumes that each model parameter is drawn independently
from a Gaussian distribution. Ignoring terms that do not affect the parameters,
the regularised log-likelihood with a Gaussian prior becomes:

LL(λ) − 1
2

∑
k

(
λk − µk

σk

)2

where µk is the mean and σk the variance for parameter λk. At the optimal
point, for each λk, the model satisfies:

Ep̃(o,s)[fk] − Ep(s|o)[fk] =
λk − µk

σ2
k

(2)

Usually, for simplicity, each µk is assumed zero and σk is held constant across
the parameters. In this paper we investigate other possibilities. In particular,
we allow the means to take on non-zero values, and the variances to be feature-
dependent. This is described in more detail later. In each case values for means
and variances may be optimised on a development set.

We can see from (2) that use of a Gaussian prior enforces the constraint that
the expected count of a feature under the model is discounted with respect to the
count of that feature on the training data. As discussed in [1], this corresponds
to a form of logarithmic discounting in feature count space and is similar in
nature to discounting schemes employed in language modelling.

3.2 Laplacian Prior

Use of the Laplacian prior assumes that each model parameter is drawn inde-
pendently from the Laplacian distribution. Ignoring terms that do not affect the
parameters, the regularised log-likelihood with a Laplacian prior becomes:

LL(λ) −
∑

k

|λk|
βk
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where βk is a hyperparameter, and at the optimal point the model satisfies:

Ep̃(o,s)[fk] − Ep(s|o)[fk] =
sign(λk)

βk
, λk �= 0 (3)

Peng & McCallum [8] note that the exponential prior (a one-sided version of the
Laplacian prior here) represents applying an absolute discount to the empirical
feature count. They fix the βk across features and set it using an expression for
the discount used in absolute discounting for language modelling. By contrast we
allow the βk to vary with feature and optimise values using a development set.

The derivative of the penalty term above with respect to a parameter λk is
discontinuous at λk = 0. To tackle this problem we use an approach described
by Williams, who shows how the discontinuity may be handled algorithmically
[13]. His method leads to sparse solutions, where, at convergence, a substantial
proportion of the model parameters are zero. The result of this pruning effect is
different, however, to feature induction, where features are included in the model
based on their effect on log-likelihood.

3.3 Hyperbolic Prior

Use of the hyperbolic prior assumes that each model parameter is drawn inde-
pendently from the hyperbolic distribution. Ignoring constant terms that do not
involve the parameters, the regularised log-likelihood becomes:

LL(λ) −
∑

k

log
(

eβkλk + e−βkλk

2

)

where βk is a hyperparameter, and at the optimal point the model satisfies:

Ep̃(o,s)[fk] − Ep(s|o)[fk] = βk

(
eβkλk − e−βkλk

eβkλk + e−βkλk

)
(4)

3.4 Feature-Dependent Regularisation

For simplicity it is usual when using a prior to assume constant hyperparameter
values across all features. However, as a hyperparameter value determines the
amount of regularisation applied to a feature, we may not want to assume equal
values. We may have seen some features more frequently than others and so
be more confident that their empirical expected counts are closer to the true
expected counts in the underlying distribution.

Peng & McCallum [8] explore feature-dependent variance for the Gaussian
prior. They use different schemes to determine the variance for a feature based
on its observed count in the training data. In this paper we take an alternative,
Bayesian approach motivated more directly by our confidence in the reliability
of a feature’s empirical expected count.

In equations (2), (3) and (4) the level of regularisation applied to a feature
takes the form of a discount to the expected count of the feature on the training
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data. It is natural, therefore, that the size of this discount, controlled through
a hyperparameter, is related to our confidence in the reliability of the empiri-
cal expected count. We formulate a measure of this confidence. We follow the
approach of Kazama & Tsujii [4], extending it to CRFs.

