
P R O G R E S S I V E - S E A R C H A L G O R I T H M S F O R L A R G E - V O C A B U L A R Y S P E E C H

R E C O G N I T I O N

Hy Murveit
John Butzberger

Vassilios Digalakis
Mitch Weintraub

S R I In t e rna t iona l

A B S T R A C T

We describe a technique we call Progressive Search
which is useful for developing and implementing speech
recognition systems with high computational requirements. The
scheme iteratively uses more and more complex recognition
schemes, where each iteration constrains the search space of the
next. An algorithm, the Forward-Backward Word-Life
Algorithm, is described. It can generate a word lattice in a
progressive search that would be used as a language model
embedded in a succeeding recognition pass to reduce
computation requirements. We show that speed-ups of more than
an order of magnitude are achievable with only minor costs in
accuracy.

1. INTRODUCTION

Many advanced speech recognition techniques cannot be
developed or used in practical speech recognition systems
because of their extreme computational requirements. Simpler
speech recognition techniques can be used to recognize speech in
reasonable time, but they compromise word recognition
accuracy. In this paper we aim to improve the speed/accuracy
trade-off in speeeh recognition systems using progressive search
techniques.

We define progressive search techniques as those which
can be used to efficiently implement other, computationally
burdensome techniques. They use results of a simple and fast
speech recognition technique to constrain the search space of a
following more accurate but slower running technique. This may
be done iteratively---each progressive search pass uses a
previous pass' constraints to run more ettieiently, and provides
more constraints for subsequent passes.

We will refer to the faster speech recognition techniques
as "earlier-pass techniques", and the slower more accurate
techniques as "advanced techniques." Constraining the costly
advanced techniques in this way can make them run significantly
faster without significant loss in accuracy.

The key notions in progressive search techniques are:

1. An early-pass speech recognition phase builds a
lattice, which contains all the likely recognition unit
strings (e.g. word sequences) given the techniques
used in that recognition pass.

2. A subsequent pass uses this lattice as a grammar that
constrains the search space of an advanced technique
(e.g., only the word sequences contained in a word
lattice of pass p would be considered in pass p+l).

Allowing a sufficient breadth of lattice entries should
allow later passes to recover the correct word sequence, while
ruling out very unlikely sequences, thus achieving high accuracy
and high speed speech recognition.

2. PRIOR ART

There are three important categories of techniques that
aim to solve problems similar to the ones the progressive search
techniques target.

2.1. Fast-Match Techniques

Fast-match techniques[l] are similar to progressive
search in that a coarse match is used to constrain a more
advanced computationally burdensome algorithm. The fast
match, however, simply uses the local speech signal to constrain
the costly advanced technique. Since the advanced techniques
may take advantage of non-local data, the accuracy of a fast-
match is limited and will ultimately limit the overall technique's
performance. Techniques such as progressive search can bnng
more global knowledge to bear when generating constraints, and,
thus, more effectively speed up the cosily techniques while
retaining more of their accuracy.

2.2. N-Best Recognition Techniques

N-best techniques[2] are also similar to progressive
search in that a coarse match is used to constrain a more
computationaUy costly technique. In this case. the coarse
mateher is a complete (simple) speech recognition system. The
output of the N-best system is a list of the top N most likely
sentence hypotheses, which can then be evaluated with the
slower but more accurate techniques.

Progressive search is a generalization of N-best--the
earlier-pass technique produces a graph, instead of a list of N-
best sentences. This generalization is crucial because N-best is
only eomputationally effective for N in the order of tens or
hundreds. A progressive search word graph can effectively
account for orders of magnitude more sentence hypotheses. By
limiting the advanced techniques to just searching the few top N
sentences, N-best is destined to limit the effectiveness of the
advanced techniques and, consequently, the overall system's

87

accuracy. Furthermore, it does not make much sense to use N-
best in an iterative fashion as it does with progressive searches.

