
Entropy as an Indicator of Context Boundaries
—An Experiment Using a Web Search Engine—

Kumiko Tanaka-Ishii

Graduate School of Information Science and Technology,
University of Tokyo

kumiko@i.u-tokyo.ac.jp

Abstract. Previous works have suggested that the uncertainty of tokens
coming after a sequence helps determine whether a given position is
at a context boundary. This feature of language has been applied to
unsupervised text segmentation and term extraction. In this paper, we
fundamentally verify this feature. An experiment was performed using a
web search engine, in order to clarify the extent to which this assumption
holds. The verification was applied to Chinese and Japanese.

1 Introduction

The theme of this paper is the following assumption:
The uncertainty of tokens coming after a sequence helps determine whether
a given position is at a context boundary. (A)

Intuitively, the variety of successive tokens at each character inside a word mono-
tonically decreases according to the offset length, because the longer the preced-
ing character n-gram, the longer the preceding context and the more it restricts
the appearance of possible next tokens. On the other hand, the uncertainty at
the position of a word border becomes greater and the complexity increases, as
the position is out of context. This suggests that a word border can be detected
by focusing on the differentials of the uncertainty of branching. This assumption
is illustrated in Figure 1. In this paper, we measure this uncertainty of successive
tokens by utilizing the entropy of branching (which we mathematically define in
the next section).

This assumption dates back to the fundamental work done by Harris [6] in
1955, where he says that when the number of different tokens coming after every
prefix of a word marks the maximum value, then the location corresponds to the
morpheme boundary. Recently, with the increasing availability of corpora, this
characteristic of language data has been applied for unsupervised text segmenta-
tion into words and morphemes. Kempe [8] reports an experiment to detect word
borders in German and English texts by monitoring the entropy of successive
characters for 4-grams. Many works in unsupervised segmentation utilise the
fact that the branching stays low inside words but increases at a word or mor-
pheme border. Some works apply this fact in terms of frequency [10] [2], while
others utilise more sophisticated statistical measures: Sun et al. [12] use mutual
information; Creutz [4] use MDL to decompose Finnish texts into morphemes.

R. Dale et al. (Eds.): IJCNLP 2005, LNAI 3651, pp. 93–105, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

94 K. Tanaka-Ishii

This assumption seems to hold not only at the character level but also at
the word level. For example, the uncertainty of words coming after the word
sequence, “The United States of”, is small (because the word America is very
likely to occur), whereas the uncertainty is greater for the sequence “computa-
tional linguistics”, suggesting that there is a context boundary just after this
term. This observation at the word level has been applied to term extraction
by utilising the number of different words coming after a word sequence as an
indicator of collocation boundaries [5] [9].

Fig. 1. Intuitive illustration of a variety of successive tokens and a word boundary

As can be seen in these previous works, the above assumption (A) seems
to govern language structure both microscopically at the morpheme level and
macroscopically at the phrase level. Assumption (A) is interesting not only from
an engineering viewpoint but also from a language and cognitive science view-
point. For example, some recent studies report that the statistical, innate struc-
ture of language plays an important role in children’s language acquisition [11].
Therefore, it is important to understand the innate structure of language, in
order to shed light on how people actually acquire it.

Consequently, this paper verifies assumption (A) in a fundamental manner.
We address the questions of why and to what extent (A) holds. Unlike recent,
previous works based on limited numbers of corpora, we use a web search engine
to obtain statistics, in order to avoid the sparseness problem as much as pos-
sible. Our discussion focuses on correlating the entropy of branching and word
boundaries, because the definition of a word boundary is clearer than that of a
morpheme or phrase unit. In terms of detecting word boundaries, our experi-
ments were performed in character sequence, so we chose two languages in which
segmentation is a crucial problem: Chinese which contains only ideograms, and
Japanese, which contains both ideograms and phonograms. Before describing
the experiments, we discuss assumption (A) in more detail.

