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A B S T R A C T  

Tied-mixture (or semi-continuous) distributions are an im- 
portant tool for acoustic modeling, used in many high- 
performance speech recognition systems today. This paper 
provides a survey of the work in this area, outlining the 
different options available for tied mixture modeling, intro- 
ducing algorithms for reducing training time, and provid- 
ing experimental results assessing the trade-offs for speaker- 
independent recognition on the Resource Management task. 
Additionally, we describe an extension of tied mixtures to 
segment-level distributions. 

1. I N T R O D U C T I O N  

Tied-mixture (or semi-continuous) distributions have 
rapidly become an important  tool for acoustic model- 
ing in speech recognition since their introduction by 
Huang and Jack [1] and nellegarda and i a h a m o o  [2], 
finding widespread use in a number of high-performance 
recognition systems. Tied mixtures have a number of 
advantageous properties that  have contributed to their 
success. Like discrete, "non-parametric" distributions, 
tied mixtures can model a wide range of distributions 
including those with an "irregular shape," while retain- 
ing the smoothed form characteristic of simpler para- 
metric models. Additionally, because the component 
distributions of the mixtures are shared, the number of 
free parameters is reduced, and tied-mixtures have been 
found to produce robust estimates with relatively small 
amounts of training data. Under the general heading 
of tied mixtures, there are a number of possible choices 
of parameterization that  lead to systems with different 
characteristics. This paper outlines these choices and 
provides a set of controlled experiments assessing trade- 
otis in speaker-independent recognition on the Resource 
Management corpus in the context of the stochastic seg- 
ment model (SSM). In addition, we introduce new vari- 
ations on training algorithms that  reduce computational 
requirements and generalize the tied mixture formalism 
to include segment-level mixtures. 

2. P R E V I O U S  W O R K  

A central problem in the statistical approach to speech 
recognition is finding a good model for the probabil- 

ity of acoustic observations conditioned on the state in 
hidden-Markov models (HMM), or for the case of the 
SSM, conditioned on a region of the model. Some of the 
options that  have been investigated include discrete dis- 
tributions based on vector quantization, as well as Gaus- 
sian, Gaussian mixture and tied-Gaussian mixture dis- 
tributions. In tied-mixture modeling, distributions are 
modeled as a mixture of continuous densities, but unlike 
ordinary, non-tied mixtures, rather than estimating the 
component Gaussian densities separately, each mixture 
is constrained to share the same component densities 
with only the weights differing. The probability density 
of observation vector x conditioned on being in state i 
is thus 

p(x Is = i) = Z wikpk(x). (1) 
k 

Note that  the component Gaussian densities, Pk(x) -'~ 
N(t~k, ~k), are not indexed by the state, i. In this light, 
tied mixtures can be seen as a particular example of the 
general technique of tying to reduce the number of model 
parameters that  must be trained [3]. 

"Tied mixtures" and "semi-continuous HMMs" are used 
in the literature to refer to HMM distributions of the 
form given in Equation (1). The term "semi-continuous 
HMMs" was coined by Huang and Jack, who first pro- 
posed their use in continuous speech recognition [1]. The 
"semi-continuous" terminology highlights the relation- 
ship of this method to discrete and continuous density 
HMMs, where the mixture component means are analo- 
gous to the vector quantization codewords of a discrete 
HMM and the weights to the discrete observation prob- 
abilities, but, as in continuous density HMMs, actual 
quantization with its at tendant  distortion is avoided. 
Bellegarda and Nahamoo independently developed the 
same technique which they termed "tied mixtures" [2]. 
For simplicity, we use only one name in this paper, and 
choose the term tied mixtures, to highlight the relation- 
ship to other types of mixture distributions and because 
our work is based on the SSM, not the HMM. 

Since its introduction, a number of variants of the tied 
mixture model have been explored. First, different as- 
sumptions can be made about feature correlation within 
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individual mixture components. Separate sets of tied 
mixtures have been used for various input features in- 
cluding cepstra, derivatives of cepstra, and power and 
its derivative, where each of these feature sets have been 
treated as independent observation streams. Within an 
observation stream, different assumptions about feature 
correlation have been explored, with some researchers 
currently favoring diagonal covariance matrices [4, 5] and 
others adopting full covariance matrices [6, 7]. 