2.3. Word Lattices

This technique is the most similar to progressive search.
In I~ath approaches, an initial-pass recognition system can
generate a lattice of word hypotheses. Subsequent passes can
searclh through the lattice to find the best recognition hypothesis.
It should be noted that, although we refer to lattices as word
lattices, they could be used at other linguistic level, such as the
phoneme, syllable, e.t.c.

In the traditional word-lattice approach, the word lattice
is viewed as a scored graph of possible segmentations of the
input speech. The lattice contains information such as the
acoustic match between the input speech and the lattice word, as
well as segmentation information.

The progressive search lattice is not viewed as a scored
graph of possible segmentations of the input speech. Rather, the
lattice is simply viewed as a word-transition grammar which
constrains subsequent recognition passes. Temporal and scoring
information is intentionally left out of the progressive search
lattice.

This is a critical difference. In the traditional word-lattice
approach, many segmentations of the input speech which could
not be generated (or scored well) by the earlier-pass algorithms
will be eliminated for consideration before the advanced
algorithms are used. With progressive-search techniques, these
segmentations are implicit in the grammar and can be recovered
by the advanced techniques in subsequent recognition passes.

3. Building Progressive Search Lattices

The basic step of a progressive search system is using a
speech recognition algorithm to make a lattice which will be
used as a grammar for a more advanced speech recognition
algorithm. This section discusses how these lattices may be
generated. We focus on generating word lattices, though these
same algorithms are easily extended to other levels.

3.1. The Word-Life Algorithm

We implemented the following algorithm to generate a
word-lattice as a by-product of the beam search used in
recognizing a sentence with the DECCIPHER TM system[4-7].

1. For each frame, insert into the table Active(W, t) all
words W active for each time t. Similarly construct
tables End(W, t) and Transitions(W~, W 2, t) for all
words ending at time t, and for all word-to-word
transition at time t.

2. Create a table containing the word-lives used in the
sentence, WordLives(W, T~tan, Tend). A word-life for
word W is defined as a maximum-length interval
(frame Tstar t to Ten d) during which some phone in
word W is active. That is,

W E Act ive (W , t), Tstar t ~ t ~ Ten d

3. Remove word-lives from the table if the word never
ended between T, tan and Te~, that is, remove

WordLives(W, Tsta, ~, Tend) if there is time t between
Tstar t and Te,ut where End(W, 0 is true.

4. Create a finite-state graph whose nodes correspond
to word-lives, whose arcs correspond to word-life
transitions stored in the Transitions table. This finite
state graph, augmented by language model
probabilities, can be used as a grammar for a
subsequent recognition pass in the progressive
search.

This algorithm can be efficiently implemented, even for
large vocabulary recognition systems. That is, the extra work
required to build the "word-life lattice" is minimal compared to
the work required to recognize the large vocabulary with a early-
pass speech recognition algorithm.

This algorithm develops a grammar which contains all
whole-word hypotheses the early-pass speech recognition
algorithm considered. If a word hypothesis was active and the
word was processed by the recognition system until the word
finished (was not pruned before transitioning to another word),
then this word will be generated as a lattice node. Therefore, the
size of the lattice is directly controlled by the recognition
seareh's beam width.

This algorithm, unfortunately, does not scale down
well--it has the property that small lattices may not contain the
best recognition hypotheses. This is because one must use small
beam widths to generate small lattices. However, a small beam
width will likely generate pruning errors.

Because of this deficiency, we have developed the
Forward/Backward Word-Life Algorithm described below.

3.2. Extending the Word-Life Algorithm Using
Forward And Backward Recognition Passes

We wish to generate word lattices that scale down
gracefully. That is, they should have the property that when a
lattice is reduced in size, the most likely hypotheses remain and
the less likely ones are removed. As was discussed, this is not the
ease if lattices are sealed down by reducing the beam search
width.

The forward-backward word-life algorithm achieves this
scaling property. In this new scheme, described below, the size of
the lattice is controlled by the LatticeThresh parameter.

