
A Machine Learning Approach to Sentence
Ordering for Multidocument Summarization

and Its Evaluation

Danushka Bollegala, Naoaki Okazaki, and Mitsuru Ishizuka

University of Tokyo, Japan

Abstract. Ordering information is a difficult but a important task for
natural language generation applications. A wrong order of information
not only makes it difficult to understand, but also conveys an entirely
different idea to the reader. This paper proposes an algorithm that learns
orderings from a set of human ordered texts. Our model consists of a set
of ordering experts. Each expert gives its precedence preference between
two sentences. We combine these preferences and order sentences. We
also propose two new metrics for the evaluation of sentence orderings.
Our experimental results show that the proposed algorithm outperforms
the existing methods in all evaluation metrics.

1 Introduction

The task of ordering sentences arises in many fields. Multidocument Summa-
rization (MDS) [5], Question and Answer (QA) systems and concept to text
generation systems are some of them. These systems extract information from
different sources and combine them to produce a coherent text. Proper ordering
of sentences improves readability of a summary [1]. In most cases it is a trivial
task for a human to read a set of sentences and order them coherently. Hu-
mans use their wide background knowledge and experience to decide the order
among sentences. However, it is not an easy task for computers. This paper pro-
poses a sentence ordering algorithm and evaluate its performance with regard
to MDS.

MDS is the task of generating a human readable summary from a given set of
documents. With the increasing amount of texts available in electronic format,
automatic text summarization has become necessary. It can be considered as a
two-stage process. In the first stage the source documments are analyzed and a
set of sentences are extracted. However, the document set may contain repeating
information as well as contradictory information and these challenges should
be considered when extracting sentences for the summary. Researchers have
already investigated this problem and various algorithms exist. The second stage
of MDS creates a coherent summary from this extract. When summarizing a
single document, a naive strategy that arranges extracted sentences according
to the appearance order may yield a coherent summary. However, in MDS the
extracted sentences belong to different source documents. The source documents

R. Dale et al. (Eds.): IJCNLP 2005, LNAI 3651, pp. 624–635, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Machine Learning Approach to Sentence Ordering 625

may have been written by various authors and on various dates. Therefore we
cannot simply order the sentences according to the position of the sentences in
the original document to get a comprehensible summary.

This second stage of MDS has received lesser attention compared to the
first stage. Chronological ordering; ordering sentences according to the pub-
lished date of the documents they belong to [6], is one solution to this problem.
However, showing that this approach is insufficient, Barzilay [1] proposed an
refined algorithm which integrates chronology ordering with topical relatedness
of documents. Okazaki [7] proposes a improved chronological ordering algorithm
using precedence relations among sentences. His algorithm searches for an order
which satisfies the precedence relations among sentences. In addition to these
studies which make use of chronological ordering, Lapata [3] proposes a prob-
abilistic model of text structuring and its application to the sentence ordering.
Her system calculates the conditional probabilities between sentences from a
corpus and uses a greedy ordering algorithm to arrange sentences according to
the conditional probabilities.

Even though these previous studies proposed different strategies to decide the
sentence ordering, the appropriate way to combine these different methods to
obtain more robust and coherent text remains unknown. In addition to these ex-
isting sentence ordering heuristics, we propose a new method which we shall call
succession in this paper. We then learn the optimum linear combination of these
heuristics that maximises readability of a summary using a set of human-made
orderings. We then propose two new metrics for evaluating sentence orderings;
Weighted Kendall Coefficient and Average Continuity. Comparing with an in-
trinsic evaluation made by human subjects, we perform a quantitative evaluation
using a number of metrics and discuss the possiblity of the automatic evaluation
of sentence orderings.