2 The Assumption

Given a set of elements χ and a set of n-gram sequences χn formed of χ, the
conditional entropy of an element occurring after an n-gram sequence Xn is
defined as

Entropy as an Indicator of Context Boundaries 95

Fig. 2. Decrease in H(X|Xn) for characters when n is increased

H(X |Xn) = −
∑

xn∈χn

P (Xn = xn)
∑

x∈χ

P (X = x|Xn = xn) log P (X = x|Xn = xn)

where P (X = x) indicates the probability of occurrence of x.
A well-known observation on language data states that H(X |Xn) decreases

as n increases [3]. For example, Figure 2 shows the entropy values as n increases
from 1 to 9 for a character sequence. The two lines correspond to Japanese and
English data, from corpora consisting of the Mainichi newspaper (30 MB) and
the WSJ (30 MB), respectively. This phenomenon indicates that X will become
easier to estimate as the context of Xn gets longer. This can be intuitively
understood: it is easy to guess that “e” will follow after “Hello! How ar”, but it
is difficult to guess what comes after the short string “He”.

The last term − log P (X = x|Xn = xn) in formula above indicates the
information of a token of x coming after xn, and thus the branching after xn.
The latter half of the formula, the local entropy value for a given xn

H(X |Xn = xn) = −
∑

x∈χ

P (X = x|Xn = xn) log P (X = x|Xn = xn), (1)

indicates the average information of branching for a specific n-gram sequence xn.
As our interest in this paper is this local entropy, we denote simply H(X |Xn =
xn) as h(xn) in the rest of this paper.

The decrease in H(X |Xn) globally indicates that given an n-length sequence
xn and another (n + 1)-length sequence yn+1, the following inequality holds on
average:

h(xn) > h(yn+1). (2)

One reason why inequality (2) holds for language data is that there is context in
language, and yn+1 carries a longer context as compared with xn. Therefore, if
we suppose that xn is the prefix of xn+1, then it is very likely that

h(xn) > h(xn+1) (3)

holds, because the longer the preceding n-gram, the longer the same context. For
example, it is easier to guess what comes after x6=“natura” than what comes
after x5 = “natur”. Therefore, the decrease in H(X |Xn) can be expressed as the

96 K. Tanaka-Ishii

Fig. 3. Our model for boundary detection based on the entropy of branching

concept that if the context is longer, the uncertainty of the branching decreases
on average. Then, taking the logical contraposition, if the uncertainty does not
decrease, the context is not longer, which can be interpreted as the following:

If the complexity of successive tokens increases, the location is at the
context border. (B)

For example, in the case of x7 = “natural”, the entropy h(“natural”) should
be larger than h(“natura”), because it is uncertain what character will allow x7
to succeed. In the next section, we utilise assumption (B) to detect the context
boundary.

3 Boundary Detection Using the Entropy of Branching

Assumption (B) gives a hint on how to utilise the branching entropy as an
indicator of the context boundary. When two semantic units, both longer than
1, are put together, the entropy would appear as in the first figure of Figure 3.
The first semantic unit is from offsets 0 to 4, and the second is from 4 to 8,
with each unit formed by elements of χ. In the figure, one possible transition of
branching degree is shown, where the plot at k on the horizontal axis denotes
the entropy for h(x0,k) and xn,m denotes the substring between offsets n and m.

Ideally, the entropy would take a maximum at 4, because it will decrease as
k is increased in the ranges of k < 4 and 4 < k < 8, and at k = 4, it will rise.
Therefore, the position at k = 4 is detected as the “local maximum value” when
monitoring h(x0,k) over k. The boundary condition after such observation can
be redefined as the following:
Bmax Boundaries are locations where the entropy is locally maximised.
A similar method is proposed by Harris [6], where morpheme borders can be
detected by using the local maximum of the number of different tokens coming
after a prefix.