1. A standard beam search recognition pass is done
using the early-pass speech recognition algorithm.
(None of the lattice building steps from Section 3.1
are taken in this forward pass).

2. During this forward pass, whenever a transition
leaving word W is within the beam-search, we record
that probability in ForwardProbability(W, frame).

3. We store the probability of the best scoring
hypothesis from the forward pass, Pbest, and
compute a pruning value
Pprune = Pbest I LatticeThresh.

88

4. We then recognize the same sentence over again
using the same models, but the recognition algorithm
is run backwards 1.

5. The lattice building algorithm described in Section
3.1 is used in this backward pass with the following
exception. During the backward pass, whenever
there is a transition between words W/and Wj at time
t, we compute the overall hypothesis probability Phyp
as the product of ForwardProbability(Wj,t-1), the
language model probability P(H~IWj), and the
Backward pass probability that W i ended at time t
(i.e. the probability of starting word W i at time t and
finishing the sentence). If Phyp < Pprune, then the
backward transition between Wi and Wj at time t is
blocked.

Step 5 above implements a backwards pass pruning
algorithm. This both greatly reduces the time required by the
backwards pass, and adjusts the size of the resultant lattice.

4. Progressive Search Lattices

We have experimented with generating word lattices
where the early-pass recognition technique is a simple version of
the DECIPHER TM speech recognition system, a 4-feature,
discrete density HMM trained to recognize a 5,000 vocabulary
taken from DARPA's WSJ speech corpus. The test set is a
difficult 20-sentence subset of one of the development sets.

We define the number of errors in a single path p in a
lattice, Errors(p), to be the number of insertions, deletions, and
substitutions found when comparing the words inp to a reference
string. We define the number of errors in a word lattice to be the
minimum of Errors(p) for all paths p in the word lattice.

The following tables show the effect adjusting the beam
width and LatticeThresh has on the lattice error rate and on the
lattice size (the number of nodes and arcs in the word lattice).
The grammar used by the has approximately 10,000 nodes and
1,000,000 arcs. The the simple recognition system had a 1-best
word error-rate ranging from 27% (beam width le-52) to 30%
(beam width le-30).

Table 1: Effect Of Pruning On Lattice Size

Beam Width le-30

Lattice # %word
nodes ares Thresh errors error

le-5 60 278 43 10.57

le-9 94 541 34 8.35

le-14 105 1016 30 7.37

le-18 196 1770 29 7.13

le-32 323 5480 23 5.65

le-45 372 : 8626 23 5.65

irff 380 9283 23 5.65

Lattice
Thresh

le-5

le-9

le-14

le-18

le-23

le-32

Lattice
Thresh

le-14

le-18

le-23

Lattice
Thresh

le-14

le-18

le-23

Lattice
Thresh

le-14

le-18

le-23

Lattice
Thresh

le-14

le-18

Beam Width le-34

nodes arcs

e r r o r s

64 299 28

105 613 20

141 1219 16

260 2335 15

354 3993 15

537 9540 15

Beam Width le-38

nodes arcs

errors

186 1338 14

301 2674 13

444 4903 12

Beam Width le-42

nodes ares

errors

197 1407 13

335 2926 11

520 5582 10

Beam Width le-46

nodes arcs

errors

201 1436 13

351 3 0 4 5 ! 10
/

562 5946] 10

Beam Width le-52

nodes arcs

errors

216 1582 12

381 3368 9

%word
error

6.88

4.91

3.93

3.69

3.69

3.69

%word
error

3.44

3.19

2.95

%wd
error

3.19

2.70

2.46

%word
e r r o r

3.19

2.46

2.46

%word
e r r o r

2.95

2.21

The two order of magnitude reduction in lattice size has
a significant impact on HMM decoding time. Table 2 shows the
per-sentence computation time required for the above test set
when cemputed using a Spare2 computer, for both the original
grammar, and word lattice grammars generated using a
LatticeThresh of le-23.

