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Abstract. We explore the use of a partially annotated corpus to build a depen-
dency parser for Japanese. We examine two types of partially annotated corpora.
It is found that a parser trained with a corpus that does not have any grammatical
tags for words can demonstrate an accuracy of 87.38%, which is comparable to
the current state-of-the-art accuracy on the Kyoto University Corpus. In contrast,
a parser trained with a corpus that has only dependency annotations for each
two adjacent bunsetsus (chunks) shows moderate performance. Nonetheless, it
is notable that features based on character n-grams are found very useful for a
dependency parser for Japanese.

1 Introduction

Corpus-based supervised learning is now a standard approach to build a system which
shows high performance for a given task in NLP. However, the weakness of such ap-
proach is to need an annotated corpus. Corpus annotation is labor intensive and very
expensive. To reduce or avoid the cost of annotation, various approaches are proposed,
which include unsupervised learning, minimally supervised learning (e.g., [1]), and ac-
tive learning (e.g., [2,3]).

To discuss clearly the cost of corpus annotation, we here consider a simple model
of the cost:

annotation cost ∝
∑

t

c(t)n(t)

where t is a type of annotation such as POS tagging, chunk tagging, etc., c(t) is a cost
per type t annotation, and n(t) is the number of type t annotation.

Previous work to tackle the problem of annotation cost has mainly focused on reduc-
ing n(t). For example, in active learning, useful examples to be annotated are selected
based on some criteria, and then the number of examples to be annotated is considerably
reduced. In contrast, we here focus on reducing c(t) instead of n(t). Obviously, if some
portion of annotations are not given, the performance of a NLP system will deteriorate.
The question here is how much the performance deteriorates. Is there a good trade-off
between saving the cost and losing the performance?

Minimizing portions of annotations is also very important from the point of view of
engineering. Suppose that we want to build an annotated corpus to make a parser for
some real-world application. The design and strategy of corpus annotation is crucial in
order to get a good parser while saving the cost. Furthermore, we have to keep in mind
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the maintenance cost of both the corpus and the parser. For example, we may find some
errors in the annotations and the design of linguistic categories. In this situation fewer
annotations lead to saving the cost because the corpus is more stable and less prone
to errors.

The main purpose of this study is to explore the use of a partially annotated corpus
to build a dependency parser for Japanese. In this paper, we describe experiments to
investigate the feasibility of a partially annotated corpus. In addition, we propose fea-
tures for parsing which are based on character n-grams. Even if grammatical tags are
not given, a parser with these features demonstrates better performance than does the
maximum entropy parser [4] with full grammatical features. Similarly, we have con-
ducted experiments on bunsetsu (described in Sect. 2.1) chunking trained with a corpus
which does not have grammatical tags. After that, we have tested a parser trained with
a corpus which is partially annotated for dependency structures.

2 Parsing Japanese

2.1 Syntactic Properties of Japanese

The Japanese language is basically an SOV language. Word order is relatively free. In
English the syntactic function of each word is represented with word order, while in
Japanese postpositions represent the syntactic function of each word. For example, one
or more postpositions following a noun play a similar role to declension of nouns in
German, which indicates a grammatical case.

Based on such properties, the concept of bunsetsus1 was devised and has been used
to describe the structure of a sentence in Japanese. A bunsetsu consists of one or more
content words followed by zero or more function words. By defining a bunsetsu like
that, we can analyze a sentence in a similar way that is used when analyzing the gram-
matical role of words in inflecting languages like German.

Thus, strictly speaking, bunsetsu order rather than word order is free except the
bunsetsu that contains the main verb of a sentence. Such bunsetsu must be placed at
the end of the sentence. For example, the following two sentences have an identical
meaning: (1) Ken-ga kanojo-ni hon-wo age-ta. (2) Ken-ga hon-wo kanojo-ni age-ta.
(-ga: subject marker, -ni: dative case particle, -wo: accusative case particle. English
translation: Ken gave a book to her.) Note that the rightmost bunsetsu ‘age-ta,’ which
is composed of a verb stem and a past tense marker, has to be placed at the end of the
sentence.

We here list the constraints of Japanese dependency including ones mentioned above.

C1. Each bunsetsu has only one head except the rightmost one.
C2. Each head bunsetsu is always placed at the right hand side of its modifier.
C3. Dependencies do not cross one another.