This only holds, however, for semantic units longer than 1. Units often have
a length of 1: at the character level, in Japanese and Chinese, there are many
one-character words, and at the word level, there are many single words that do
not form collocations. If a unit has length 1, then the situation will look like the
second graph in Figure 3, where three semantic units, x0,4, x4,5 x5,8, are present,
with the middle unit having length 1. First, at k = 4, the value of h increases.

Entropy as an Indicator of Context Boundaries 97

At k = 5, the value may increase or decrease, because the longer context results
in an uncertainty decrease, though an uncertainty decrease does not necessarily
mean a longer context. When h increases at k = 5, the situation would look like
the second graph. In this case, the condition Bmaxwill not suffice, and we need
a second boundary condition:
Bincrease Boundaries are locations where the entropy is increased.
On the other hand, when h decreases at k = 5, then even Bincreasecannot be
applied to detect k = 5 as a boundary. We have other chances to detect k = 5,
however, by considering h(xi,k) where 0 < i < k. According to inequality (2),
then, a similar trend should be present for plots of h(xi,k), assuming h(x0,n) >
h(x0,n+1); then, we have

h(xi,n) > h(xi,n+1), for 0 < i < n. (4)

The value h(xi,k) would hopefully rise for some i if the boundary at k = 5 is
important, although h(xi,k) can increase or decrease at k = 5, just as in the case
for h(x0,n).

Therefore, when the target language consists of many one element units,
Bincreaseis crucial for collecting all boundaries. Note that boundaries detected
by Bmaxare included in those detected by the condition Bincrease.

Fig. 4. Kempe’s model for boundary detection

Kempe’s detection model is based solely on the assumption that the un-
certainty of branching takes a local maximum at a context boundary. Without
any grounding on this assumption, Kempe [8] simply calculates the entropy of
branching for a fixed length of 4-grams. Therefore, the length of n is set to 3,
h(xi−3,i) is calculated for all i, and the maximum values are claimed to indicate
the word boundary. This model is illustrated in Figure 4, where the plot at each
k indicates the value of h(xk−3,k). Note that at k = 4, the h value will be highest.
It is not possible, however, to judge whether h(xi−3,i) is larger than h(xi−2,i+1)
in general: Kempe’s experiments show that the h value simply oscillates at a low
value in such cases.

In contrast, our model is based on the monotonic decrease in H(X |Xn). It
explains the increase in h at the context boundary by considering the entropy
decrease with a longer context.

98 K. Tanaka-Ishii

Summarising what we have examined, in order to verify assumption (A),
which is replaced by assumption (B), the following questions must be answered
experimentally:

Q1 Does the condition described by inequality (3) hold?
Q2 Does the condition described by inequality (4) hold?
Q3 To what extent are boundaries extracted by Bmaxor Bincrease?

In the rest of this paper, we demonstrate our experimental verification of these
questions.

So far, we have considered only regular order processing: the branching degree
is calculated for successive elements of xn. We can also consider the reverse order,
which involves calculating h for the previous element of xn. In the case of the
previous element, the question is whether the head of xn forms the beginning of
a context boundary. We use the subscripts suc and prev to indicate the regular
and reverse orders, respectively. Thus, the regular order is denoted as hsuc(xn),
while the reverse order is denoted by hprev(xn).

In the next section, we explain how we measure the statistics of xn, before
proceeding to analyze our results.

4 Measuring Statistics by Using the Web

In the experiments described in this paper, the frequency counts were obtained
using a search engine. This was done because the web represents the largest pos-
sible database, enabling us to avoid the data sparseness problem to the greatest
extent possible.

Given a sequence xn, h(xn) is measured by the following procedure.
1. xn is sent to a search engine.
2. One thousand snippets, at maximum, are downloaded and xn is searched

for through these snippets. If the number of occurrences is smaller than N ,
then the system reports that xn is unmeasurable.

