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In this paper, we present several approaches designed to increase 
the robustness of BYBLOS, the BBN continuous speech recogni- 
tion system. We address the problem of increased degradation in • 
performance when there is mismatch in the characteristics of the 
training and the test microphones. We introduce a new supervised 
adaptafi.~n algor/thm that computes a transformation from the train- 
hag microphone codebook to that of a new microphone, given some 
information about the new microphone. Results are reported for 
the development and evaluation test sets of the 1993 ARPA CSR 
Spoke 6 WSJ task, which consist of speech recorded with two al- • 
temate microphones, a stand-mount and a telephone microphone. 
The proposed algorithm improves the performance of the system • • 
when tested with the stand-mount microphone by reducing the dif- 
ference ha error rate between the high quality training microphone 
and the alternate stand-mount microphone recordings by a factor 
of 2. Several results are presented for the telephone speech leading • 
to important conclusions: a) the performance on telephone speech 
is dramaticaUy improved by simply retraining the system on the 
high-quality training data after they have been bandlimited in the 
telephone bandwith; and b) additional training data recorded with 
the high quality microphone give luther substantial improvement 
ha performance. 

1. I N T R O D U C T I O N  

Interactive speech recognition systems are usually trained 
on substantial amounts of  speech data collected with a high 
quality close-talking microphone. During recognition, these 
systems require the same type of microphone to be used in 
order to achieve their standard accuracy. This is a highly re- 
stdcting condition for practical applications of  speech recog- 
nition systems. One can imagine a situation, where it would 
be desirable to use a different microphone for recognition 
than the one with which the training speech was collected. 
For example, some users may not want to wear a head- 
molmted microphone. Others may not want to pay for a 
high quality microphone. Additionally, many applications 
involve recognition of speech over telephone lines and tele- 
phone sets with high variability in quality and characteristics. 
However, we know that even highly accurate speech recog- 
nition systems perform very poorly when they are tested with 
microphones with different characteristics than the ones that 
they were trained on [1]. 

There is a wide range of approaches in order to compensate 
for this degradation in performance including: 

Retrain the HMMs with data collected with the new 
microphone encountered during the recognition stage, 
a rather expensive approach for real applications, or by 
training on a large number of  microphones in the hope 
that the system will obtain the necessary robustness. 

Use robust signal processing algorithms. 

Develop a feature transformation that maps the alternate 
microphone data to training microphone data. 

Use statistical methods in order to adapt the parameters 
of  the acoustic models. 

In previous work we had discussed the use of  Cepstmm 
Mean Subtraction and the RASTA algorithm as two simple 
signal processing algorithms to compensate the degradation 
caused by an alternate channel [7]. In this pape r, we present 
an approach towards feature mapping by modeling the dif- 
ference between the test and the training microphone, prior 
to reco tion. 
We have developed the Tied-Mixture Normalization Algo- 
rithm, a technique for adaptation to a new microphone based 
on modifying the continuous densities in a tied-mixture 
I-IMM system, using a relatively small amount of stereo 
training speech. This method is presented in detail in Sec- 
tion 2. In Section 3 we describe several experiments on 
a known microphone task and the effect of the adaptation 
method in the performance of the recognition system. 

2. T I E D  M I X T U R E  N O R M A L I Z A T I O N  

In a Tied-Mixture Hidden Markov Model (TM-HMM) sys- 
tem [2, 6], speech is represented using an ensemble of  Gaus- 
sian mixture densities. Every frame of speech is represented 
as a Gaussian nfixture model. Specifically the probability 
density function for an observation conditioned on the H/vIM 
state is expressed as: 
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where zt, st, C, ck, #k, Zk are the observed speech flame at 
time ~, the HMM state at time t, the number of clusters 
of the codebook, and for k-th mixture density, the mixture 
weight, the mean and the covariance matrix respectively. 

The vector quantization (VQ) codebook which consists of 
these mean vectors and covariance matrices, has been de- 
rived from a subset of the training data, therefore it is mostly 
chaaacteristic of the location and distribution of the train- 
ing data and the training microphone in the acoustic space. 
However if the codebook was created with data collected 
with some other microphone, due to the additive and convo- 
lutional effect on speech specific to this new microphone, the 
data would be disl~ibuted differently in the acoustic space 
and the ensemble of means and covariances of the code- 
book would reflect the characteristics of the new micro- 
phone. This is the case of the mismatch in training and 
testing microphone. Without any compensation, we quan- 
tize the test data, recorded with the new microphone, using 
the mixture codebook generated from recordings with the 
training microphone. This inevitably results in a degrada- 
tiun in performance, since the codebook does not model the 
test data. 

