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We describe a technique we call Progressive Search 
which is useful for developing and implementing speech 
recognition systems with high computational requirements. The 
scheme iteratively uses more and more complex recognition 
schemes, where each iteration constrains the search space of the 
next. An algorithm, the Forward-Backward Word-Life 
Algorithm, is described. It can generate a word lattice in a 
progressive search that would be used as a language model 
embedded in a succeeding recognition pass to reduce 
computation requirements. We show that speed-ups of more than 
an order of magnitude are achievable with only minor costs in 
accuracy. 

1. INTRODUCTION 

Many advanced speech recognition techniques cannot be 
developed or used in practical speech recognition systems 
because of their extreme computational requirements. Simpler 
speech recognition techniques can be used to recognize speech in 
reasonable time, but they compromise word recognition 
accuracy. In this paper we aim to improve the speed/accuracy 
trade-off in speeeh recognition systems using progressive search 
techniques. 

We define progressive search techniques as those which 
can be used to efficiently implement other, computationally 
burdensome techniques. They use results of a simple and fast 
speech recognition technique to constrain the search space of a 
following more accurate but slower running technique. This may 
be done iteratively---each progressive search pass uses a 
previous pass' constraints to run more ettieiently, and provides 
more constraints for subsequent passes. 

We will refer to the faster speech recognition techniques 
as "earlier-pass techniques", and the slower more accurate 
techniques as "advanced techniques." Constraining the costly 
advanced techniques in this way can make them run significantly 
faster without significant loss in accuracy. 

The key notions in progressive search techniques are: 

1. An early-pass speech recognition phase builds a 
lattice, which contains all the likely recognition unit 
strings (e.g. word sequences) given the techniques 
used in that recognition pass. 

2. A subsequent pass uses this lattice as a grammar that 
constrains the search space of an advanced technique 
(e.g., only the word sequences contained in a word 
lattice of pass p would be considered in pass p+l). 

Allowing a sufficient breadth of lattice entries should 
allow later passes to recover the correct word sequence, while 
ruling out very unlikely sequences, thus achieving high accuracy 
and high speed speech recognition. 

2. PRIOR ART 

There are three important categories of techniques that 
aim to solve problems similar to the ones the progressive search 
techniques target. 

2.1. Fast-Match Techniques 

Fast-match techniques[l] are similar to progressive 
search in that a coarse match is used to constrain a more 
advanced computationally burdensome algorithm. The fast 
match, however, simply uses the local speech signal to constrain 
the costly advanced technique. Since the advanced techniques 
may take advantage of non-local data, the accuracy of a fast- 
match is limited and will ultimately limit the overall technique's 
performance. Techniques such as progressive search can bnng 
more global knowledge to bear when generating constraints, and, 
thus, more effectively speed up the cosily techniques while 
retaining more of their accuracy. 

2.2. N-Best Recognition Techniques 

N-best techniques[2] are also similar to progressive 
search in that a coarse match is used to constrain a more 
computationaUy costly technique. In this case. the coarse 
mateher is a complete (simple) speech recognition system. The 
output of the N-best system is a list of the top N most likely 
sentence hypotheses, which can then be evaluated with the 
slower but more accurate techniques. 

Progressive search is a generalization of N-best--the 
earlier-pass technique produces a graph, instead of a list of N- 
best sentences. This generalization is crucial because N-best is 
only eomputationally effective for N in the order of tens or 
hundreds. A progressive search word graph can effectively 
account for orders of magnitude more sentence hypotheses. By 
limiting the advanced techniques to just searching the few top N 
sentences, N-best is destined to limit the effectiveness of the 
advanced techniques and, consequently, the overall system's 
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accuracy. Furthermore, it does not make much sense to use N- 
best in an iterative fashion as it does with progressive searches. 

2.3. Word Lattices 

This technique is the most similar to progressive search. 
In I~ath approaches, an initial-pass recognition system can 
generate a lattice of word hypotheses. Subsequent passes can 
searclh through the lattice to find the best recognition hypothesis. 
It should be noted that, although we refer to lattices as word 
lattices, they could be used at other linguistic level, such as the 
phoneme, syllable, e.t.c. 

In the traditional word-lattice approach, the word lattice 
is viewed as a scored graph of possible segmentations of the 
input speech. The lattice contains information such as the 
acoustic match between the input speech and the lattice word, as 
well as segmentation information. 

The progressive search lattice is not viewed as a scored 
graph of possible segmentations of the input speech. Rather, the 
lattice is simply viewed as a word-transition grammar which 
constrains subsequent recognition passes. Temporal and scoring 
information is intentionally left out of the progressive search 
lattice. 

This is a critical difference. In the traditional word-lattice 
approach, many segmentations of the input speech which could 
not be generated (or scored well) by the earlier-pass algorithms 
will be eliminated for consideration before the advanced 
algorithms are used. With progressive-search techniques, these 
segmentations are implicit in the grammar and can be recovered 
by the advanced techniques in subsequent recognition passes. 