Second, the issue of parameter initialization can be im- 
portant, since the training algorithm is an iterative hill- 
climbing technique that guarantees convergence only to a 
local optimum. Many researchers initialize their systems 
with parameters estimated from data subsets determined 
by K-means clustering, e.g. [6], although Paul describes 
a different, bootstrapping initialization [4]. Often a large 
number of mixture components are used and, since the 
parameters can be overtrained, contradictory results are 
reported on the benefits of parameter re-estimation. For 
example, while many researchers find it useful to reesti- 
mate all parameters of the mixture models in training, 
BBN reports no benefit for updating means and covari- 
ances after the initialization from clustered data [7]. 

Another variation, embodied in the CMU senone mod- 
els [8], involves tying mixture weights over classes of 
context-dependent models. Their approach to finding re- 
gions of mixture weight tying involves clustering discrete 
observation distributions and mapping these clustered 
distributions to the mixture weights for the associated 
triphone contexts. 

In addition to the work described above, there are re- 
lated methods that have informed the research concern- 
ing tied mixtures. First, mixture modeling does not re- 
quire the use of Gaussian distributions. Good results 
have also been obtained using mixtures of Laplacian dis- 
tributions [9, 10], and presumably other component den- 
sities would perform well too. Ney [11] has found strong 
similarities between radial basis functions and mixture 
densities using Gaussians with diagonal covariances. Re- 
cent work at BBN has explored the use of elliptical basis 
functions which share many properties with tied mix- 
tures of full-covariance Gaussians [12]. Second, the posi- 
tive results achieved by several researchers using non-tied 
mixture systems [13] raise the question of whether tied- 
mixtures have significant performance advantages over 
untied mixtures when there is adequate training data. 
It is possible to strike a compromise and use limited ty- 
ing: for instance the context models of a phone can all 
use the same tied distributions (e.g. [14, 15]). 

Of course, the best choice of model depends on the na- 
ture of the observation vectors and the amount of train- 

ing data. In addition, it is likely that the amount of 
tying in a system can be adjusted across a continuum to 
fit the particular task and amount of training data. flow- 
ever, an assessment of modeling trade-offs for speaker- 
independent recognition is useful for providing insight 
into the various choices, and also because the various 
results in the literature are difficult to compare due to 
differing experimental paradigms. 

3. T R A I N I N G  A L G O R I T H M S  

In this section we first review properties of the SSM 
and then describe the training algorithm used for tied 
mixtures with the SSM. Next, we describe an effi- 
cient method for training context-dependent models, 
and lastly we describe a parallel implementation of the 
trainer that greatly reduces experimentation time. 

3.1. The SSM and "Viterbi" Training 
with Tied Mixtures  

The SSM is characterized by two components: a fam- 
ily of length-dependent distribution functions and a de- 
terministic mapping function that determines the dis- 
tribution for a variable-length observed segment. More 
specifically, in the work presented here, a linear time 
warping function maps each observed frame to one of 
m regions of the segment model. Each region is de- 
scribed by a tied Gaussian mixture distribution, and 
the frames are assumed conditionally independent given 
the length-dependent warping. The conditional inde- 
pendence assumption allows robust estimation of the 
model's statistics and reduces the computation of deter- 
mining a segment's probability, but the potential of the 
segment model is not fully utilized. Under this formu- 
lation, the SSM is similar to a tied-mixture tIMM with 
a phone-length-dependent, constrained state trajectory. 
Thus, many of the experiments reported here translate 
to HMM systems. 

The SSM training algorithm [16] iterates between seg- 
mentation and maximum likelihood parameter estima- 
tion, so that during the parameter estimation phase of 
each iteration, the segmentation of that pass gives a set 
of known phonetic boundaries. Additionally, for a given 
phonetic segmentation, the assignment of observations 
to regions of the model is uniquely determined. SSM 
training is similar to IIMM "Viterbi training", in which 
training data is segmented using the most likely state 
sequence and model parameters are updated using this 
segmentation. Although it is possible to define an SSM 
training algorithm equivalent to the Baum-Welch algo- 
rithm for HMMs, the computation is prohibitive for the 
SSM because of the large effective state space. 
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The use of a constrained segmentation greatly simpli- 
fies parameter estimation in the tied mixture case, since 
there is only one unobserved component, the mixture 
mode. In this case, the parameter estimation step of the 
iterative segmentation/estimation algorithm involves the 
standard iterative expectation-maximization (EM) ap- 
proach to estimating the parameters of a mixture distri- 
bution [17]. In contrast, the full EM algorithm for tied 
mixtures in an HMM handles both the unobserved state 
in the Markov chain and the unobserved mixture mode 
[21. 