1. Using backwards recognition the sentence is processed
from last frame to first frame with all transitions reversed.

89

Table 2: Lattice Computation Reductions

Forward pass Lattice
Beam Width recognition recognition

time (sees) time (sees)

le-30 167 10

le-34 281 16

le-38 450 24
le-46 906 57

le-52 1749 65

5. Applications of Progressive Search Schemes

Progressive search schemes can be used in the same way
N-best schemes are currently used. The two primary applications
we've had at SKI are:

5.1. Reducing the time required to perform
speech recognition experiments

At SRI, we've been experimenting with large-
vocabulary tied-mixture speech recognition systems. Using a
standard decoding approach, and average decoding times for
recognizing speech with a 5,000-word bigram language model
were 46 times real time. Using lattices generated with beam
widths of le-38 and a LatticeThresh of le-18 we were able to
decode in 5.6 times real time). Further, there was no difference in
recognition accuracy between the original and the lattice-based
system.

5.2. Implementing recognition schemes that
cannot be implemented with a standard
approach.

We have implemented a trigram language model on our
5,000-word recognition system. This would not be feasible using
standard decoding techniques. Typically, continuous-speech
trigram language models are implemented either with fastmatch
technology or, more recently, with N-best schemes. However, it
has been observed at BBN that using an N-best scheme (N=100)
to implement a trigram language model for a 20,000 word
continuous speech recognition system may have significantly
reduced the potential gain from the language model. That is,
about half of the time, correct hypotheses that would have had
better (trigram) recognition scores than the other top-100
sentences were not included in the top 100 sentences generated
by a bigram-based recognition system[8].

We have implemented trigram-based language models
using word-lattices, expanding the finite-state network as
appropriate to unambiguously represent contexts for all trigrams.
We observed that the number of lattice nodes increased by a
factor of 2-3 and the number of lattice arcs increased by a factor
of approximately 4 (using lattices generated with beam widths of
le-38 and a LatticeThresh of le-18). The resulting decoding
times increased approximately by 50% when using trigram
lattices instead of bigram lattices.

A C K N O W L E D G E M E N T S

We gratefully acknowledge support for this work from
DARPA through Office of Naval Research Contract N00014-92-
C-0154. The Government has certain rights in this material. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the government funding agencies.

R E F E R E N C E S

1. Bahl, L.R., de Souza, P.V., Gopalakrishnan, P.S., Nahamoo,
D., and M. Picheny, "A Fast Match for Continuous Speech
Recognition Using Allophonic Models," 19921EEE ICASSP,
pp. 1-17-21.

2. Schwartz, R., Austin, S., Kubala, E, Makhoul, J., Nguyen,
L., Placeway, P., and G. Zavaliagkos, "New uses for the N-
Best Sentence Hypotheses Within the BYBLOS Speech
Recognition System", 1992 IEEE ICASSP, pp. I-1-4.

3. Chow, Y.L., and S. Roukos, "Speech Understanding Using a
Unification Grammar", 1989 IEEE 1CASSP, pp. 727-730

4. H. Murveit, J. Butzberger, and M. Weintraub, "Performance
of SRI 's DECIPHER Speech Recognition System on
DARPA's CSR Task," 1992 DARPA Speech and Natural
Language Workshop Proceedings, pp 410-414

5. Murveit, H., J. Butzberger, and M. Weintraub, "Reduced
Channel Dependence for Speech Recognition," 1992
DARPA Speech and Natura l Language Workshop
Proceedings, pp. 280-284.

6. H. Murveit, J. Butzberger, and M. Weintraub, "Speech
Recognition in SRI's Resource Management and ATIS
Systems," 1991 DARPA Speech and Natural Language
Workshop, pp. 94-100.

7. Cohen, M., H. Murveit, J. Bernstein, P. Price, and M.
Weintraub, "The DECIPHER TM Speech Recognit ion
System," 1990 IEEE ICASSP, pp. 77-80.

8. Schwartz, R., BBN Systems and Technologies, Cambridge
/VIA, Personal Communication

90