The empirical expected count, Ep̃(o,s)[fk], of a feature fk is given by:∑
o,s

p̃(o, s)
∑

t

fk(st−1, st,o, t)=
∑
o

p̃(o)
∑
s

p̃(s|o)
∑

t

fk(st−1, st,o, t)

=
∑
o

p̃(o)
∑

t,s′,s′′

p̃(st−1 = s′, st = s′′|o)fk(s′, s′′,o, t)

Now, our CRF features have the following form:

fk(st−1, st,o, t) =
{

1 if st−1 = s1, st = s2 and hk(o, t) = 1
0 otherwise

where s1 and s2 are the labels associated with feature fk and hk(o, t) is a binary-
valued predicate defined on observation sequence o at position t. With this
feature definition, and contracting notation for the empirical probability to save
space, Ep̃(o,s)[fk] becomes:∑
o

p̃(o)
∑

t,s′,s′′

p̃(s′, s′′|o)δ(s′, s1)δ(s′′, s2)hk(o, t) =
∑
o

p̃(o)
∑

t

p̃(s1, s2|o)hk(o, t)

=
∑
o

p̃(o)
∑

t:hk(o,t)=1

p̃(s1, s2|o)

Contributions to the inner sum are only made at positions t in sequence o where
the hk(o, t) = 1. Suppose that we make the assumption that at these positions
p̃(s′, s′′|o) ≈ p̃(s′, s′′|hk(o, t) = 1). Then:

Ep̃(o,s)[fk] =
∑
o

p̃(o)
∑

t:hk(o,t)=1

p̃(s1, s2|hk(o, t) = 1)

Now, if we assume that we can get a reasonable estimate of p̃(o) from the training
data then the only source of uncertainty in the expression for Ep̃(o,s)[fk] is the term
p̃(st−1 = s1, st = s2|hk(o, t) = 1). Assuming this term is independent of sequence
o and position t, we can model it as the parameter θ of a Bernoulli random variable
that takes the value 1 when feature fk is active and 0 when the feature is not active
but hk(o, t) = 1. Suppose there are a and b instances of these two events, respec-
tively. We endow the Bernoulli parameter with a uniform prior Beta distribution
Be(1,1) and, having observed the training data, we calculate the variance of the
posterior distribution, Be(1 + a, 1 + b). The variance is given by:

var[θ] = V =
(1 + a)(1 + b)

(a + b + 2)2(a + b + 3)

The variance of Ep̃(o,s)[fk] therefore given by:

var
[
Ep̃(o,s)[fk]

]
= V

⎡
⎣∑

o

∑
t:hk(o,t)=1

p̃(o)2

⎤
⎦
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We use this variance as a measure of the confidence we have in Ep̃(o,s)[fk] as an
estimate of the true expected count of feature fk. We therefore adjust hyper-
parameters in the different priors according to this confidence for each feature.
Note that this value for each feature can be calculated off-line.

4 Parameter-Free Regularisation: Logarithmic Opinion
Pools

So far we have considered CRF regularisation through the use of a prior. As
we have seen, most prior distributions are parameterised by a hyperparameter,
which may be used to tune the level of regularisation. In this paper we also
consider a parameter-free method. Specifically, we explore the use of logarithmic
opinion pools [3].

Given a set of CRF model experts with conditional distributions pα(s|o)
and a set of non-negative weights wα with

∑
α wα = 1, a logarithmic opinion

pool is defined as the distribution:

p̄(s|o) =
1

Z̄(o)

∏
α

[pα(s|o)]wα , with Z̄(o) =
∑
s

∏
α

[pα(s|o)]wα

Suppose that there is a “true” conditional distribution q(s|o) which each
pα(s|o) is attempting to model. In [3] Heskes shows that the KL divergence
between q(s|o) and the LOP can be decomposed as follows:

K (q, p̄) =
∑

α

wαK (q, pα) −
∑

α

wαK (p̄, pα) = E − A (5)

This explicitly tells us that the closeness of the LOP model to q(s|o) is governed
by a trade-off between two terms: an E term, which represents the closeness of
the individual experts to q(s|o), and an A term, which represents the closeness of
the individual experts to the LOP, and therefore indirectly to each other. Hence
for the LOP to model q well, we desire models pα which are individually good
models of q (having low E) and are also diverse (having large A).