3.2. Tied-Mixture  Context  Model ing 

We have investigated two methods for training context- 
dependent models. In the first, weights are used to com- 
bine the probability of different types of context. These 
weights can be chosen by hand [18] or derived automat- 
ically using a deleted-interpolation algorithm [3]. Paul 
evaluated both types of weighting for tied-mixture con- 
text modeling and reported no significant performance 
difference between the two [4]. In our experiments, we 
evaluated just the use of hand-picked weights. 

In the second method, only models of the most de- 
tailed context (in our case triphones) are estimated di- 
rectly from the data  and simpler context models (left, 
right, and context-independent models) are computed 
as marginals of the triphone distributions. The com- 
putation of marginals is negligible since it involves just 
the summing and normalization of mixture weights at 
the end of training. This method reduces the number of 
model updates in training in proportion to the number 
of context types used, although the computation of ob- 
servation probabilities conditioned on the mixture com- 
ponent densities, remains the same. In recognition with 
marginal models, it is still necessary to combine the dif- 
ferent context types, and we use the same hand-picked 
weights as before for this purpose. We compared the 
two training methods and found that  performance on an 
independent test set was essentially the same for both 
methods (marginal training produced 2 fewer errors on 
the Feb89 test set) and the marginal trainer required 
20 to 35% less time, depending on the model size and 
machine memory. 

3.3. Parallel Training 

To reduce computation, our system prunes low probabil- 
ity observations, as in [4], and uses the marginal training 
algorithm described above. However, even with these 
savings, tied-mixture training involves a large computa- 
tion, making experimentation potentially cumbersome. 
When the available computing resources consist of a net- 
work of moderately powerful workstations, as is the case 

at BU, we would like to make use of many machines 
at once to speed training. At the highest level, tied 
mixture training is inherently a sequential process, since 
each pass requires the parameter estimates from the pre- 
vious pass. However, the bulk of the training compu- 
tation involves estimating counts over a database, and 
these counts are all independent of each other. We can 
therefore speed training by letting machines estimate the 
counts for different parts of the database in parallel and 
combine and normalize their results at the end of each 
pass. 

To implement this approach we use a simple "bakery" al- 
gorithm to assign tasks: as each machine becomes free, it 
reads and increments the value of a counter from a com- 
mon location indicating the sentences in the database 
it should work on next. This approach provides load 
balancing, allowing us to make efficient use of machines 
that  may differ in speed. Because of the coarse grain of 
parallelism (one task typically consists of processing 10 
sentences), we can use the relatively simple mechanism 
of file locking for synchronization and mutual  exclusion, 
with no noticeable efficiency penalty. Finally, one pro- 
cessor is distinguished as the "master" processor and is 
assigned to perform the collation and normalization of 
counts at the end of each pass. With this approach, we 
obtain a speedup in training linear with the number of 
machines used, providing a much faster environment for 
experimentation. 

4. M O D E L I N G  & E S T I M A T I O N  
T R A D E - O F F S  

Within the framework of tied Gaussian mixtures, there 
are a number of modeling and training variations that 
have been proposed. In this section, we will describe sev- 
eral experiments that  investigate the performance impli- 
cations of some of these choices. 

4.1. Experimental Paradigm 
The experiments described below were run on the 
Resource Management (RM) corpus using speaker- 
independent, gender-dependent models trained on the 
standard SI-109 data set. The feature vectors used as 
input to the system are computed at 10 millisecond in- 
tervals and consist of 14 cepstral parameters, their first 
differences, and differenced energy (second cepstral dif- 
ferences are not currently used). In recognition, the SSM 
uses an N-best rescoring formalism to reduce computa- 
tion: the BBN BYBLOS system [7] is used to generate 
20 hypotheses per sentence, which are rescored by the 
SSM and combined with the number of phones, num- 
ber of words, and (optionally) the BBN HMM score, to 
rerank the hypotheses. The weights for recombination 
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are estimated on one test set and held fixed for all other 
test sets. Since our previous work has indicated prob- 
lems in weight estimation due to test-set mismatch, we 
have recently introduced a simple time normalization of 
the scores that  effectively reduces the variability of scores 
due to utterance length and leads to more robust perfor- 
mance across test sets. 

Although the weight estimation test set is strictly speak- 
ing part  of the training data, we find that for most ex- 
periments, the bias in this type of testing is small enough 
to allow us to make comparisons between systems when 
both are run on the weight-training set. Accordingly 
some of the experiments reported below are only run on 
the weight training test set. Of course, final evaluation 
of a system must be on an independent test set. 