These properties are basically shared also with Korean and Mongolian.

1 The word ‘bunsetsu’ in Japanese is composed of two Chinese characters, i.e., ‘bun’ and ‘setsu.’
‘Bun’ means a sentence and ‘setsu’ means a segment. A ‘bunsetsu’ is considered to be a
small syntactic segment in a sentence. A eojeol in Korean [5] is almost the same concept as a
bunsetsu. Chunks defined in [6] for English are also very similar to bunsetsus.
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2.2 Typical Steps of Parsing Japanese

Because Japanese has the properties above, the following steps are very common in
parsing Japanese:

S1. Break a sentence into morphemes (i.e. morphological analysis).
S2. Chunk them into bunsetsus.
S3. Analyze dependencies between these bunsetsus.
S4. Label each dependency with a semantic role such as agent, object, location, etc.

Note that since Japanese does not have explicit word delimiters like white spaces, we
first have to tokenize a sentence into morphemes and at the same time give a POS tag
to each morpheme (S1). Therefore, when building an annotated corpus of Japanese, we
have to decide boundaries of each word (morpheme) and POS tags of all the words.

3 Experimental Setup

3.1 Parsing Algorithm

We employ the Stack Dependency Analysis (SDA) algorithm [7] to analyze the depen-
dency structure of a sentence in Japanese. This algorithm, which takes advantage of C1,
C2, and C3 in Sect. 2.1, is very simple and easy to implement. Sassano [7] has proved
its efficiency in terms of time complexity and reported the best accuracy on the Kyoto
University Corpus [8]. The SDA algorithm as well as Cascaded Chunking Model [9] is
a shift-reduce type algorithm.

The pseudo code of SDA is shown in Fig. 1. This algorithm is used with any esti-
mator that decides whether a bunsetsu modifies another bunsetsu. A trainable classifier,
such as an SVM, a decision tree, etc., is a typical choice for the estimator.

3.2 Corpus

To facilitate comparison with previous results, we used the Kyoto University Corpus
Version 2 [8]. Parsers used in experiments were trained on the articles on January 1st
through 8th (7,958 sentences) and tested on the articles on January 9th (1,246 sen-
tences). The articles on January 10th were used for development. The usage of these
articles is the same as in [4,10,9,7].

3.3 Choice for Classifiers

We use SVMs [11] for estimating dependencies between two bunsetsus because they
have excellent properties. One of them is that combinations of features in an example
are automatically considered with polynomial kernels. Excellent performance has been
reported for many NLP tasks including Japanese dependency parsing, e.g., [9]. Please
see [11] for formal descriptions of SVMs.

3.4 SVM Setting

Polynomial kernels with the degree of 3 are used and the misclassification cost is set to 1.



Using a Partially Annotated Corpus 85

//
// Input: N: the number of bunsetsus in a sentence.
// w[]: an array that keeps a sequence of bunsetsus in the sentence.
//
// Output: outdep[]: an integer array that stores an analysis result,
// i.e., dependencies between the bunsetsus. For example, the
// head of w[j] is outdep[j].
//
// stack: a stack that holds IDs of modifier bunsetsus
// in the sentence. If it is empty, the pop method
// returns EMPTY (−1).
//
// function estimate dependency(j, i, w[]):
// a function that returns non-zero when the j-th
// bunsetsu should modify the i-th bunsetsu.
// Otherwise returns zero.
//
procedure analyze(w[], N, outdep[])
// Push 0 on the stack.
stack.push(0);
// Variable i for a head and j for a modifier.
for (int i = 1; i < N; i++) {

// Pop a value off the stack.
int j = stack.pop();
while (j != EMPTY && (i == N − 1 || estimate dependency(j, i, w))) {

// The j-th bunsetsu modifies the i-th bunsetsu.
outdep[j] = i;
// Pop a value off the stack to update j.
j = stack.pop();

}
if (j != EMPTY)

stack.push(j);
stack.push(i);

}

Fig. 1. Pseudo code of the Stack Dependency Analysis algorithm. Note that “i == N − 1”
means the i-th bunsetsu is the rightmost one in the sentence. Any classifiers can be used in esti-
mate dependency().

