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A B S T R A C T  

This paper describes several key experiments in large vocabu- 
l a y  speech recognition. We demonstrate that, counter to our 
intuitions, given a fixed amount of training speech, the num- 
ber of training speakers has little effect on the accuracy. We 
show how much speech is needed for speaker-independent (SI) 
recognition in order to achieve the same performance as speaker- 
dependent (SD) recognition. We demonstrate that, though the 
N-Best Paradigm works quite well up to vocabularies of 5,000 
words, it begins to break down with 20,000 words and long sen- 
tences. We compare the performance of two feature preprocess- 
ing algorithms for microphone independence and we describe a 
new microphone adaptation algorithm based on selection among 
several codebook transformations. 

1. I N T R O D U C T I O N  

During the past year, the DARPA program has graduated from 
medium vocabulary recognition problems like Resource Manage- 
ment and ATIS into the large vocabulary dictation of Wall Street 
Joumal (WSJ) texts. With this move comes some changes in com- 
putational requirements and the possibility that the algorithms that 
worked best on smaller vocabularies would not be the same ones 
that work best on larger vocabularies. We found that, while the 
required computation certainly increased, the programs that we 
had developed on the smaller problems still worked efficiently 
enough on the larger problems. However, while the BYBLOS 
system achieved the lowest word error rate obtained by any site 
for recognition of ATIS speech, the error rates for the WSJ tests 
were the second lowest of the six sites that tested their systems on 
this corpus. The reader will find more details on the evaluation 
results in [1]. 

In the sections that follow, we will describe the BBN BYBLOS 
system briefly. Then we enumerate several modifications to the 
BBN BYBLOS system. Following this we will describe four 
different experiments that we performed and the results obtained. 

2. BYBLOS 

All of the experiments that will be described were performed 
using the BBN BYBLOS speech recognition system. This sys- 
tem introduced an effective strategy for using context-dependent 
phonetic hidden Markov models (HMM) and demonstrated their 
feasibility for large vocabulary, continuous speech applications 
[2]. Over the years, the core algorithms have been refined with 

improved algorithms for estimating robust speech models and us- 
ing them effectively to search for the most likely sentence. 

The system can be trained using the pooled speech of many 
speakers or by training separate models for each speaker and then 
averaging the resulting models. 

The system can be constrained by any finite-state language 
model, which includes probabilisfic n-gram models as a special 
case. Nonfinite-state models can also be used in a post process 
through the N-best Paradigm. 

The BYBLOS speech recognition system uses a multi-pass 
search strategy designed to use progressively more detailed mod- 
els on a correspondingly reduced search space. It produces an 
ordered list of the N top-scoring hypotheses which is then re- 
ordered by several detailed knowledge sources. 

1. A forward pass with a bigram grammar and discrete HMM 
models saves the top word-ending scores and times [6]. 

2. A fast time-synchronous backward pass produces an inital 
N-best list using the Word-Dependent N-best algorithm[5]. 

3. Each of the N hypotheses is rescored with cross-word- 
boundary triphones and semi-continuous density HMMs. 

4. The N-best list can be rescored with a trigram grammar (or 
any other language model). 

Each utterance is decoded with each gender-dependent model. 
For each utterance, the N-best list with the highest top-1 hypoth- 
esis score is chosen. The top choice in the final list constitutes the 
speech recognition results reported below. This N-best strategy 
[3, 4] permits the use of otherwise computationally prohibitive 
models by greatly reducing the search space to a few (N=20-100) 
word sequences. It has enabled us to use cross-word-bonndary 
triphone models and trigram language models with ease. 

During most of the development of the system we used the 
1000-Word RM cospus [8] for testing. More recently, the system 
has been used for recognizing spontaneous speech from the ATIS 
corpus, which contains many spontaneous speech effects, such as 
partial words, nonspeech sounds, extraneous.noises, false starts, 
etc. The vocabulary of the ATIS domain was about twice that 
of the RM corpus. So there were no significant new problems 
having to do with memory and computation. 