We introduce a new algorithm, called Tied Mixture Normal- 
ization (TMN) to compute the codebook transformation from 
the training microphone to the new test microphone. The 
TIV~N algorithm requires a relatively small amount of stereo 
speech adaptation data, recorded with the microphone used 
for training (primary microphone) and the new microphone 
(alternate microphone). Then using the stereo data, we can 
adapt the existing HMM model to work well on the new test 
condition despite the mismatch with the training. 

Figure 1 provides a schematic description of the TMN al- 
gorithm. We assume that we have a tied-mixture densities 
codebook (set of Gaussians distributions), derived from a 
subset of the training data that was recorded with the pri- 
mary microphone. We quantize the adaptation data from 
the primary channel and label each frame of speech with 
the index of the most likely Gaussian distribution in the 
tied-mixture codebook. Since there is an one-to-one corre- 
spondence between data of the primary and alternate channel 
we use the VQ indices of the frames of the data of the pri- 
mary channel to label the corresponding frames of the data 
of the alternate channel. Then for each of the VQ clus- 
ters, from all the frames of the alternate microphone data 
with the same VQ label, we compute the sample mean and 
the sample covariance of the cepstrum vectors that represent 
a possible shift and scaling of this cluster in the acoustic 
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Figure 1: Estimation of alternate microphone Gaussian mix- 
ture densities codebook 

space (Fig. 2). These are the new means and covariances of 
the Gaussian distributions of the new normalized codebook. 
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Figure 2: The mapped Gaussian codebook is a shifted and 
scaled version of the original codebook 

The new Gaussian densities are used in conjunction with 
the mixture weights ck (sometimes called the discrete prob- 
abilities) of the original model to compute the observation 
probability density function as expressed previously. 

One of the possible weaknesses of the TMN algorithm is 
that each cluster of the original codebook is transformed in- 
dependently of all the others. This assumption goes against 
our intuition that a codebook transformation, due to differ- 
ent microphone characteristics, should maintain continuity 
between adjacent codebook clusters and shift all the clus- 
ters in the same general direction. Additionally, a potential 
problem may arise when a particular cluster does not have 
enough samples to compute its statistics. Hence, we may 
not estimate the correct transformation due to insufficient 
or distorted data by modeling each codebook cluster inde- 
pendently. To alleviate this problem we use the following 
approach, originally suggested for speaker adaptation [4]: 
when the centroid of the ith codebook cluster is denoted by 
rn~ and that of the transformed alternate microphone by #i, 
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the deviation vector between these two centroids is 

di = pi - ra/ i = 1, 2, ..., C (1) 

where C is the size of  the codebook. For each cluster cen- 
troid ci, the deviation vectors of all clusters {d~} are summed 
with weighting factors {wik} to produce the shift vector zli: 

C C 

Zli = ( Z  wikd i ) / (~  wlk) (2) 
k=l k=l 

The weighting factor wik is the probability {P(mklra.i)} ~ 
of centroid mk of the original codebook to belong to the 
ith cluster raised to the a power. This weight is a measure 
of vicinity among clusters and the exponentiation controls 
the amount of smoothing between the clusters. Finally, the 
centroid c~ of the ith duster of the transformed codebook is: 

c~ = ci + zSi (3) 

Similarly the covariances of  the clusters of  the new codebook 
a~-e computed as the averaged summations over all sample 
covariances computed in the first implementation of TMN. 

the development and evaluation sets of  Spoke 6 of  the WSJI  
corpus and consists of  stereo recordings with the Sennheiser 
microphone and the Audio-Technica microphone or a tele- 
phone handset over external telephone lines. Adaptation 
data was supplied separately consisting of a total of  800 
stereo recorded utterances from 10 speakers; 400 sentences 
recorded simultaneously with the Sennheiser and the Audio- 
Technica and 400 sentences recorded with the Sennheiser 
and the telephone handset. 

We evaluated the TMN algorithm for each of the two new 
microphones and we present the resuRs on the development 
and the 1993 ARPA WSJ official evaluation test sets. 