4 Dropping POS Tags

First we conducted experiments on dropping POS tags. In corpus building for a parser,
disambiguating POS tags is one of time consuming tasks. In addition, it takes much
time to prepare guidelines for POS tagging. Furthermore, in the case of a Japanese
corpus, we will need more time because we have to deal with word boundaries as well
as POS tags. Therefore, it would be desirable to avoid or reduce POS annotations while
minimizing the loss of performance of the parser.



86 M. Sassano

4.1 Features

To examine the effect of dropping POS tags, we built the following four sets of features
and measured parsing performance with these feature sets.

Standard Features. By the “standard features” here we mean the feature set commonly
used in [4,10,12,9,7]. We employ the features below for each bunsetsu:

1. Rightmost Content Word - major POS, minor POS, conjugation type, conjugation
form, surface form (lexicalized form)

2. Rightmost Function Word - major POS, minor POS, conjugation type, conjugation
form, surface form (lexicalized form)

3. Punctuation (periods, and commas)
4. Open parentheses and close parentheses
5. Location - at the beginning of the sentence or at the end of the sentence.

In addition, features as to the gap between two bunsetsus are also used. They include:
distance, particles, parentheses, and punctuation.

Words-Only Features. If POS tags are not available, we have to use only tokens
(words) as features. In addition, we cannot identify easily content words and function
words in a bunsetsu. Therefore, we here chose the simplest form of feature sets. We con-
structed a bag of words in each bunsetsu and then used them as features. For example,
we assume that there are three words in a bunsetsu: keisan (computational), gengogaku
(linguistics), no (of). In this case we get {keisan, gengogaku, no} as features.

Character N-Gram Features. Next we constructed a feature set without word bound-
aries or POS tags. In this feature set, we can use only the character string of a bunsetsu.
At first glance, such a feature set is silly and it seems that a corpus without POS tags
cannot yield a good parser. It is because no explicit syntactic information is given.

Can we extract good features from a string? We found useful ideas in Sato and
Kawase’s papers [13,14]. They define a similarity score between two sentences in
Japanese and use it for ranking translation examples. Their similarity score is based on
character subsequence matching. Just raw character strings are used and neither mor-
phological analysis, POS tagging, nor parsing is applied. Although no advanced analy-
sis was applied, they had good results enough for translation-aid. In [13], DP matching
based scores are investigated, and in [14], the number of common 2-grams and 3-grams
of characters between two sentences is incorporated into a similarity score.

In our experiments we use blended n-grams which are both 1-grams and 2-grams.
All the 1-grams and 2-grams from the character string of a bunsetsu are extracted as
features. For example, suppose we have a bunsetsu the string of which is a sequence of
three characters: kano-jo-no where ‘-’ represents a boundary between Japanese charac-
ters and this string is actually written with three characters in Japanese. The following
features are extracted from the string: kano, jo, no, $-kano, kano-jo, jo-no, no-$, where
‘$’ represents a bunsetsu boundary.

Combination of “Standard Features” and Character N-grams. The fourth feature
set that we have investigated is a combination of “standard features” and character n-
grams, which are described in the previous subsection.
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4.2 Results and Discussion

Performance of parsers trained with these feature sets on the development set and
the test set is shown in Table 1. For comparison to previous work we use the stan-
dard measures for the Kyoto University Corpus: dependency accuracy and sentence
accuracy. The dependency accuracy is the percentage of correct dependencies and the
sentence accuracy is the percentage of sentences, all the dependencies in which are
correctly analyzed.

Table 1. Performance on Development Set and Test Set

Dev. Set Test Set
Feature Set Dep. Acc. Sent. Acc. Dep. Acc. Sent. Acc.
“Standard” 88.97 46.18 88.72 45.28
Bag of Words (Words Only) 85.22 35.02 84.43 34.95
Character N-Grams 87.79 42.66 87.38 40.84
“Standard” + Character N-Grams 89.72 47.04 89.07 46.89

To our surprise, the parser with the feature set based on character n-grams achieved
an accuracy of 87.38%, which is very good. Although this is worse than that of “stan-
dard feature set,” the performance is still surprising. We considered POS tags were
essential for parsing. Why so successful?