2.1. Wall Street Journal  Corpus 

The Wall Street Joumal (WSJ) pilot CSR corpus contains training 
speech read from processed versions of the Wall Street Journal. 
The vocabulary is inherently unlimited. The text of 35M words 
available for language modeling contains about 160,000 different 
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words. ?~e data used for speech recognition training and test 
was constrained to come from sentences that contained only the 
64,000 most frequent words. 

There are two speech training sets. One has 600 sentences 
from each of 12 speakers (6 male and 6 female). The other has 
a total of 7,200 sentences from 84 different speakers. The total 
vocabulary in the training set is about 13,000 words. There are 
two different standard bigram language models that are typically 
used - oue with 5,000 (SK) words and one with 20,000 (20K) 
words. 'Hie 5K language models were designed to include aU of 
the words in the 5K test set. The 20K language models contain 
the most likely 20K words in the corpus. As a result, about 2% of 
the words in the test speech are not in this vocabulary. In addition, 
there are two variants depending on whether the punctuation is 
read out loud: verbalized punctuation (VP) and nonverbalized 
punctuation (NVP). 

Most of the test speech is read. In addition to test sets for 
5K-word and 20K-word vocabularies, there is also spontaneous 
speech collected from joumalists who were instructed to dictate 
a newspaper story. 

3. I M P R O V E M E N T S  IN A C C U R A C Y  

In this section, we describe several modifications that each re- 
salted in an improvement in accuracy on the WSJ corpus. In 
all cases, we used the same training set (SI-12) and the standard 
bigram grammars. The initial word error rate when testing on 
a SK-word closed-vocabulasy VP language model was 12.0%~ 
Each of these methods is described below. 

3.1. Silence Detection 

Even though the training speech is read from prompts, there are 
often short pauses either due to natural sentential phrasing, read- 
ing disfiuency, or nmning out of breath on long sentences. Nat- 
urally, the orthographic transcription that is provided with each 
utterance does not indicate these pauses. But it would be incor- 
rect to model the speech as ff there were no pauses. In particular, 
phonetic models that take into account acoustic coarticulation be- 
tween words (cross-word models) do not function properly ff they 
are confounded by unmarked pauses between words. 

We developed a two-stage training process to deal with this 
problem. First we train HMM models assuming there are no 
pauses between words. Then we mark the missing silence lo- 
cathms automatically by running the recognizer on the training 
data constrained to the correct word sequence, but allowing op- 
tional silence between words. Then we retrain the model using 
the output of the recognizer as corrected transcriptions. 

We find that this two-stage process increases the gain due to 
using cross-word phonetic models. The word error was reduced 
by 0.6% which is about a 5% reduction in word error. 

3.2. Phonetic Dictionary 

Two distinct phonetic dictionaries were supplied for training and 
testing purposes, We found the dictionaries for training and test- 
ing were not consistent. That is, there were many words that 
appeared in both dictionaries, but had different spellings. We 
also modified the speRings of several words that we judged to be 
wrong. However, after correcting all of these mistakes, including 
the inconsistency between the training and testing dictionary, the 
improvement was only 0.2%, which is statistically insignificant. 

One inadequacy of the supplied dictionary was that it did not 
contain any schwa phonemes to represent r edue~  vowels. It 
did, on the other hand, distinguish three levels of stress. But 
we traditionally remove the stress distinction before using the 
dictionary. So we translated all of the lowest stress level of the 
UH and IH phonemes into AX and IX (We will use Random 
House symbols here). This resulted in another 0.2% reduction in 
word error. 

Another consideration in designing a phonetic dictionary is the 
tradeoff between the number of parameters and the accuracy of 
the estimates. Finer phonetic distinctions in the dictionary can 
result in improved modeling, but they also increase the need for 
training data. Lori Lame1 had previously repoRed [7] that the 
error rate on the RM corpus was reduced when the number of 
phonemes was reduced, ignoring some phonetic distinctions. In 
particular, she suggested replacing some diphthongs, affricates, 
and syllabic consonants with two-vowel sequences. She also 
suggested removing some phonetic distinctions. The fist of s u b  
stitutions is listed in Table 1 below. 