3. The elements occurring before and after xn are counted, and hsuc(xn) and
hprev(xn) are calculated.

N is a parameter in the experiments described in the following section, and
a higher N will give higher precision and lower recall. Another aspect of the
experiment is that the data sparseness problem quickly becomes significant for
longer strings. To address these issues, we chose N=30.

The value of h is influenced by the indexing strategy used by a given search
engine. Defining f(x) as the frequency count for string x as reported by the
search engine,

f(xn) > f(xn+1) (5)

should usually hold if xn is a prefix of xn+1, because all occurrences of xn contain
occurrences of xn+1. In practice, this does not hold for many search engines,
namely, those in which xn+1 is indexed separately from xn and an occurrence of
xn+1 is not included in one of xn. For example, the frequency count of “mode”
does not include that of “model”, because it is indexed separately. In particular,

Entropy as an Indicator of Context Boundaries 99

Fig. 5. Entropy changes for a Japanese character sequence (left:regular; right:reverse)

search engines use this indexing strategy at the string level for languages in
which words are separated by spaces, and in our case, we need a search engine
in which the count of xn includes that of xn+1. Although we are interested in
the distribution of tokens coming after the string xn and not directly in the
frequency, a larger value of f(xn) can lead to a larger branching entropy.

Among the many available search engines, we decided to use AltaVista, be-
cause its indexing strategy seems to follow inequality (5) better than do the
strategies of other search engines. AltaVista used to utilise string-based index-
ing, especially for non-segmented languages. Indexing strategies are currently
trade secrets, however, so companies rarely make them available to the pub-
lic. We could only guess at AltaVistafs strategy by experimenting with some
concrete examples based on inequality (5).

5 Analysis for Small Examples

We will first examine the validity of the previous discussion by analysing some
small examples. Here, we utilise Japanese examples, because this language con-
tains both phonograms and ideograms, and it can thus demonstrate the features
of our method for both cases.

The two graphs in Figure 5 show the actual transition of h for a Japanese
sentence formed of 11 characters: x0,11 = (We think of
the future of (natural) language processing (studies)). The vertical axis represents
the entropy value, and the horizontal axis indicates the offset of the string. In
the left graph, each line starting at an offset of m+1 indicates the entropy values
of hsuc(xm,m+n) for n > 0, with plotted points appearing at k = m + n. For
example, the leftmost solid line starting at offset k = 1 plots the h values of x0,n

for n > 0, with m=0 (refer to the labels on some plots):
x0,1 =
x0,2 =
. . .
x0,5 =

with each value of h for the above sequence x0,n appearing at the location of n.

言語処理の未来を考える

言
言語

言語処理の

100 K. Tanaka-Ishii

Concerning this line, we may observe that the value increases slightly at po-
sition k = 2, which is the boundary of the word (language). This location
will become a boundary for both conditions, Bmaxand Bincrease. Then, at posi-
tion k = 3, the value drastically decreases, because the character coming after

(language proce) is limited (as an analogy in English, ssing is the major
candidate that comes after language proce). The value rises again at x0,4, be-
cause the sequence leaves the context of (language processing). This
location will also become a boundary whether Bmaxor Bincreaseis chosen. The
line stops at n = 5, because the statistics of the strings x0,n for n > 5 were
unmeasurable.

The second leftmost line starting from k = 2 shows the transition of the
entropy values of hsuc(x1,1+n) for n > 0; that is, for the strings starting from
the second character , and so forth. We can observe a trend similar to
that of the first line, except that the value also increases at 5, suggesting that
k = 5 is the boundary, given the condition Bincrease.

The left graph thus contains 10 lines. Most of the lines are locally maximized
or become unmeasurable at the offset of k = 5, which is the end of a large portion
of the sentence. Also, some lines increase at k = 2, 4, 7, and 8, indicating the
ends of words, which is correct. Some lines increase at low values at 10: this
is due to the verb (think), whose conjugation stem is detected as a
border.