The reason would be explained by the writing system of Japanese and its usage. In
modern Japanese text mainly five different scripts are used: kanji, hiragana, katakana,
Arabic numerals, and Latin letters. Usage of these scripts indicates implicitly the gram-
matical role of a word. For example, kanji is mainly used to represent nouns or stems of
verbs and adjectives. It is never used for particles, which are always written in hiragana.
Essential morphological and syntactic categories are also often indicated in hiragana.
Conjugation forms of verbs and adjectives are represented with one or two hiragana
characters. Syntactic roles of a bunsetsu are often indicated by the rightmost morpheme
in it. Most of such morphemes are endings of verbs or adjectives, or particles. In other
words, the rightmost characters in a bunsetsu are expected to indicate the syntactic role
of a bunsetsu.

Bunsetsu Chunking. After we observed the results of the experiments on parsing, a
new question arose to us. Can we chunk tokens to bunsetsus without POS tags, too? We
carried out additional experiments on bunsetsu chunking. Following [15], we encode
bunsetsu chunking as a tagging problem. In bunsetsu chunking, we use the chunk tag
set {B, I} where B marks the first word of some bunsetsu and words marked I are
inside a bunsetsu. In these experiments on bunsetsu chunking, we estimated the chunk
tag of each word using a SVM from five words and their derived attributes. These five
words are a word to be estimated and its two preceding/following words. Features are
extracted from the followings for each word: word (token) itself, major POS, minor
POS, conjugation type, conjugation form, the leftmost character, the character type of
the leftmost character, the rightmost character, and the character type of the rightmost
character. A character type has a value which indicates a script. It can be either kanji,
hiragana, katakana, Arabic numerals, or Latin letters.
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We conducted experiments with four sets of features. Performance on the develop-
ment set and the test set is shown in Table 2. We used the same performance measures
as in [16]. Precision (p) is defined as the percentage of words correctly marked B among
all the words that the system marked B. Recall (r) is defined as the percentage of words
correctly marked B among all the words that are marked B in the training set. F-measure
is defined as: F-measure = 2pq/(p + q).

Table 2. Bunsetsu Chunking Performance on Development Set and Test Set. Grammatical tags
include POS tags and conjugation types/forms.

Feature Set Dev. Set (F) Test Set (F)
Surface Form + Grammatical Tags 99.58 99.57
Surface Form Only 97.65 97.02
Surface Form + Char. Features (No Grammatical Tags) 99.09 99.07
Mixed 99.64 99.64

The bunsetsu chunker with surface forms only yielded worse performance than did
that with the grammatical tags including major/minor POS and conjugation type/form.
However, the chunker with character features achieved good performance even if gram-
matical tags are not available. In addition, the feature set in which all the available
features are used gives the best among the feature sets we tested. Again we found that
features based on characters compensate performance deterioration caused by no gram-
matical tags.

We have found that both a practical parser and a practical bunsetsu chunker can be
constructed from a corpus which does not have POS information. This means we can
make a parser for Japanese which is less dependent on a morphological analyzer. It
would be useful for improving the modularity of an analysis system for Japanese.

5 Dropping Longer Dependency Annotations

As previous work [4,17] reports, approximately 65% of bunsetsus modify the one on
their immediate right hand side. From this observation, we simplify dependency an-
notations. For each bunsetsu we give either the D tag or O where bunsetsus marked
D modify the one on their immediate right hand side and bunsetsus marked O do not.

Ken-ga kanojo-ni ano hon-wo age-ta.
Ken-subj to her that book-acc gave.

ID 0 1 2 3 4
Head 4 4 3 4 -
{D, O} O O D D -

Fig. 2. Sample sentence with dependency annotations. Bunsetsus marked D modify the one on
their immediate right hand side and bunsetsus marked O do not. An English translation is “Ken
gave that book to her.”
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Figure 2 shows a sample sentence with dependency annotations. This encoding scheme
represents some portion of the dependency structure of a sentence. Annotating under
this scheme is easier than selecting the head of each bunsetsu. We examined usefulness
of this type of partially annotated corpus following the encoding scheme above.

5.1 Using Partial Dependency Annotations

The SDA algorithm, which we employ for experiments, can work with a partially an-
notated corpus to parse a sentence in Japanese2. In training, first we construct a training
set only from dependency annotations between two adjacent bunsetsus. We ignore re-
lations between two bunsetsus which have a longer dependency. After that, we train a
classifier for parsing from the training set. In testing, we use the classifier for both two
adjacent bunsetsus and other pairs of bunsetsus.