Original 
AY 
OY 
OW 
CH 
IX 
UN 
UM 
UL 
AE 

New 
AH-EE 
AWH-EE 
AH-OOH 
T-SH 
AX 
AX-N 
AX-M 
AX-L 
EY 

OO UH 
ZH Z 
AH AW 

Table 1: These phonemes were removed by mapping them to 
other phonemes or sequences. 

When we made these substitutions, we found that the word 
error rate decreased by 0.2% again. While this change is not 
significant, the size of the system was subtanfially decreased due 
to the smaller number of triphone models. 

Finally, we reinstated the last tluee phonemes in the list, since 
we were uncomfortable with removing too many distinctions. 
Again, the word error rate was reduced by another 0.2%. 

While each of the above improvements was miniscul©, the total 
improvement from changes to the phonetic dictionary was 0.8%, 
which is about a 7% reduction in word error. At the same time, 
we now only have a single phonetic dictionary to keep track of, 
and the system is substantially smaller. 

3.3. Weight Optimi~ation 
After making several changes to the system, we reoptimized the 
relative weights for the acoustic and language models, as weU as 
the word and phoneme insertion penalties. These weights were 
optimized on the development test set automaticaUy using the 
N-best lists [4]. Optimization of these weights reduced the word 
error by 0.4%. 

3.4. Cepstral  Mean Removal 

One of the areas of interest is recognition when the microphone 
for the test speech is unknown. We tried a few different methods 
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to solve this problem, which will be described in a later section. 
However, during the course of trying different methods, we found 
that the simplest of all methods, which is to subtract the mean 
cepstmm from every frame's cepstrum vector actually resulted in 
a very small improvement in recognition accuracy even when the 
microphone was the same for training and test. This resulted in 
a 0.3% reduction in word error rate. 

3.5. 3-Way Gende r  Selection 

It has become a standard technique to model the speech of male 
and female speakers separately, since the speech of males and 
females is so different. This typically results in a 10% reduction 
in error relative to using a single speaker-independent model. 
However, we have found that there are occassional speakers who 
do not match one model much better than the other. In fact, 
there are some very rare sentences in which the model of the 
wrong gender is chosen. Therefore we experimented with using 
a third "gender" model that is the simple gender-independent 
model, derived by averaging the male and the female models. 
During recognition, we find the answer independently using each 
of these models and then we choose the answer that has the 
highest overall score. We find that about one out of 10 speakers 
will typically score better using the gender-independent model 
than the model for the correct gender. In addition, with this third 
model, we no longer ever see sentences that are misclassitied as 
belonging to the wrong gender. The reduction error associated 
with using a third gender model was 0.4%. 

3.6. Improvement Summary 

The methods we used and the corresponding improvements are 
summarized in Table 2 below. 

Improvement Method 
0.6% 
0.8 

0.2 
0.2 
0.2 
0.2 

0.4 
0.3 
0.4 

silence-detection 
improvements to phonetic dictionary 

consistent dictionary 
addition of schwa 
reduced phoneme set 
less reduced phoneme set 

Automatic optimization of weights 
Removing mean cepstrum, and 
3-way gender selection 

2.5% Total improvement 

Table 2: Absolute reduction in word error due to each improve- 
ment. 

All the gains shown were additive, resulting in a total of 2.5% 
reduction in absolute word error, or about a 20% relative change. 

4. C O M P A R A T I V E  E X P E R I M E N T S  

In this section we describe several controlled experiments com- 
paring the accuracy when using different training and recognition 
scenarios, and different algorithms. 