3. Building Progressive Search Lattices 

The basic step of a progressive search system is using a 
speech recognition algorithm to make a lattice which will be 
used as a grammar for a more advanced speech recognition 
algorithm. This section discusses how these lattices may be 
generated. We focus on generating word lattices, though these 
same algorithms are easily extended to other levels. 

3.1. The Word-Life Algorithm 

We implemented the following algorithm to generate a 
word-lattice as a by-product of the beam search used in 
recognizing a sentence with the DECCIPHER TM system[4-7]. 

1. For each frame, insert into the table Active(W, t) all 
words W active for each time t. Similarly construct 
tables End(W, t) and Transitions(W~, W 2, t) for all 
words ending at time t, and for all word-to-word 
transition at time t. 

2. Create a table containing the word-lives used in the 
sentence, WordLives(W, T~tan, Tend). A word-life for 
word W is defined as a maximum-length interval 
(frame Tstar t to Ten d) during which some phone in 
word W is active. That is, 

W E Act ive  ( W ,  t), Tstar t ~ t ~ Ten d 

3. Remove word-lives from the table if the word never 
ended between T, tan and Te~, that is, remove 

WordLives(W, Tsta, ~, Tend) if there is time t between 
Tstar t and Te,ut where End(W, 0 is true. 

4. Create a finite-state graph whose nodes correspond 
to word-lives, whose arcs correspond to word-life 
transitions stored in the Transitions table. This finite 
state graph, augmented by language model 
probabilities, can be used as a grammar for a 
subsequent recognition pass in the progressive 
search. 

This algorithm can be efficiently implemented, even for 
large vocabulary recognition systems. That is, the extra work 
required to build the "word-life lattice" is minimal compared to 
the work required to recognize the large vocabulary with a early- 
pass speech recognition algorithm. 

This algorithm develops a grammar which contains all 
whole-word hypotheses the early-pass speech recognition 
algorithm considered. If a word hypothesis was active and the 
word was processed by the recognition system until the word 
finished (was not pruned before transitioning to another word), 
then this word will be generated as a lattice node. Therefore, the 
size of the lattice is directly controlled by the recognition 
seareh's beam width. 

This algorithm, unfortunately, does not scale down 
well--it  has the property that small lattices may not contain the 
best recognition hypotheses. This is because one must use small 
beam widths to generate small lattices. However, a small beam 
width will likely generate pruning errors. 

Because of this deficiency, we have developed the 
Forward/Backward Word-Life Algorithm described below. 

3.2. Extending the Word-Life Algorithm Using 
Forward And Backward Recognition Passes 

We wish to generate word lattices that scale down 
gracefully. That is, they should have the property that when a 
lattice is reduced in size, the most likely hypotheses remain and 
the less likely ones are removed. As was discussed, this is not the 
ease if lattices are sealed down by reducing the beam search 
width. 

The forward-backward word-life algorithm achieves this 
scaling property. In this new scheme, described below, the size of 
the lattice is controlled by the LatticeThresh parameter. 

1. A standard beam search recognition pass is done 
using the early-pass speech recognition algorithm. 
(None of the lattice building steps from Section 3.1 
are taken in this forward pass). 

2. During this forward pass, whenever a transition 
leaving word W is within the beam-search, we record 
that probability in ForwardProbability(W, frame). 

3. We store the probability of the best scoring 
hypothesis from the forward pass, Pbest, and 
compute a pruning value 
Pprune = Pbest I LatticeThresh. 
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4. We then recognize the same sentence over again 
using the same models, but the recognition algorithm 
is run backwards 1. 

5. The lattice building algorithm described in Section 
3.1 is used in this backward pass with the following 
exception. During the backward pass, whenever 
there is a transition between words W/and Wj at time 
t, we compute the overall hypothesis probability Phyp 
as the product of ForwardProbability(Wj,t-1), the 
language model probability P(H~IWj), and the 
Backward pass probability that W i ended at time t 
(i.e. the probability of starting word W i at time t and 
finishing the sentence). If Phyp < Pprune, then the 
backward transition between Wi and Wj at time t is 
blocked. 

Step 5 above implements a backwards pass pruning 
algorithm. This both greatly reduces the time required by the 
backwards pass, and adjusts the size of the resultant lattice. 

4. Progressive Search Lattices 

We have experimented with generating word lattices 
where the early-pass recognition technique is a simple version of 
the DECIPHER TM speech recognition system, a 4-feature, 
discrete density HMM trained to recognize a 5,000 vocabulary 
taken from DARPA's WSJ speech corpus. The test set is a 
difficult 20-sentence subset of one of the development sets. 