Training LOPs for CRFs. The weights wα may be defined a priori or may be
found by optimising an objective criterion. In this paper we combine pre-trained
expert CRF models under a LOP and train the weights wα to maximise the
likelihood of the training data under the LOP. See [10] for details.

Decoding LOPs for CRFs. Because of the log-linear form of a CRF, a
weighted product of expert CRF distributions corresponds to a single CRF distri-
bution with log potentials given by a linear combination (with the same weights)
of the corresponding log potentials of the experts. Consequently, it is easy to form
the LOP given a set of weights and expert models, and decoding with the LOP
is no more complex than decoding with a standard CRF. Hence LOP decoding
can be achieved efficiently using the Viterbi algorithm.
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5 The Tasks

In this paper we compare parametric and LOP-based regularisation techniques
for CRFs on two sequence labelling tasks in NLP: named entity recognition
(NER) and part-of-speech tagging (POS tagging).

5.1 Named Entity Recognition

All our results for NER are reported on the CoNLL-2003 shared task dataset
[12]. For this dataset the entity types are: persons (PER), locations (LOC),
organisations (ORG) and miscellaneous (MISC). The training set consists of
14, 987 sentences and 204, 567 tokens, the development set consists of 3, 466
sentences and 51, 578 tokens and the test set consists of 3, 684 sentences and
46, 666 tokens.

5.2 Part-of-Speech Tagging

For our experiments we use the CoNLL-2000 shared task dataset [11]. This has
48 different POS tags. In order to make training time manageable, we collapse
the number of POS tags from 48 to 5 following the procedure used in [7]. In
summary: (1) All types of noun collapse to category N. (2) All types of verb
collapse to category V. (3) All types of adjective collapse to category J. (4)
All types of adverb collapse to category R. (5) All other POS tags collapse to
category O. The training set consists of 7, 300 sentences and 173, 542 tokens, the
development set consists of 1, 636 sentences and 38, 185 tokens and the test set
consists of 2, 012 sentences and 47, 377 tokens.

5.3 Experts and Expert Sets

As we have seen, our parameter-free LOP models require us to define and train
a number of expert models. For each task we define a single, complex CRF,
which we call a monolithic CRF, and a range of expert sets. The monolithic
CRF for NER comprises a number of word and POS features in a window of five
words around the current word, along with a set of orthographic features defined
on the current word. The monolithic CRF for NER has 450, 345 features. The
monolithic CRF for POS tagging comprises word and POS features similar to
those in the NER monolithic model, but over a smaller number of orthographic
features. The monolithic model for POS tagging has 188, 488 features.

Each of our expert sets consists of a number of CRF experts. Usually these
experts are designed to focus on modelling a particular aspect or subset of the
distribution. The experts from a particular expert set are combined under a
LOP-CRF with the unregularised monolithic CRF.

We define our expert sets as follows: (1) Simple consists of the monolithic
CRF and a single expert comprising a reduced subset of the features in the
monolithic CRF. This reduced CRF models the entire distribution rather than
focusing on a particular aspect or subset, but is much less expressive than the
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monolithic model. The reduced model comprises 24, 818 features for NER and
47, 420 features for POS tagging. (2) Positional consists of the monolithic CRF
and a partition of the features in the monolithic CRF into three experts, each
consisting only of features that involve events either behind, at or ahead of
the current sequence position. (3) Label consists of the monolithic CRF and a
partition of the features in the monolithic CRF into five experts, one for each
label. For NER an expert corresponding to label X consists only of features that
involve labels B-X or I-X at the current or previous positions, while for POS
tagging an expert corresponding to label X consists only of features that involve
label X at the current or previous positions. These experts therefore focus on
trying to model the distribution of a particular label. (4) Random consists of
the monolithic CRF and a random partition of the features in the monolithic
CRF into four experts. This acts as a baseline to ascertain the performance
that can be expected from an expert set that is not defined via any linguistic
intuition.