2 Method

For sentences taken from the same document we keep the order in that docu-
ment as done in single document summarization. However, we have to be careful
when ordering sentences which belong to different documents. To decide the or-
der among such sentences, we implement five ranking experts: Chronological,
Probabilistic, Topical relevance, Precedent and Succedent. These experts return
precedence preference between two sentences. Cohen [2] proposes an elegant
learning model that works with preference functions and we adopt this learn-
ing model to our task. Each expert e generates a pair-wise preference function
defined as following:

PREFe(u, v, Q) ∈ [0, 1]. (1)

Where, u, v are two sentences that we want to order; Q is the set of sentences
which has been already ordered. The expert returns its preference of u to v. If
the expert prefers u to v then it returns a value greater than 0.5. In the extreme
case where the expert is absolutely sure of preferring u to v it will return 1.0.
On the other hand, if the expert prefers v to u it will return a value lesser than



626 D. Bollegala, N. Okazaki, and M. Ishizuka

0.5. In the extreme case where the expert is absolutely sure of preferring v to u
it will return 0. When the expert is undecided of its preference between u and v
it will return 0.5.

The linear weighted sum of these individual preference functions is taken as
the total preference by the set of experts as follows:

PREFtotal(u, v, Q) =
∑

e∈E

wePREFe(u, v, Q). (2)

Therein: E is the set of experts and we is the weight associated to expert e ∈ E.
These weights are normalized so that the sum of them is 1. We use the Hedge
learning algorithm to learn the weights associated with each expert’s preference
function. Then we use the greedy algorithm proposed by Cohen [2] to get an
ordering that approximates the total preference.

2.1 Chronological Expert

Chronological expert emulates conventional chronological ordering [4,6] which
arranges sentences according to the dates on which the documents were published
and preserves the appearance order for sentences in the same document. We
define a preference function for the expert as follows:

PREFchro(u, v, Q) =

⎧
⎪⎨

⎪⎩

1 T (u) < T (v)
1 [D(u) = D(v)] ∧ [N(u) < N(v)]
0.5 [T (u) = T (v)] ∧ [D(u) �= D(v)]
0 otherwise

. (3)

Therein: T (u) is the publication date of sentence u; D(u) presents the unique
identifier of the document to which sentence u belongs; N(u) denotes the line
number of sentence u in the original document. Chronological expert gives 1
(preference) to the newly published sentence over the old and to the prior over
the posterior in the same article. Chronological expert returns 0.5 (undecided)
when comparing two sentences which are not in the same article but have the
same publication date.

2.2 Probabilistic Expert

Lapata [3] proposes a probabilistic model to predict sentence order. Her model
assumes that the position of a sentence in the summary depends only upon the
sentences preceding it. For example let us consider a summary T which has
sentences S1, . . . , Sn in that order. The probability P (T ) of getting this order is
given by:

P (T ) =
n∏

i=1

P (Sn|S1, . . . , Sn−i). (4)

She further reduces this probability using bi-gram approximation as follows.

P (T ) =
n∏

i=1

P (Si|Si−1) (5)



A Machine Learning Approach to Sentence Ordering 627

She breaks each sentence into features and takes the vector product of features
as follows:

P (Si|Si−1) =
∏

(a<i,j>,a<i−1,k>)∈Si×Si−1

P (a<i,j>, a<i−1,k>). (6)

Feature conditional probabilities can be calculated using frequency counts of
features as follows:

P (a<i,j>|a<i−1,k>) =
f(a<i,j>, a<i−1,k>)∑

a<i,j>
f(a<i,j>, a<i−1,k>)

. (7)

Lapata [3] uses nouns,verbs and dependency structures as features. Where as
in our expert we implemented only nouns and verbs as features. We performed
back-off smoothing on the frequency counts in equation 7 as these values were
sparse. Once these conditional probabilities are calculated, for two sentences u,v
we can define the preference function for the probabilistic expert as follows:

PREFprob(u, v, Q) =

{
1+P (u|r)−P (v|r)

2 Q �= �
1+P (u)−P (v)

2 Q = �
. (8)

Where, Q is the set of sentences ordered so far and r ∈ Q is the lastly ordered
sentence in Q. Initially, Q is null and we prefer the sentence with higher absolute
probability. When Q is not null and u is preferred to v, i.e. P (u|r) > P (v|r),
according to definition 8 a preference value greater than 0.5 is returned. If v is
preferred to u, i.e. P (u|r) < P (v|r), we have a preference value smaller than 0.5.
When P (u|r) = P (v|r), the expert is undecided and it gives the value 0.5.