4 . 2 .  E x p e r i m e n t s  

We conducted several series of experiments to explore 
issues associated with parameter allocation and train- 
ing. The results are compared to a baseline, non-mixture 
SSM that uses full covariance Gaussian distributions. 

The first set of experiments examined the number of 
component densities in the mixture, together with the 
choice of full- or diagonal-covariance matrices for the 
mixture component densities. Although the full covari- 
ance assumption provides a more detailed description 
of the correlation between features, diagonal covariance 
models require substantially less computation and it may 
be possible to obtain very detailed models using a larger 
number of diagonal models. 

In initial experiments with just female speakers, we used 
diagonal covariance Gaussians and compared 200- ver- 
sus 300-density mixture models, exploring the range 
typically reported by other researchers. With context- 
independent models, after several training passes, both 
systems got 6.5% word error on the Feb89 test set. For 
context-dependent models, the 300-density system per- 
formed substantially better, with a 2.8% error rate, com- 
pared with 4.2% for the 200 density system. These re- 
sults compare favorably with the baseline SSM which 
has an error rate on the Feb89 female speakers of 7.7% 
for context-independent models and 4.8% for context- 
dependent models. 

For male speakers, we again tried systems of 200 and 
300 diagonal covariance density systems, obtaining error 
rates of 10.9% and 9.1% for each, respectively. Unlike 
the females, however, this was only slightly better  than 
the result for the baseline SSM, which achieves 9.5%. 
We tried a system of 500 diagonal covariance densities, 
which gave only a small improvement in performance to 
8.8% error. Finally, we tried using full-covariance Gaus- 

sians for the 300 component system and obtained an 
8.0% error rate. The context-dependent performance for 
males using this configuration showed similar improve- 
ment over the non-mixture SSM, with an error rate of 
3.8% for the mixture system compared with 4.7% for the 
baseline. Returning to the females, we found that us- 
ing full-covariance densities gave the same performance 
as diagonal. We have adopted the use of full-covariance 
models for both genders for uniformity, obtaining a com- 
bined word error rate of 3.3% on the Feb89 test set. 
In the RM SI-109 training corpus, the training data for 
males is roughly 2.5 times that  for females, so it is not 
unexpected that  the optimal parameter allocation for 
each may differ slightly. 

Unlike other reported systems which treat  cepstral pa- 
rameters and their derivatives as independent observa- 
tion streams, the BU system models them jointly using 
a single output  stream, which gives better  performance 
than independent streams with a single Gaussian dis- 
tribution (non-mixture system). Presumably, the result 
would also hold for mixtures. 

Since the training is an iterative hill climbing tech- 
nique, initialization can be important  to avoid converg- 
ing to a poor solution. In our system, we choose ini- 
tial models, using one of the two methods described be- 
low. These models are used as input to several iterations 
of context-independent training followed by context- 
dependent training. We add a small padding value to 
the weight estimates in the early training passes to de- 
lay premature parameter convergence. 

We have investigated two methods for choosing the ini- 
tial models. In the first, we cluster the training data 
using the K-means algorithm and then estimate a mean 
and covariance from the data  corresponding to each clus- 
ter. These are then used as the parameters of the compo- 
nent Gaussian densities of the initial mixture. In the sec- 
ond method, we initialize from models trained in a non- 
mixture version of the SSM. The initial densities are cho- 
sen as means of triphone models, with covariances chosen 
from the corresponding context-independent model. For 
each phone in our phone alphabet we iteratively choose 
the triphone model of that  phone with the highest fre- 
quency of occurrence in training. The object of this pro- 
cedure is to a t tempt  to cover the space of phones while 
using robustly estimated models. 

We found that  the K-means initialized models converged 
slower and had significantly worse performance on inde- 
pendent test data  than that  of the second method. Al- 
though it is possible that with a larger padding value 
added to the weight estimates and more training passes, 
the K-means models might have "caught up" with the 
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System 
Baseline SSM 

T.M. SSM 
T.M. SSM + HMM 

Test set 
Oct 89 Sep 92 

4.8 8.5 
3.6 7.3 
3.2 6.1 

Table 1: Word error rate on the Oct89 and Sep92 test 
sets for the baseline non-mixture SSM, the tied-mixture 
SSM alone and the SSM in combination with the BYB- 
LOS HMM system. 

other models, we did not investigate this further. 