Similarly, the right-hand graph shows the results for the reverse order, where
each line ending at m − 1 indicates the plots of the value of hprev(xm−n,m) for
n > 0, with the plotted points appearing at position k = m − n. For example,
the rightmost line plots h for strings ending with (from m = 11 and n = 10
down to 5):

x10,11 =
x9,11 =
. . .
x6,11 =
x5,11 =

where x4,11 became unmeasurable. The lines should be analysed from back to
front, where the increase or maximum indicates the beginning of a word. Overall,
the lines ending at 4 or 5 were unmeasurable, and the values rise or take a
maximum at k = 2, 4 or 7.

Note that the results obtained from the processing in each direction differ.
The forward pass detects 2,4,5,7,8, whereas the backward pass detects 2,4,7.
The forward pass tends to detect the end of a context, while the backward pass
typically detects the beginning of a context. Also, it must be noted that this
analysis not only shows the segmenting position but also the structure of the
sentence. For example, a rupture of the lines and a large increase in h are seen
at k = 5, indicating the large semantic segmentation position of the sentence. In
the right-hand graph, too, we can see two large local maxima at 4 and 7. These
segment the sentence into three different semantic parts.

言語

言語処

言語処理

語

考える

る

える

来を考える

未来を考える

る

Entropy as an Indicator of Context Boundaries 101

Fig. 6. Other segmentation examples

On these two graphs, questions Q1 through Q3 from §3 can be addressed as
follows. First, as for Q1, the condition indicated by inequality (3) holds in most
cases where all lines decrease at k = 3, 6, 9, which correspond to inside words.
There is one counter-example, however, caused by conjugation. In Japanese con-
jugation, a verb has a prefix as the stem, and the suffix varies. Therefore, with
our method, the endpoint of the stem will be regarded as the boundary. As con-
jugation is common in languages based on phonograms, we may guess that this
phenomenon will decrease the performance of boundary detection.

As for Q2, we can say that the condition indicated by inequality (4) holds,
as the upward and downward trends at the same offset k look similar. Here
too, there is a counter-example, in the case of a one element word, as indicated
in §3. There are two one-word words x4,5= and x7,8= , where the
gradients of the lines differ according to the context length. In the case of one
of these words, h can rise or fall between two successive boundaries indicating
a beginning and end. Still, we can see that this is complemented by examining
lines starting from other offsets. For example, at k = 5, some lines end with an
increase.

As for Q3, if we pick boundary condition Bmax, by regarding any unmeasur-
able case as h = −∞, and any maximum of any line as denoting the boundary,
then the entry string will be segmented into the following:

This segmentation result is equivalent to that obtained by many other Japanese
segmentation tools. Taking Bincreaseas the boundary condition, another bound-
ary is detected in the middle of the last verb (think, segmented at

(language)j (processing)j (of)j (future)j (of)j (think).の を

言語 処理 未来 を 考える

考え る

の

102 K. Tanaka-Ishii

the stem of the verb)”. If we consider detecting the word boundary, then this
segmentation is incorrect; therefore, to increase the precision, it would be better
to apply a threshold to filter out cases like this. If we consider the morpheme
level, however, then this detection is not irrelevant.

These results show that the entropy of branching works as a measure of
context boundaries, not only indicating word boundaries, but also showing the
sentence structure of multiple layers, at the morpheme, word, and phrase levels.

Some other successful segmentation examples in Chinese and Japanese are
shown in Figure 6. These cases were segmented by using Bmax. Examples 1
through 4 are from Chinese, and 5 through 12 are from Japanese, where ‘|’ indi-
cates the border. As this method requires only a search engine, it can segment
texts that are normally difficult to process by using language tools, such as insti-
tution names (5, 6), colloquial expressions (7 to 10), and even some expressions
taken from Buddhist scripture (11, 12).