3.1. Audio-Technica (AT) Microphone 

We applied the TMN algorithm, as described in Section 2, on 
the 400 adaptation sentences simultaneously recorded with 
the Sennheiser and the Audio-Technica (AT) microphones to 
compute the codebook transformation for the alternate mi- 
crophone. For the evaluation of the system, the comparative 
experiments include: 

3. D E S C R I P T I O N  O F  E X P E R I M E N T S  

In this section we describe the results we obtained applying 
the TMN algorithm for the Spoke 6 of the Wall Street Jour- 
nal (WSJ) speech corpus. This is the known alternate mi- 
crophone 5000-word closed recognition vocabulary, speaker 
independent speech recognition task. It addresses two differ- 
ent alternate microphones, the Audio-Technica 853a, a high 
quality directional, stand-mount microphone, and a standard 
telephone handset ( the AT&T 720 speaker phone). The 
adaptation and test database includes simultaneous record- 
ings of high quality speech using the primary microphone 
(Sennheiser HMD-414 head-mounted microphone with noise 
canceling element) and speech recorded with each of the two 
alternate microphones. 

Recognition on the Sennheiser recorded portion of the 
test data to access the lower bound on the error rate, that 
the baseline system can achieve with matched training 
and testing microphone. 

Recognition on the Audio-Technica recorded p o ~ o n  
of the test data to access the degradation in the perfor- 
mance of the baseline system for the mismatch condi- 
tion when no adaptation is used, other than the standard 
cepstram mean subtraction. 

Recognition on the Audio-Technica recorded portion of 
the test data, using the proposed adaptation scheme to 
determine the improvement on the system performance 
due to the adaptation algorithm. 

All of the experiments that will be described were performed 
using the BBN BYBLOS speech recognition system [3]. The 
front end of the system computes steady-state, first- and 
second-order derivative Mel-frequency cepstral coefficients 
(MFCC) and energy features over an analysis range of 80 to 
6000 Hz. Cepstrum mean subtraction is a standard feature 
of the system used to compensate for the unknown channel 
transfer function. In cepstmm mean subtraction we compute 
the sample mean of the cepstrum vector over the utterance, 
and then subtract this mean from the cepstrum vector at each 
frame. No distinction is made between speech and non- 
speech frames. The acoustic models are trained on 62 hours 
of speech (37000 sentences) from the WSJ0 and WSJ1 cor- 
pora, collected from 37 speakers, with the Sennheiser high 
quality close-talking microphone. The recognition is done 
using trigrarn language models. The test data comes from 

In Table 1, we list the word error rates for these experi- 
ments. The mismatch between the Audio-Technica and the 

System Configuration 
Sennheiser 
AT with no adaptation 
AT with TMN adaptation 

Dev. Test I Eval. Test 
8.3% 7.9% 
10.5% 10.6% 
9.0% 9.6% 

Table 1: Comparison of word error rate (%) for microphone 
adaptation using the Sennheiser or the Audio-Technica mi- 
crophone 

Sennheiser microphone does not cause a serious degrada- 
tion, even when no adaptation is used to account for the 
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channel mismatch. The TMN adaptation reduces the addi- 
tional degradation due to the channel mismatch by about a 
factor of 2 in both test sets. 

3.2.  T e l e p h o n e  S p e e c h  

The telephone handset (TH) differs radically from the other 
two microphones, having the main characteristic of allowing 
a much narrower band of frequencies than the others. There- 
fore, prior to applying any adaptation scheme, we chose to 
bandlimit the Sennheiser training data between 300-3300 Hz, 
to create new bandlimited phonetic word models. This was 
accomplished by retaining the DFT coefficients of the feature 
analysis in the range 300-3300 Hz to compute the MFCC 
coefficients. We bandlimited the stereo adaptation and test 
data in the same way. We applied the TMN algorithm on 
the bandlimited adaptation data to compute the codebook 
transformation for the telephone speech. During testing, the 
data is bandlimited as described, and quanfized using the 
normalized telephone codebook. In evaluating the adapta- 
tion algorithm for the telephone speech we performed the 
same series of experiments as with the Audio-Technica mi- 
crophone. We consider using full bandwidth phonetic mod- 
els as the baseline system and the generation of bandlimited 
phonetic models as part of the scheme for adaptation to the 
telephone speech. In Table 2 we list the word error rates for 
these experiments. The degradation in performance due to 

System Dev. Eval. 
Configuration test test 
Sennheiser 8.9% 8.7% 
TH with no adaptation - 29.5% 
TH with Bandlimiting and TMN 12.7% 12.8% 

Table 2: Comparison of word error rate (%) for microphone 
adaptation using the Sennheiser or the Telephone handset 
microphone 

lected with the primary microphone and comprise the 
WSJ0 and WSJ1 corpora with 12 and 50 hours of 
recorded speech respectively. We trained two sets of 
phonetic models using the WSJ0 corpus and the com- 
bined WSJ0+WSJ1 training data to determine the im- 
pact of additional training data collected with the pri- 
mary microphone. 