5.2 Results and Discussion

Performance on the development set and the test set are shown in Table 3.
The parser trained with the partially annotated corpus yielded good performance.

However, its accuracy is considerably worse than that of the parser with the fully an-
notated corpus. This tendency is clearer in terms of sentence accuracy. To examine
differences in terms of quantity, we plot the learning curves with the two corpora. The
curves are shown in Fig. 3.

Table 3. Performance of parsers trained with the fully annotated corpus and the partially anno-
tated corpus

# of Training Dev. Set Test Set
Training Set Examples Dep. Acc. Sent. Acc. Dep. Acc. Sent. Acc.
Full 98,689 88.97 46.18 88.72 45.28
Adjacent Annotations Only 61,899 85.65 38.00 85.50 38.58

How many sentences which are partially annotated do we need in order to achieve
a given accuracy with some number of fully annotated sentences? It is found that we
need 8 – 17 times the number of sentences when using the partially annotated corpus
instead of the fully annotated one. If hiring linguistic experts for annotation is much
more expensive than hiring non experts, or it is difficult to find a large enough number
of experts, this type of partially annotated corpus could be useful.

The naive approach we examined was not so effective in the light of the number of
sentences to be required. However, we should note that a partially annotated corpus is
easier to maintain the consistency of annotations.

6 Related Work

In this section we briefly review related work from three points of view, i.e., parsing
performance, the use of partially annotated corpora, and the use of character n-grams.

2 Cascaded Chunking Model [9] also can be applicable to use a partially annotated corpus.
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Fig. 3. Learning curves of parsers trained with the partially annotated corpus and the fully anno-
tated corpus

Parsing Performance. Although improvement of the performance of a parser is not
a primary concern in this paper, comparison with other results will indicate to us how
practical the parser is. Table 4 summarizes comparison to related work on parsing accu-
racy. Our parsers demonstrated good performance although they did not outperform the
best. It is notable that the parser which does not use any explicit grammatical tags out-
performs one by [4], which employs a maximum entropy model with full grammatical
features given by a morphological analyzer.

Table 4. Comparison to related work on parsing accuracy. KM02 = Kudo and Matsumoto 2002
[9], KM00 = Kudo and Matsumoto 2000 [12], USI99 = Uchimoto et al. 1999 [4], Seki00 = Sekine
2000 [18], and Sass04 = Sassano 2004 [7].

Algorithm/Model/Features Acc.(%)
This paper Stack Dependency Analysis (cubic SVM) w/ char. n-grams 89.07

Stack Dependency Analysis (cubic SVM) w/ char. n-grams, no POS 87.38
Sass04 Stack Dependency Analysis (cubic SVM) w/ various enriched features 89.56
KM02 Cascaded Chunking (cubic SVM) w/ dynamic features 89.29
KM00 Backward Beam Search (cubic SVM) 89.09
USI99 Backward Beam Search (MaxEnt) 87.14
Seki00 Deterministic Finite State Transducer 77.97

Use of Partially Annotated Corpora. Several papers address the use of partially anno-
tated corpora. Pereira and Schabes [19] proposed an algorithm of inferring a stochastic
context-free grammar from a partially bracketed corpus. Riezler et al. [20] presented
a method of discriminative estimation of an exponential model on LFG parses from
partially labeled data.

Our study differs in that we focus more on avoiding expensive types of annotations
while minimizing the loss of performance of a parser.
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Use of Character N-grams. Character n-grams are often used for POS tagging of un-
known words, unsupervised POS tagging, and measures of string similarity. The num-
ber of common n-grams between two sentences is used for a similarity measure in [14].
This usage is essentially the same as in the spectrum kernel [21], which is one of string
kernels [22].

7 Conclusion

We have explored the use of a partially annotated corpus for building a dependency
parser for Japanese. We have examined two types of partially annotated corpora. It is
found that a parser trained with a corpus that does not have any grammatical tags for
words can demonstrate an accuracy of 87.38%, which is comparable to the current state-
of-the-art accuracy. In contrast, a parser trained with a corpus that has only dependency
annotations for each two adjacent bunsetsus shows moderate performance. Nonethe-
less, it is notable that features based on character n-grams are found very useful for a
dependency parser for Japanese.
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