2.3 Topical Relevance Expert

In MDS, the source documents could contain multiple topics. Therefore, the
extracted sentences could be covering different topics. Grouping the extracted
sentences which belong to the same topic, improves readability of the summary.
Motivated by this fact, we designed an expert which groups the sentences which
belong to the same topic. This expert prefers sentences which are more similar
to the ones that have been already ordered. For each sentence l in the extract
we define its topical relevance, topic(l) as follows:

topic(l) = max
q∈Q

sim(l, q). (9)

We use cosine similarity to calculate sim(l, q). The preference function of this
expert is defined as follows:

PREFtopic(u, v, Q) =

{
0.5 [Q = �] ∨ [topic(u) = topic(v)]
1 [Q �= �] ∧ [topic(u) > topic(v)]
0 otherwise

. (10)

Where, � represents the null set, u,v are the two sentences under considera-
tion and Q is the block of sentences that has been already ordered so far in
the summary.



628 D. Bollegala, N. Okazaki, and M. Ishizuka

Fig. 1. Topical relevance expert

2.4 Precedent Expert

When placing a sentence in the summary it is important to check whether the
preceding sentences convey the necessary background information for this sen-
tence to be clearly understood. Placing a sentence without its context being
stated in advanced, makes an unintelligible summary. As shown in figure 2, for
each extracted sentence l, we can compare the block of text that appears before
it in its source document (P ) with the block of sentences which we have ordered
so far in the summary (Q). If P and Q matches well, then we can safely as-
sume that Q contains the necessary background information required by l. We
can then place l after Q. Such relations among sentences are called precedence
relations. Okazaki [7] proposes precedence relations as a method to improve the
chronological ordering of sentences. He considers the information stated in the
documents preceding the extracted sentences to judge the order. Based on this
idea, we define precedence pre(l) of the extracted sentence l as follows:

pre(l) = max
p∈P,q∈Q

sim(p, q). (11)

l

Fig. 2. Precedent expert

Here, P is the set of sentences preceding the extract sentence l in the original
document. We calculate sim(p, q) using cosine similarity. The preference function
for this expert can be written as follows:

PREFpre(u, v, Q) =

{
0.5 [Q = �] ∨ [pre(u) = pre(v)]
1 [Q �= �] ∧ [pre(u) > pre(v)]
0 otherwise

. (12)



A Machine Learning Approach to Sentence Ordering 629

r l

Fig. 3. Succedent expert

2.5 Succedent Expert

When extracting sentences from source documents, sentences which are similar to
the ones that are already extracted, are usually ignored to prevent repetition of
information. However, this information is valuable when ordering sentences. For
example, a sentence that was ignored by the sentence extraction algorithm might
turn out to be more suitable when ordering the extracted sentences. However, we
assume that the sentence ordering algorithm is independent from the sentence ex-
traction algorithm and therefore does not possess this knowledge regarding the left
out candidates. This assumption improves the compatibility of our algorithm as it
can be used to order sentences extracted by any sentence extraction algorithm. We
design an expert which uses this information to order sentences.

Let us consider the siuation depicted in Figure 3 where a block Q of text is
orderd in the summary so far. The lastly ordered setence r belongs to document
D in which a block K of sentences follows r. The author of this document assumes
that K is a natural consequence of r. However, the sentence selection algorithm
might not have selected any sentences from K because it already selected some
sentences with this information from some other document. Therefore, we search
the extract L for a sentence that best matches with a sentence in K. We define
succession as a measure of this agreement(13) as follows:

succ(l) = max
k∈K

sim(l, k). (13)

Here, we calculate sim(l, k) using cosine similarity. Sentences with higher succes-
sion values are preferred by the expert. The preference function for this expert
can be written as follows:

PREFsucc(u, v, Q) =

{
0.5 [Q = �] ∨ [succ(u) = succ(v)]
1 [Q �= �] ∧ [succ(u) > succ(v)]
0 otherwise

. (14)