6 Experimental Results

For each task our baseline model is the monolithic model, as defined earlier.
All the smoothing approaches that we investigate are applied to this model. For
NER we report F-scores on the development and test sets, while for POS tagging
we report accuracies on the development and test sets.

6.1 Priors

Feature-Independent Hyperparameters. Tables 1 and 2 give results on the
two tasks for different priors with feature-independent hyperparameters. In the
case of the Gaussian prior, the mean was fixed at zero with the variance being the
adjustable hyperparameter. In each case hyperparameter values were optimised
on the development set. In order to obtain the results shown, extensive search
of the hyperparameter space was required. The results show that: (1) For each
prior there is a performance improvement over the unregularised model. (2) Each
of the priors gives roughly the same optimal performance.

These results are contrary to the conclusions of Peng & McCallum in [8]. On
an information extraction task they found that the Gaussian prior performed

Table 1. F-scores for priors on NER

Prior Development Test

Unreg. monolithic 88.33 81.87

Gaussian 89.84 83.98

Laplacian 89.56 83.43

Hyperbolic 89.84 83.90

Table 2. Accuracies for priors on POS
tagging

Prior Development Test

Unreg. monolithic 97.92 97.65

Gaussian 98.02 97.84

Laplacian 98.05 97.78

Hyperbolic 98.00 97.85
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significantly better than alternative priors. Indeed they appeared to report per-
formance figures for the hyperbolic and Laplacian priors that were lower than
those of the unregularised model. There are several possible reasons for these
differences. Firstly, for the hyperbolic prior, Peng & McCallum appeared not
to use an adjustable hyperparameter. In that case the discount applied to each
empirical expected feature count was dependent only on the current value of the
respective model parameter and corresponds in our case to using a fixed value
of 1 for the β hyperparameter. Our results for this value of the hyperparameter
are similarly poor. The second reason is that for the Laplacian prior, they again
used a fixed value for the hyperparameter, calculated via an absolute discount-
ing method used language modelling [1]. Having achieved poor results with this
value they experimented with other values but obtained even worse performance.
By contrast, we find that, with some search of the hyperparameter space, we can
achieve performance close to that of the other two priors.

Feature-Dependent Hyperparameters. Tables 3 and 4 give results for dif-
ferent priors with feature-dependent hyperparameters. Again, for the Gaussian
prior the mean was held at 0. We see here that trends differ between the two
tasks. For POS tagging we see performance improvements with all the priors over
the corresponding feature-independent hyperparameter case. Using McNemar’s
matched-pairs test [2] on point-wise labelling errors, and testing at a significance
level of 5% level, all values in Table 4 represent a significant improvement over
the corresponding model with feature-independent hyperparameter values, ex-
cept the one marked with ∗. However, for NER the opposite is true. There is a
performance degradation over the corresponding feature-independent hyperpa-
rameter case. Values marked with † are significantly worse at the 5% level. The
hyperbolic prior performs particularly badly, giving no improvement over the
unregularised monolithic. The reasons for these results are not clear. One pos-
sibility is that defining the degree of regularisation on a feature specific basis is
too dependent on the sporadic properties of the training data. A better idea may
be to use an approach part-way between feature-independent hyperparameters
and feature-specific hyperparameters. For example, features could be clustered
based on confidence in their empirical expected counts, with a single confidence
being associated with each cluster.

Varying the Gaussian Mean. When using a Gaussian prior it is usual to fix
the mean at zero because there is usually no prior information to suggest penal-
ising large positive values of model parameters any more or less than large mag-

Table 3. F-scores for priors on NER

Prior Development Test

Gaussian 89.43 83.27†

Laplacian 89.28 83.37

Hyperbolic 88.34† 81.63†

Table 4. Accuracies for priors on POS
tagging

Prior Development Test

Gaussian 98.12 97.88∗

Laplacian 98.12 97.92

Hyperbolic 98.15 97.92



Regularisation Techniques for Conditional Random Fields 905

nitude negative values. It also simplifies the hyperparameter search, requiring
the need to optimise only the variance hyperparameter. However, it is unlikely
that optimal performance is always achieved for a mean value of zero.