4.1. Effect of Number of Training Speakers 

It has always been assumed that for speaker independent recogni- 
tion to work well, we must train the system on as many speakers 
as possible. We reported in [9] that when we trained a speaker- 
independent system on 600 sentences from each of 12 different 

speakers (a total of 7,200 sentences), the word error rate was 
only slightly higher than when the system was trained on a total 
of 3,990 sentences from 109 speakers. These experiments were 
performed on the 1000-word Resource Management (RM) Cor- 
pus. The results were dit~ficult to interpret because the number  
of sentences were not exactly the same for both conditions, the 
data for the 109 speakers covered a larger variety of phonetic 
contexts than the data for the 12 speakers, and the 12 speakers 
were carefully selected to cover the various dialectic regions of 
the country (as well as is possible with only 7 male and 5 female 
speakers). 

For the first time we were able to perform a well-controlled 
expefirnent to answer this question on the large vocabulary WSJ 
corpus. The amount of training data is the same in both cases. In 
one condition, there are 12 speakers (6 male and 6 female) with 
600 sentences each. In the other case, there are 84 speakers with a 
total of 7,200 sentences. In both cases, all of the sentence scripts 
are unique. "nre speakers in both sets were selected randomly, 
without any effort to cover the general population. In both cases, 
we used separate models for male and female speakers. 

In a second experiment, we repeated another experiment that 
had previously been run only on the RM corpus. Instead of 
pooling all of the training data (for one gender) and estimating 
a single model, we trained on the speech of each speaker sep- 
arately, and then combined all of the resulting models simply 
by averaging the densities of the resulting models. We had pre- 
viously found that this method worked well when each speaker 
had a substantial amount of training speech (enough to estimate a 
speaker-dependent model), and all of the speakers had the same 
sentences in their training. But in this experiment, we also com- 
puted separate speaker-dependent models for the speakers with 
50-100 utterances, and each speaker had different sentences. 

The resd ts  of these comparisons are shown in Table 3. 

Training Pooled Averaged 
SL84 11.2 12.3 
SL12 11.6 12.0 

Table 3: Word error rate for few (SI-12) vs many (SL84) speak- 
ers, and for a single (Pooled) model vs separately trained (Aver- 
aged) models. The experiments were run on the 5K VP closed- 
vocabulary development test set of the WSJ pilot corpus using 
the standard bigram grammar. 

We found, to our surprise, that there is almost no advantage for 
having more speakers ff the total amount of speech is fixed. We 
also that the performance when we trained the system separately 
on each of the speakers and averaged the resulting models, was 
quite similar to that when we trained jointly on all of the speakers 
together. This result was particularly surprising for the SI-84 
case, in which each speaker had very little training data. 

More recently we ran this experiment again on the 5K NVP 
closed-vocabulary development test set with an improved system, 
and found that the results for a pooled model from 84 speakers 
were almost identical to those with an averaged model from 12 
speakers (10.9% vs 11.3 

Both of these results have important implications for practical 
speech corpus collection. There are many advantages for having 
a small number of speakers. We call this paradigm the Sl-few 
paradigm as opposed to the SI-many paradigm. There are also 
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practicai advantages for being able to train the models for the 
different speakers separately. 

1. It is much more efficient to collect the data; there are far 
fewer people to recruit and train. 

2. In SI-few training, we get speaker-dependent models for the 
training speakers for free. 

3. When new speakers are added to the training data, we just 
develop the models for the new speakers and average their 
models in with the model for all of the speakers, without 
having to retrain on all of the speech from scratch. 

4. The computation for the average model method is easy to 
parallelize across several machines. 

5. Perhaps the most compelling argument for SI-few training 
is that having speaker-specific models available for each of 
the training speakers allows us to experiment with speaker 
adaptation techniques that would not be possible otherwise. 

Our conclusion is that there is little evidence that having a very 
large number of speakers is significantly better than a relatively 
small number of speakers - if the total amount of Raining is 
kept the same. Actually, if we equalize the cost of collecting 
data under the SI-few and SI-many conditions, then the SI-few 
paradigm would likely yield better recognition performance than 
the SI-many paradigm. 