6 Performance on a Larger Scale

6.1 Settings

In this section, we show the results of larger-scale segmentation experiments on
Chinese and Japanese. The reason for the choice of languages lies in the fact that
the process utilised here is based on the key assumption regarding the semantic
aspects of language data. As an ideogram already forms a semantic unit as itself,
we intended to observe the performance of the procedure with respect to both
ideograms and phonograms. As Chinese contains ideograms only, while Japanese
contains both ideograms and phonograms, we chose these two languages.

Because we need correct boundaries with which to compare our results, we
utilised manually segmented corpora: the People’s Daily corpus from Beijing
University [7] for Chinese, and the Kyoto University Corpus [1] for Japanese.

In the previous section, we calculated h for almost all substrings of a given
string. This requires O(n2) searches of strings, with n being the length of the
given string. Additionally, the process requires a heavy access load to the web
search engine. As our interest is in verifying assumption (B), we conducted our
experiment using the following algorithm for a given string x.
1. Set m = 0, n=1.
2. Calculate h for xm,n

3. If the entropy is unmeasurable, set m = m + 1,n = m + 2, and go to step 2.
4. Compare the result with that for xm,n−1.
5. If the value of h fulfils the boundary conditions, then output n as the bound-

ary. Set m = m + 1, n = m + 2, and go to 2.
6. Otherwise, set n = n + 1 and go to 2.

The point of the algorithm is to ensure that the string length is not increased once
the boundary is found, or if the entropy becomes unmeasurable. This algorithm
becomes O(n2) in the worst case where no boundary is found and all substrings
are measurable, although this is very unlikely to be the case. Note that this

Entropy as an Indicator of Context Boundaries 103

Fig. 7. Precision and recall of word segmentation using the branching entropy in Chi-
nese and Japanese

algorithm defines the regular order case, but we also conducted experiments in
reverse order, too.

As for the boundary condition, we utilized Bincrease, as it includes Bmax. A
threshold val could be set to the margin of difference:

h(xn+1) − h(xn) > val. (6)

The larger val is, the higher the precision, and the lower the recall. We varied
val in the experiment in order to obtain the precision and recall curve.

As the process is slow and heavy, the experiment could not be run through
millions of words. Therefore, we took out portions of the corpora used for each
language, which consisted of around 2000 words (Chinese 2039, Japanese 2254).
These corpora were first segmented into phrases at commas, and each phrase
was fed into the procedure described above. The suggested boundaries were
then compared with the original, correct boundaries.

6.2 Results

The results are shown in Figure 7. The horizontal axis and vertical axes represent
the precision and recall, respectively. The figure contains two lines, corresponding
to the results for Japanese or Chinese. Each line is plotted by varying val from
0.0 to 3.0 with a margin of 0.5, where the leftmost points of the lines are the
results obtained for val=0.0.

The precision was more than 90% for Chinese with val > 2.5. In the case
of Japanese, the precision deteriorated by about 10%. Even without a threshold
(val = 0.0), however, the method maintained good precision in both languages.

The locations indicated incorrectly were inside phonogram sequences consist-
ing of long foreign terms, and in inflections in the endings of verbs and adjectives.
In fact, among the incorrect points, many could be detected as correct segmenta-
tions. For example, in Chinese, surnames were separated from first names by our

104 K. Tanaka-Ishii

procedure, whereas in the original corpus, complete names are regarded as single
words. As another example in Chinese, the character is used to indicate
“-ist” in English, as in (revolutionist) and our process suggested that
there is a border in between However, in the original corpus,
these words are not segmented before but are instead treated as one word.

Unlike the precision, the recall ranged significantly according to the thresh-
old. When val was high, the recall became small, and the texts were segmented
into larger phrasal portions. Some successful examples in Japanese for val=3.0
are shown in the following.