The various elements of the mixtures (means, covari- 
ances, and weights) can each be either updated in train- 
ing, or assumed to have fixed values. In our experiments, 
we have consistently found better performance when all 
parameters of the models are updated. 

Table 1 gives the performance on the RM Oct89 and 
Sept92 test set for the baseline SSM, the tied-mixture 
SSM system, and the tied-mixture system combined in 
N-best rescoring with the BBN BYBLOS HMM system. 
The mixture SSM's performance is comparable to results 
reported for many other systems on these sets. We note 
that it may be possible to improve SSM performance by 
incorporating second difference cepstral parameters as 
most HMM systems do. 

5. S E G M E N T A L  M I X T U R E  
M O D E L I N G  

In the version of the SSM described in this paper, in 
which observations are assumed conditionally indepen- 
dent given model regions, the dependence of observations 
over time is modeled implicitly by the assumption of 
time-dependent stationary regions in combination with 
the constrained warping of observations to regions. Be- 
cause segmentation is explicit in this model, in principle 
it is straightforward to model distinct segmental trajec- 
tories over time by using a mixture of such segment-level 
models, and thus take better advantage of the segment 
formalism. The probability of the complete segment of 
observations, Y, given phonetic unit c~ is then 

P(Y I a) = E wk P(Y I ak), 
k 

where each of the densities P(Y]trk) is an SSM. The 
component models could use single Gaussians instead 
of tied mixtures for the region dependent distributions 
and they would remain independent frame models, but 
in training all the observations for a phone would be 
updated jointly, so that the mixture components capture 

distinct trajectories of the observations across a complete 
segment. In practice, each such trajectory is a point in a 
very high-dimensional feature space, and it is necessary 
to reduce the parameter dimension in order to train such 
models. There are several ways to do this. First, we 
can model the trajectories within smaller, subphonetic 
units, as in the microsegment model described in [19, 20]. 
Taking this approach and assuming microsegments are 
independent, the probability for a segment is 

P(Y I°t) = H E wjk P(Yj I oqk), (2) 
j k 

where aik is the k th mixture component of microseg- 
ment j and Yj is the subset of frames in Y that map to 
microsegment j.  Given the SSM's deterministic warp- 
ing and assuming the same number of distributions for 
all mixture components of a given microsegment, the 
extension of the EM algorithm for training mixtures of 
this type is straightforward. The tied-mixture SSM dis- 
cussed in previous sections is a special case of this model, 
in which we restrict each microsegment to have just one 
stationary region and a corresponding mixture distribu- 
tion. 

A different way to reduce the parameter dimension is to 
continue to model the complete trajectory across a seg- 
ment, but assume independence between subsets of the 
features of a frame. This case can be expressed in the 
general form of (2) if we reinterpret the Yj as vectors 
with the same number of frames as the complete seg- 
ment, but for each frame, only a specific subset of the 
original frame's features are used. We can of course com- 
bine these two approaches, and assume independence 
between observations representing feature subsets of dif- 
ferent microsegmental units. There are clearly a large 
number of possible decompositions of the complete seg- 
ment into time and feature subsets, and the correspond- 
ing models for each may have different properties. In 
general, because of constraints of model dimensionality 
and finite training data, we expect a trade-off between 
the ability to model trajectories across time and to model 
the correlation of features within a local time region. 

Although no single model of this form may have all the 
properties we desire, we do not necessarily have to choose 
one to the exclusion of all others. All the models dis- 
cussed here compute probabilities over the same obser- 
vation space, allowing for a straightforward combination 
of different models, once again using the simple mecha- 
nism of non-tied mixtures: 

P(Y I oc) = ~ I ~ w i j k P ( Y j l a i j k ) .  
i j k 

In this case, each of the i components of the leftmost 
summation is some particular realization of the general 

106 



model expressed in Equation (2). Such a mixture can 
combine component models that  individually have ben- 
eficial properties for modeling either time or frequency 
correlation, and the combined model may be able to 
model both aspects well. We note that,  in principle, 
this model can also be extended to larger units, such as 
syllables or words. 

6 .  S U M M A R Y  

This paper provided an overview of work using tied- 
mixture models for speech recognition. We described the 
use of tied mixtures in the SSM as well as several innova- 
tions in the training algorithm. Experiments comparing 
performance for different parameter allocation choices 
using tied-mixtures were presented. The performance 
of the best tied-mixture SSM is comparable to HMM 
systems that use similar input features. Finally, we pre- 
sented a general method we are investigating for model- 
ing segmental dependence with the SSM. 
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