We define the number of errors in a single path p in a 
lattice, Errors(p), to be the number of insertions, deletions, and 
substitutions found when comparing the words inp to a reference 
string. We define the number of errors in a word lattice to be the 
minimum of Errors(p) for all paths p in the word lattice. 

The following tables show the effect adjusting the beam 
width and LatticeThresh has on the lattice error rate and on the 
lattice size (the number of nodes and arcs in the word lattice). 
The grammar used by the has approximately 10,000 nodes and 
1,000,000 arcs. The the simple recognition system had a 1-best 
word error-rate ranging from 27% (beam width le-52) to 30% 
(beam width le-30). 

Table 1: Effect Of Pruning On Lattice Size 

Beam Width le-30 

Lattice # %word 
nodes ares Thresh errors error 

le-5 60 278 43 10.57 

le-9 94 541 34 8.35 

le-14 105 1016 30 7.37 

le-18 196 1770 29 7.13 

le-32 323 5480 23 5.65 

le-45 372 : 8626 23 5.65 

irff 380 9283 23 5.65 

Lattice 
Thresh 

le-5 

le-9 

le-14 

le-18 

le-23 

le-32 

Lattice 
Thresh 

le-14 

le-18 

le-23 

Lattice 
Thresh 

le-14 

le-18 

le-23 

Lattice 
Thresh 

le-14 

le-18 

le-23 

Lattice 
Thresh 

le-14 

le-18 

Beam Width le-34 

# 
nodes arcs 

e r r o r s  

64 299 28 

105 613 20 

141 1219 16 

260 2335 15 

354 3993 15 

537 9540 15 

Beam Width le-38 

# 
nodes arcs 

errors 

186 1338 14 

301 2674 13 

444 4903 12 

Beam Width le-42 

# 
nodes ares 

errors 

197 1407 13 

335 2926 11 

520 5582 10 

Beam Width le-46 

# 
nodes arcs 

errors 

201 1436 13 

351 3 0 4 5 !  10 
/ 

562 5946 ] 10 

Beam Width le-52 

# 
nodes arcs 

errors 

216 1582 12 

381 3368 9 

%word 
error 

6.88 

4.91 

3.93 

3.69 

3.69 

3.69 

%word 
error 

3.44 

3.19 

2.95 

%wd 
error 

3.19 

2.70 

2.46 

%word 
e r r o r  

3.19 

2.46 

2.46 

%word 
e r r o r  

2.95 

2.21 

The two order of magnitude reduction in lattice size has 
a significant impact on HMM decoding time. Table 2 shows the 
per-sentence computation time required for the above test set 
when cemputed using a Spare2 computer, for both the original 
grammar, and word lattice grammars generated using a 
LatticeThresh of le-23. 

1. Using backwards recognition the sentence is processed 
from last frame to first frame with all transitions reversed. 
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Table 2: Lattice Computation Reductions 

Forward pass Lattice 
Beam Width recognition recognition 

time (sees) time (sees) 

le-30 167 10 

le-34 281 16 

le-38 450 24 
le-46 906 57 

le-52 1749 65 

5. Applications of Progressive Search Schemes 

Progressive search schemes can be used in the same way 
N-best schemes are currently used. The two primary applications 
we've had at SKI are: 

5.1. Reducing the time required to perform 
speech recognition experiments 

At SRI, we've been experimenting with large- 
vocabulary tied-mixture speech recognition systems. Using a 
standard decoding approach, and average decoding times for 
recognizing speech with a 5,000-word bigram language model 
were 46 times real time. Using lattices generated with beam 
widths of le-38 and a LatticeThresh of le-18 we were able to 
decode in 5.6 times real time). Further, there was no difference in 
recognition accuracy between the original and the lattice-based 
system. 

5.2. Implementing recognition schemes that 
cannot be implemented with a standard 
approach. 

We have implemented a trigram language model on our 
5,000-word recognition system. This would not be feasible using 
standard decoding techniques. Typically, continuous-speech 
trigram language models are implemented either with fastmatch 
technology or, more recently, with N-best schemes. However, it 
has been observed at BBN that using an N-best scheme (N=100) 
to implement a trigram language model for a 20,000 word 
continuous speech recognition system may have significantly 
reduced the potential gain from the language model. That is, 
about half of the time, correct hypotheses that would have had 
better (trigram) recognition scores than the other top-100 
sentences were not included in the top 100 sentences generated 
by a bigram-based recognition system[8]. 

We have implemented trigram-based language models 
using word-lattices, expanding the finite-state network as 
appropriate to unambiguously represent contexts for all trigrams. 
We observed that the number of lattice nodes increased by a 
factor of 2-3 and the number of lattice arcs increased by a factor 
of approximately 4 (using lattices generated with beam widths of 
le-38 and a LatticeThresh of le-18). The resulting decoding 
times increased approximately by 50% when using trigram 
lattices instead of bigram lattices. 
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