To investigate this we fix the Gaussian variance at the optimal value found
earlier on the development set, with a mean of zero, and allow the mean to
vary away from zero. For both tasks we found that we could achieve significant
performance improvements for non-zero mean values. On NER a model with
mean 0.7 (and variance 40) achieved an F-score of 90.56% on the development set
and 84.71% on the test set, a significant improvement over the best model with
mean 0. We observe a similar pattern for POS tagging. These results suggest
that considerable benefit may be gained from a well structured search of the
joint mean and variance hyperparameter space when using a Gaussian prior
for regularisation. There is of course a trade-off here, however, between finding
better hyperparameters values and suffering increased search complexity.

6.2 LOP-CRFs

Tables 5 and 6 show the performance of LOP-CRFs for the NER and POS
tagging experts respectively. The results demonstrate that: (1) In every case
the LOPs significantly outperform the unregularised monolithic. (2) In most
cases the performance of LOPs is comparable to that obtained using the different
priors on each task. In fact, values marked with ‡ show a significant improvement
over the performance obtained with the Gaussian prior with feature-independent
hyperparameter values. Only the value marked with † in Table 6 significantly
under performs that model.

Table 5. LOP F-scores on NER

Expert set Development set Test set

Unreg. monolithic 88.33 81.87

Simple 90.26 84.22‡

Positional 90.35 84.71‡

Label 89.30 83.27

Random 88.84 83.06

Table 6. LOP accuracies on POS tagging

Expert set Development set Test set

Unreg. monolithic 97.92 97.65

Simple 98.31‡ 98.12‡

Positional 98.03 97.81

Label 97.99 97.77

Random 97.99 97.76†

We can see that the performance of the LOP-CRFs varies with the choice of
expert set. For example, on NER the LOP-CRFs for the simple and positional
expert sets perform better than those for the label and random sets. Looking
back to equation 5, we conjecture that the simple and positional expert sets
achieve good performance in the LOP-CRF because they consist of experts that
are diverse while simultaneously being reasonable models of the data. The label
expert set exhibits greater diversity between the experts, because each expert
focuses on modelling a particular label only, but each expert is a relatively poor
model of the entire distribution. Similarly, the random experts are in general
better models of the entire distribution but tend to be less diverse because they
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do not focus on any one aspect or subset of it. Intuitively, then, we want to
devise experts that are simultaneously diverse and accurate.

The advantage of the LOP-CRF approach over the use of a prior is that it
is “parameter-free” in the sense that each expert in the LOP-CRF is unregu-
larised. Consequently, we are not required to search a hyperparameter space.
For example, to carefully tune the hyperbolic hyperparameter in order to obtain
the optimal value we report here, we ran models for 20 different hyperparameter
values. In addition, in most cases the expert CRFs comprising the expert sets
are small, compact models that train more quickly than the monolithic with a
prior, and can be trained in parallel.

7 Conclusion

In this paper we compare parameterised and parameter-free approaches to
smoothing CRFs on two standard sequence labelling tasks in NLP. For the
parameterised methods, we compare different priors. We use both feature-
independent and feature-dependent hyperparameters in the prior distributions.
In the latter case we derive hyperparameter values using a Bayesian approach
to measuring our confidence in empirical expected feature counts. We find that:
(1) considerable search is required to identify good hyperparameter values for
all priors (2) for optimal hyperparameter values, the priors we tested perform
roughly equally well (3) in some cases performance can be improved using
feature-dependent hyperparameter values.

We contrast the use of priors to an alternative, parameter-free method using
logarithmic opinion pools. Our results show that a LOP of CRFs, which contains
unregularised models, can outperform the unregularised standard CRF and at-
tain a performance level that rivals that of the standard CRF regularised with a
prior. The important point, however, is that this performance may be achieved
with a considerably lower time for training by avoiding the need for intensive
hyperparameter search.
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