2.6 Ordering Algorithm

Using the five preference functions described in the previous sections, we compute
the total preference function of the set of experts as defined by equation 2. Sec-
tion 2.7 explains the method that we use to calculate the weights assigned to each
expert’s preference. In this section we will consider the problem of finding an order
that satisfies the total preference function. Finding the optimal order for a given



630 D. Bollegala, N. Okazaki, and M. Ishizuka

total preference function is NP-complete [2]. However, Cohen [2] proposes a greedy
algorithm that approximates the optimal ordering. Once the unordered extract X
and total preference (equation 2) are given, this greedy algorithm can be used to
generate an approximately optimal ordering function ρ̂.

let V = X
for each v ∈ V do

π(v) =
∑

u∈V

PREF(v, u, Q) −
∑

u∈V

PREF(u, v, Q)

while V is non-empty do
let t = arg maxu∈V π(u)
let ρ̂(t) = |V |
V = V − {t}
for each v ∈ V do

π(v) = π(v) + PREF(t, u) − PREF(v, t)
endwhile

2.7 Learning Algorithm

Cohen [2] proposes a weight allocation algorithm that learns the weights associ-
ated with each expert in equation 2. We shall explain this algorithm in regard
to our model of five experts.

Rate of learning β ∈ [0, 1], initial weight vector w1 ∈ [0, 1]5, s.t.
∑

e∈E w1
e = 1.

Do for t = 1, 2, . . . , T where T is the number of training examples.

1. Get Xt; the set of sentences to be ordered.
2. Compute a total order ρ̂t which approximates,

PREFt
total(u, v, Q) =

∑

e∈E

PREFt
e(u, v, Q).

We used the greedy ordering algorithm described in section 2.6 to get ρ̂t.
3. Order Xt using ρ̂t.
4. Get the human ordered set F t of Xt. Calculate the loss for each expert.

Loss(PREFt
e, F

t) = 1 − 1
|F |

∑

(u,v)∈F

PREFt
e(u, v, Q) (15)

5. Set the new weight vector,

wt+1
e =

wt
eβ

Loss(PREFt
e,F t)

Zt
(16)

where, Zt is a normalization constant, chosen so that,
∑

e∈E wt+1
e = 1.



A Machine Learning Approach to Sentence Ordering 631

In our experiments we set β = 0.5 and w1
i = 0.2. To explain equation 15 let us

assume that sentence u comes before sentence v in the human ordered summary.
Then the expert must return the value 1 for PREF(u,v,Q). However,if the expert
returns any value less than 1, then the difference is taken as the loss. We do this
for all such sentence pairs in F . For a summary of length N we have N(N −1)/2
such pairs. Since this loss is taken to the power of β, a value smaller than 1, the
new weight of the expert gets changed according to the loss as in equation 16.

3 Evaluation

In addition to Kendall’s τ coefficient and Spearman’s rank correlation coefficient
which are widely used for comparing two ranks, we use sentence continuity [7]
as well as two metrics we propose; Weighted Kendall and Average Continuity.

3.1 Weighted Kendall Coefficient

The Kendall’s τ coefficient is defined as following:

τ = 1 − 2Q
nC2

. (17)

Where, Q is the number of discordant pairs and nC2 is the number of combi-
nations that can be generated from a set of n distinct elements by taking two
elements at a time with replacement. However, one major drawback of this met-
ric when evaluating sentence orderings is that, it does not take into consideration
the relative distance d between the discordant pairs. However, when reading a
text a human reader is likely to be more sensitive to a closer discordant pair than
a discordant pair far apart. Therefore, a closer discordant pair is more likely to
harm the readability of the summary compared to a far apart discordant pair. In
order to reflect these differences in our metric, we use an exponentially decreasing
weight function as follows:

h(d) =
{

exp(1 − d) d ≥ 1
0 else

. (18)

Here, d is the number of sentences that lie between the two sentences of the
discordant pair. Going by the traditional Kendall’s τ coefficient we defined our
weighted Kendall coefficient as following, so that it becomes a metric in [1, −1]
range.