The segments show the global structure of the phrases, and thus, this result
demonstrates the potential validity of assumption (B). In fact, such sentence
segmentation into phrases would be better performed in a word-based manner,
rather than a character-based manner, because our character-based experiment
mixes the word-level and character-level aspects at the same time. Some previous
works on collocation extraction have tried boundary detection using branching
[5]. Boundary detection by branching outputs tightly coupled words that can be
quite different from traditional grammatical phrases. Verification of such aspects
remains as part of our future work.

Overall, in these experiments, we could obtain a glimpse of language structure
based on assumption (B) where semantic units of different levels (morpheme,
word, phrase) overlaid one another, as if to form a fractal of the context. The
entropy of branching is interesting in that it has the potential to detect all
boundaries of different layers within the same framework.

7 Conclusion

We conducted a fundamental analysis to verify that the uncertainty of tokens
coming after a sequence can serve to determine whether a position is at a con-
text boundary. By inferring this feature of language from the well-known fact
that the entropy of successive tokens decreases when a longer context is taken,
we examined how boundaries could be detected by monitoring the entropy of
successive tokens. Then, we conducted two experiments, a small one in Japanese,
and a larger-scale experiment in both Chinese and Japanese, to actually segment
words by using only the entropy value. Statistical measures were obtained using
a web search engine in order to overcome data sparseness.

Through analysis of Japanese examples, we found that the method worked
better for sequences of ideograms, rather than for phonograms. Also, we ob-
served that semantic layers of different levels (morpheme, word, phrase) could
potentially be detected by monitoring the entropy of branching. In our larger-
scale experiment, points of increasing entropy correlated well with word borders

and{ are jbig j problems j suchas powerdecentralizaion.){ (We think that j it is not the timefor breakup).
家

革命家
革命 家

家

地方分権など 大きな 課題がある

今は解散の時期ではない と考えている

(There

Entropy as an Indicator of Context Boundaries 105

References

1. Kyoto University Text Corpus Version 3.0, 2003. http://www.kc.t.u-tokyo.ac.jp/nl-
resource/corpus.html.

2. R.K. Ando and L. Lee. Mostly-unsupervised statistical segmentation of japanese:
Applications to kanji. In ANLP-NAACL, 2000.

3. T.C. Bell, J.G. Cleary, and I. H. Witten. Text Compression. Prentice Hall, 1990.
4. M. Creutz and Lagus K. Unsupervised discovery of morphemes. In Workshop of

the ACL Special Interest Group in Computational Phonology, pages 21–30, 2002.
5. T.K. Frantzi and S. Ananiadou. Extracting nested collocations. 16th COLING,

pages 41–46, 1996.
6. S.Z. Harris. From phoneme to morpheme. Language, pages 190–222, 1955.
7. ICL. People daily corpus, beijing university, 1999. Institute of Computational

Linguistics, Beijing University http://162.105.203.93/Introduction/ corpustag-
ging.htm.

8. A. Kempe. Experiments in unsupervised entropy-based corpus segmentation. In
Workshop of EACL in Computational Natural Language Learning, pages 7–13,
1999.

9. H. Nakagawa and T. Mori. A simple but powerful automatic termextraction
method. In Computerm2: 2nd International Workshop on Computational Termi-
nology, pages 29–35, 2002.

10. S. Nobesawa, J. Tsutsumi, D.S. Jang, T. Sano, K. Sato, and M Nakanishi. Seg-
menting sentences into linky strings using d-bigram statistics. In COLING, pages
586–591, 1998.

11. J.R. Saffran. Words in a sea of sounds: The output of statistical learning. Cognition,
81:149–169, 2001.

12. M. Sun, Dayang S., and B. K. Tsou. Chinese word segmentation without using
lexicon and hand-crafted training data. In COLING-ACL, 1998.

especially in the case of Chinese. These results reveal an interesting aspect of
the statistical structure of language.

	Introduction
	The Assumption
	Boundary Detection Using the Entropy of Branching
	Measuring Statistics by Using the Web
	Analysis for Small Examples
	Performance on a Larger Scale
	Settings
	Results

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