4.2. Speaker-Dependent vs Speaker-Independent 

It is well-known that, for the same amount of training speech, 
a system trained on many speakers and tested on new speak- 
ers (i.e. speaker-independent recognition) results in significantly 
worse performance than when the system is trained on the speaker 
who will use it. However, it is important to know what the trade- 
off is between the amount of speech and whether the system is 
speaker-independent or not, since for many applications, it would 
be practical to collect a substantial amount of speech from each 
user. 

Below we compare the recognition error rate between SI and 
SD recognition. The SI models were trained with 7,200 sen- 
tences, while the SD were trained with only 600 sentences, each. 
Two different sets of test speakers were used for the SI model, 
while for the SD case, the test and training speakers were the 
same, but we compare two different test sets from these same 
speakers. These experiments were performed using the 5K-word 
N'VP test sets, using the standard bigram language models and 
also rescofing using a trigram language model. 

Training SI-12 SD-1 
Test (7200) (600) 
Dev. Test 10.9 7.9 
Nov. 92 Eva1 8.7 8.2 

Table 4: Speaker-dependent vs Speaker-independent training 

As can be seen, the word error rate for the SI model is only 
somewhat higher than for the SD model, depending on which SI 
test set is used. We estimate that, on the average, if  the amount of 
training speech for the SI model were 15-20 times that used for 
the SD model, then the average word error rate would be about 
the same. 

One might mistakenly conclude from the above results that 
if there is a large amount of speaker-independent training avail- 
able, there is no longer any reason to consider speaker-dependent 
recognition. However, it is extremely important to remember 
that these results only hold for the case where all of the speakers 
are native speakers of English. We have previously shown [10] 
that when the test speakers are not native speakers, the error rate 
goes up by an astonishing factor of eight! In this case, we must 
clearly use either a speaker-dependent or speaker-adaptive model 
in order to obtain usable performance. Of course each speaker 
can use the type of model that is best for him. 

4.3. N-Best Paradigm 

In 1989 we developed the N-best Paradigm method for combining 
knowledge sources mainly as a way to integrate speech recogni- 
tion with natural language processing. Since then, we have found 
it to be useful for applying other expensive speech knowledge 
sources as well, such as cross-word models, tied-mixture densi- 
ties, and trigram language models. The basic idea is that we first 
find the top N sentence hypotheses using a less expensive model, 
such as a bigram grarnmar with discrete densities, and within- 
word context models. And then we rescore each of the resulting 
hypotheses with the more complex models, and finally we pick 
the highest scoring sentence as the answer. 

One might expect that there would be a severe problem with 
this approach if the latter knowledge sources were much more 
powerful than those used in the initial N-best pass. However, we 
have found that this is not the case, as long as the initial error 
rate is not too high and the sentences are not too long. 

In tests on the ATIS corpus (class A+D sentences only), we 
obtained a 40% reduction in word error rate by rescoring the N- 
best sentence hypotheses with a trigram language model. In this 
test, we used a value of 100 for N. ' Ibis shows that the tfigram 
language model is much more powerful than the bigram language 
model used in finding the N-best sentences. But there were many 
utterances for which the correct answer was not found within the 
N-best hypotheses. It was important to determine whether the 
system was being hampered by restricting its consideration to 
the N-best sentences before using the trigram language model. 
Therefore, we artificially added the correct sentence to the N- 
best list before rescoring with the trigram model. We found that 
the word error only decreased by another 7%. We must remember 
that in this experiment, the performance with the correct sentence 
added was an optimistic estimate, since we did not add all of 
the other sentence hypotheses that scored worse than the 100th 
hypothesis, but better than the correct answer. 

The question is whether this result would hold up when the vo- 
cabulary is much larger, thereby increasing the word error rate, 
and the sentences are much longer, thereby increasing the num- 
ber of possible permutations of word sequences exponentially. 
In experiments with the 5K-word WSJ sentences with word er- 
ror rates around 14% during the initial pass, and with average 
sentence lengths around 18 words we still found little loss. 