τw = 1 − 2
∑

d h(d)∑n
i=1 h(i)

(19)

3.2 Average Continuity

Both Kendall’s τ coefficient and the Weighted Kendall coefficient measure dis-
cordants between ranks. However, in the case of summaries, we need a metric
which expresses the continuity of the sentences. A summary which can be read



632 D. Bollegala, N. Okazaki, and M. Ishizuka

continuously is better compared to a one that cannot. If the ordered extract
contains most of the sentence blocks of the reference summary then we can
safely assume that it is far more readable and coherent to a one that is not.
Sentence n-gram counts of continuous sentences give a rough idea of this kind
of continuity.

For a summary of length N there are N − n + 1 possible sentence n-grams
of length n. Therefore, we can define a precision Pn of continuity length n as:

Pn =
number of matched n-grams

N − n + 1
. (20)

Due to sparseness of higher order n-grams Pn decreases in an exponential-like
curve with n. Therefore, we define Average Continuity as the logrithmic average
of Pn as follows:

Average Continuity = exp(
1
3

4∑

n=2

log(Pn)) (21)

We add a small quantity α to numerator and denominator of Pn in equation
20 so that the logarithm will not diverge when n-grams count is zero. We used
α = 0.01 in our evaluations. Experimental results showed that taking n-grams up
to four gave contrasting results because the n-grams tend to be sparse for larger
n values. BLEU(BiLingual Evaluation Understudy) proposed by Papineni [8]
for the task of evaluating machine translations has an analogical form to our
average continuity. In BLEU, a machine translation is compared against multiple
reference translations and precision values are calculated using word n-grams.
BLEU is then defined as the logarithmic average of these precision values.

4 Results

We used the 3rd Text Summarization Challenge (TSC) corpus for our exper-
iments. TSC1 corpus contains news articles taken from two leading Japanese
newspapers; Mainichi and Yomiuri. TSC-3 corpus contains human selected ex-
tracts for 30 different topics. However, in the TSC corpus the extracted sentences
are not ordered to make a readable summary. Therefore, we first prepared 30
summaries by ordering the extraction data of TSC-3 corpus by hand. We then
compared the orderings by the proposed algorithm against these human ordered
summaries. We used 10-fold cross validation to learn the weights assigned to
each expert in our proposed algorithm. These weights are shown in table 1.
According to table 1, succedent, chronology and precedent experts have the
highest weights among the five experts and therefore almost entirely control the
process of ordering. Whereas probabilistic and topical relevance experts have
almost no influence on their decisions. However, we cannot directly compare La-
pata’s [3] approach with our probabilistic expert as we do not use dependency

1 http://lr-www.pi.titech.ac.jp/tsc/index-en.html



A Machine Learning Approach to Sentence Ordering 633

Table 1. Weights learned

Expert Chronological Probabilistic Topical Relevance Precedent Succedent
Weights 0.327947 0.000039 0.016287 0.196562 0.444102

Table 2. Comparison with Human Ordering

Spearman Kendall Continuity Weighted Kendall Average Continuity
RO -0.267 -0.160 -0.118 -0.003 0.024
PO 0.062 0.040 0.187 0.013 0.029
CO 0.774 0.735 0.629 0.688 0.511
LO 0.783 0.746 0.706 0.717 0.546
HO 1.000 1.000 1.000 1.000 1.000

Fig. 4. Precision vs sentence n-gram length

structure in our probability calculations. Moreover, Topical relevance, Precedent
and Succedent experts require other experts to guide them at the start as they
are not defined when Q is null. This inter-dependency among experts makes it
difficult to interpret the results in table 1. However, we could approximately
consider the values of the weights in table 1 as expressing the reliability of each
expert’s decisions.

We ordered each extract by five methods: Random Ordering (RO); Proba-
bilistic Ordering (PO); Chronological Ordering (CO); Learned Ordering (LO);
and HO (Human-made Ordering) and evaluated the orderings. The results are
shown in table 2. Continuity precision, defined in equation 20, against the length
of continuity n, is shown in figure 4.