Bandlimitedphonetic models: Determine the effect of 
bandlimiting separately from and in combination with 
the TMN algorithm. 

TMN Adaptation: Determine the effect the TMN al- 
gorithm separately from and in combination with of  
bandlimiting. 

The results are shown in Tables 3 and Tables 4. We have 
no clear explanation for the surprising result that additional 
training speech recorded with a high quality microphone im- 
proves the performance of the system on telephone speech. 
However the error rate reduces by a factor of 2 for some con- 
ditions by adding 50 hours of training high quality recorded 
speech. Furthermore bandlimiting is essential for the good 
performance of the system for telephone speech, as in all 
conditions reduces the error rate by a factor of 2. As a con- 
trast, we also computed the error rate of the WSJ0+WSJ1 
bandlimited system on the bandlimited Sennheiser recorded 
data portion of the test and found that to be 11.0%. The latter 
result compared with 8.9% (Table 2) which is the error rate 
of the full bandwidth system on the same speech implies 
that most of the loss in performance between recognizing 
high-quality Sennlaeiser recordings and telephone speech is 
due to the loss of information outside the telephone band- 
width. Using the telephone bandwith, switching from the 
high-quality Sennheiser microphone to the telephone hand- 
set increases the error rate only by a small factor, from 
11.0% to 13.9%. Finally the effect of the TMN algorithm 
is much more significant when telephone bandwidth is not 
used. 

the mismatch between the Sennheiser recorded speech and 
the telephone speech is severe (the error rate goes from 8.9% 
to 29.5%). The combined effect of bandlimiting the data and 
the TMN adaptation reduces the error rate by a factor of 2.3 
bringing the error rate of recognition of telephone speech 
close to that of high quality microphone recordings. 

Since the telephone speech is radically different from speech 
collected with the primary microphone, we conducted some 
more experiments to access the contribution of the bandlim- 
iting process, the adaptation algorithm and the amount of 
training separately in the performance of the system. Specif- 
ically we tested the following conditions: 

• Amount of training data: All training data is col- 

WSJ0-12 hours 
No bandlirniting 
With bandlimiting 

Without TMN With TMN 
41.8% 36.3% 
26.8% 24.0% 

Table 3: Comparative experiments using 12 hours of training 
speech recorded with the primary microphone tested on WSJ 
Spoke 6 development test set telephone recordings. 

4.  C O N C L U S I O N S  

We have presented a supervised adaptation algorithm that 
improves the recognition accuracy of the BYBLOS speech 
recognition system when there is a microphone mismatch 
between training and testing conditions. 
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WSJ0+WSJ1-62 hours Without TMN With TMN 
No bandlimiting ] 31.8% 22.9% 
With bandlimiting 13.9% 12.7% 

Table 4: Comparative experiments using 62 hours of  training 
speech recorded with the primary microphone tested on WSJ 
Spoke 6 development test set telephone recordings. 

Proc. International Conference in Spoken Language Process- 
ing, 1992, pp. 85-88. 

6. X. Huang, K. Lee H. Hon, "On Semi-Continuous Hidden 
Madcov Modeling", Proc. IEEE Int. Conf. Acoustics, Speech 
and Signal Processing, April 1990, paper S13.3. 

7. R. Schwartz, Anastasakos T., F. Kubala, J. Makhoul, L. 
Nguyen, and G. Zavaliagkos, "Comparative Experiments on 
Large Vocabulary Speech Recognition", Proc. ARPA Human 
Language Technology Workshop, March 1993. 

We tested the algorithm on two different alternate micro- 
phones, a high-quality stand-mount microphone and a tele- 
phone handset. TMN adaptation reduces the degradation 
due to mismatch between the Sennheiser and the Audio- 
Technica microphone by a factor of  2. The results on the 
telephone handset were more dramatic as the error rate re- 
duced from 29.3% to 12.5% using bandlimited phonetic 
models and TMN adaptation. We showed that bandlimited 
phonetic models are essential, as most of  the degradation is 
due to the loss of information outside the narrow bandwidth 
of the telephone. The 12.5% word error rate is close to the 
error rate achieved using the primary microphone, which is 
considered the best performance the system can achieve for 
a microphone. However the overall good performance of the 
system of telephone speech may also be an artifact of the 
data collection procedure, as the speech was only sent over 
a local loop, there was no long distance calling for example, 
and the telephone handset did not vary, as the case would 
be in a conventional application. 
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