However, on the 20K-word development test set, we observed 
a significant loss for trigram rescoring, but not for other less pow- 
erful knowledge sources. The experiment was limited to those 
sentences that contained only words that were inside the recogni- 
tion vocabulary. (It is impossible to correct errors due to words 
that are outside of the recognition vocabulary.) This included 
about 80% of the development test set. The results are shown 
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below in Table 5 for the actual N-best list and with the correct 
utterance artificially inserted into the list. 

Knowledge Actual 
Used N-best 
Initial N-best 19.5 
Cross-word rescoring 16.1 
Trigram rescoring 13.9 

With Correct 
Answer Added 

19.5 
15.6 
10.2 

Table 5: Effect of N-best Paradigm on 20K-word recognition 
with trigram Language model rescoring 

While this result is a lower bound on the error rate, it indicates 
that much of the potential gain for using the trigram language 
model is being lost due to the correct answer not being included in 
the N-best list. As a result we are modifying the N-best rescoring 
to alleviate this problem. 

5. MICROPHONE INDEPENDENCE 

DARPA has placed a high priority on microphone independence. 
That is, if a new user plugs in any microphone (e.g., a lapel 
microphone or a telephone) without informing the system of the 
change, the recognition system is expected to work as well as it 
does with the microphone that was used for training. 

We considered two different types of methods to alleviate this 
problem. The first attempts to use features that are independent of 
the microphone, while the second attempts to adapt the system or 
the input to observed differences in the incoming signal in order 
to make the speech models match better. 

5.1. Cepstrum Preprocessing 

The RASTA algorithm [11] smoothes the cepstral vector with a 
five-frame averaging window, and also removes the effect of a 
slowly varying multiplicative filter, by subtracting an estimate 
of the average cepstrum. This average is estimated with an ex- 
ponential filter with a constant of 0.97, which results in a time 
constant of about one third of a second. The blind deeonvolution 
algorithm estimates the simple mean of each cepstral value over 
the utterance, and then subtracts this mean from the value in each 
frame. In both cases, speech frames are not distinguished from 
noise frames. The processing is applied to all frames equally. In 
addition, there was no dependence on estimates of SNR. 

Every test utterance was recorded simultaneously on the same 
microphone used in the training (a high-quality noise-cancelling 
Sennheiser microphone) and on some other microphone which 
was not known, but which ranged from an omni-directional 
boom-mounted microphone or table-mounted microphone, a lapel 
microphone, or a speaker-phone. We present the error rates for 
the baseline and for the two preprooessing methods in Table 6 
below. 

Preprocessing Sennheiser Alternate-Mic 
Mel cepstra vectors 12.0 37.7 

I 

RASTA preprocessing 12.5 27.8 
Cepstral Mean Removal 11.8 27.2 

Table 6: Comparison of simple preprocessing algorithms. The 
results were obtained on the 5K-word VP development test set, 
using the bigram language model. 

The results show that the word error  rates increase by a factor 
of three when the microphone is changed radically. The RASTA 
algorithm reduced the degradation to a factor of 2.3, while degrad- 
ing the performance on the Sennlaeiser microphone just slightly. 
The blind deconvolufion also reduced the degradation, but did not 
degrade the performance on the training microphone. (In fact, it 
seemed to improve it very slightly, but not significantly.) This 
shows that the five-frame averaging used in the RASTA algo- 
rithm is not necessary for this problem, and that the short-term 
exponential averaging used to estimate the long-term cepstrum 
might vary too quickly. 

5.2. Known Microphone Adaptation 
We decided to attack the problem of accomodating an unknown 
microphone by considering another problem that seemed simpler 
and more generally useful. It would be very useful to be able 
to adapt a system trained on one microphone so that it works 
well on another particular microphone. The microphone would 
not have been known at the time the HMM training data was 
collected, but it is known before it is to be used. In this case, 
we can collect a small sample of stereo data with the microphone 
used for training and the new microphone simultaneously. Then 
using the stereo data we can adapt the system to work well on 
the new microphone. 