According to table 2 LO outperforms RO,PO and CO in all metrics. ANOVA
test of the results shows a statistically significant difference among the five meth-
ods compared in table 2 under 0.05 confidence level. However, we could not
find a statistically significant difference between CO and LO. Topical relevance,
Precedent and Succedent experts cannot be used stand-alone to generate a total



634 D. Bollegala, N. Okazaki, and M. Ishizuka

ordering because these experts are not defined at the start, where Q is null.
These experts need Chronological and Probabilistic experts to guide them at
the beginning. Therefore we have not compared these orderings in table 2.

According to figure 4, for sentence n-grams of length up to 6, LO has the
highest precision (defined by equation 20) among the compared orderings. PO
did not possess sentence n-grams for n greater than two. Due to the sparseness
of the higher order n-grams, precision drops in an exponential-like curve with
the length of sentence continuity n. This justifies the logarithmic mean in the
definition of average continuity in equation 21. A similar tendency could be
observed for the BLEU metric [8].

Fig. 5. Human Evaluation

We also performed a human evaluation of our orderings. We asked two human
judges to grade the summaries into four categories. The four grades are; perfect:
no further adjustments are needed, acceptable: makes sense even though there
is some room for improvement, poor: requires minor amendments to bring it up
to the acceptable level, unacceptable: requires overall restructuring rather than
partial revision. The result of the human evaluation of the 60 (2×30) summaries
is shown in figure 5. It shows that most of the randomly ordered summaries
(RO) are unacceptable. Although both CO and LO have same number of perfect
summaries, the acceptable to poor ratio is better in LO. Over 60 percent of LO
is either perfect or acceptable. Kendall’s coefficient of concordance (W), which
assesses the inter-judge agreement of overall ratings, reports a higher agreement
between judges with a value of W = 0.937.

Although relatively simple in implementation, the chronological orderings
works satisfactorily in our experiments. This is mainly due to the fact that the
TSC corpus only contains news paper articles. Barzilay [1] shows chronological
ordering to work well with news summaries. In news articles, events normally
occur in a chronological order. To evaluate the true power of the other experts
in our algorithm, we need to experiment using other genre of summaries other
than news summaries.



A Machine Learning Approach to Sentence Ordering 635

5 Conclusion

This paper described a machine learning approach to sentence ordering for mul-
tidocument summarization. Our method integrated all the existing approaches
to sentence ordering while proposing new techniques like succession. The results
of our experiments revealed that our algorithm for sentence ordering did con-
tribute to summary readability. We plan to do further study on the sentence
ordering problem in future work, extending our algorithm to other natural lan-
guage generation applications.

References

1. Regina Barzilay, Noemie Elhadad, and Kathleen McKeown. Inferring strategies
for sentence ordering in multidocument news summarization. Journal of Artificial
Intelligence Research, 17:35–55, 2002.

2. W. W. Cohen, R. E. Schapire, and Y. Singer. Learning to order things. Journal of
Artificial Intelligence Research, 10:243–270, 1999.

3. Mirella Lapata. Probabilistic text structuring: Experiments with sentence ordering.
Proceedings of the annual meeting of ACL, 2003., pages 545–552, 2003.

4. C.Y. Lin and E. Hovy. Neats:a multidocument summarizer. Proceedings of the
Document Understanding Workshop(DUC), 2001.

5. Inderjeet Mani and Mark T. Maybury, editors. Advances in automatic text summa-
rization. The MIT Press, 2001.

6. Kathleen McKeown, Judith Klavans, Vasileios Hatzivassiloglou, Regina Barzilay,
and Eleazar Eskin. Towards multidocument summarization by reformulation:
Progress and prospects. AAAI/IAAI, pages 453–460, 1999.

7. Naoaki Okazaki, Yutaka Matsuo, and Mitsuru Ishizuka. An integrated summa-
rization system with sentence ordering using precedence relation. ACM-TALIP, to
appear in 2005.

8. Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu:a method
for automatic evaluation of machine translation. Proceedings of the 40th An-
nual Meeting of the Association for Computational Linguistics (ACL), pages
311–318, 2002.


	Introduction
	Method
	Chronological Expert
	Probabilistic Expert
	Topical Relevance Expert
	Precedent Expert
	Succedent Expert
	Ordering Algorithm
	Learning Algorithm

	Evaluation
	Weighted Kendall Coefficient
	Average Continuity

	Results
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