For microphone adaptation, we assume we have the VQ index 
of the cepstmm of the Sennheiser signal, and the cepstrum of 
the alternate microphone. Given this stereo data, we accumulate 
the mean and variance of the cepstra of the alternate microphone 
of the frames whose Sennlaeiser data falls into each of the bins 
of the VQ codebook. Now, we can use this to define a new set 
of Gaussians for data that comes from the new microphone. The 
new Ganssians have means that are shifted relative to the original 
means, where the shift can be different for each bin. In addition, 
the variances are typically wider for the new microphone, due 
to some nondeterminisfie differences between the microphones. 
Thus the distributions typically overlap more, but only to the 
degree that they should. The new set of means and variances 
represents a codebook transformation that accomodates the new 
microphone. 

5.3. Microphone Selection 

In the problem we were trying to solve the test microphone is 
not known, and is not even included in any data that we might 
have seen before. In this case, how can we estimate a codebook 
transformation like the one described above? One technique is to 
estimate a transformation for many different types of microphones 
and then use one of those transformations. 

We had available stereo training data from several microphones 
that were not used in the test. We grouped the alternate micro- 
phones in the training into six broad categories, such as lapel, 
telephone, omni-directional, directional microphones, and two 
specific desk-mounted microphones. Then, we estimated a trans- 
formed codebook for each of the microphones using stereo data 
from that microphone and the Sennheiser, being sure that the 
adaptation data included both male and female speakers. 

To select which microphone transformation to use, we tried 
simply using each of the transformed codebooks in turn, recog- 
nizing the utterance with each, and then choosing the answer with 
the highest score. Unfortunately, we found that this method did 
not work well, because data that really came from the Sennheiser 
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microphone was often misclassitied as belonging to another mi- 
crophone. We believe this was due to the radically different 
nature of the Gaussians for the Sennheiser and the alternate mi- 
crophones. The alternate microphone Gaussians overlapped much 
more. 

Instead we developed a much simpler, less costly method to 
select among the microphones. For each of the seven micro- 
phone types (Senrtheiser plus six alternate types) we estimated 
a mixture density consisting of eight Gaussians. Then, given a 
sentence from an unknown microphone, we computed the prob- 
ability of the data being produced by each of the seven mixture 
densities. The one with the highest likelihood was chosen, and 
we then used the transformed codebook corresponding to the cho- 
sen microphone type. We found that on development data this 
microphone selection algorithm was correct about 98% of the 
time, and had the desirable property that it never misclassified 
the Sennheiser data. 

After developing this algorithm, we found that a similar algo- 
rithm had been developed at CMU [12]. There were four differ- 
ences between the MFCDCN method and our method. First, we 
grouped the several different microphones into six microphone 
types rather than modeling them each separately. Second, we 
modified the covariances as well as the means of each Gaussian, 
in order to reflect the increased uncertainty in the codebook trans- 
formation. Third, we used an independent microphone classifier, 
rather than depend on the transformed codebook itself to perform 
microphone selection. And fourth, the CMU algorithm used an 
SNR-dependent transformation, whereas we used only a single 
transformation. The first difference is probably not important. 
We believe that the second and third differences favor our al- 
gorithm, and the fourth difference clearly favors the MFCDCN 
algorithm. Further experimentation will be needed to determine 
the best combination of algorithm features. 

We then compared the performance of the baseline system with 
blind deconvolution and the microphone adaptation algorithm de- 
scribed above. Since these experiments were performed after 
improvements described in Section 1, and the test sets and lan- 
guage models were different the results in Table 7 are not directly 
comparable to those in Table 6 above. 

Preprocessing Sennheiser Altemate-Mic 
Mel cepstra vectors 11.6 
Cepstral Mean Removal 11.3 32.4 
Microphone Adaptation 11.3 21.3 

Table 7: Microphone Adaptation vs Mean Removal. These ex- 
periments were performed on the 5K-word btVP development test 
set using a bigram language model. 

6. SUMMARY 

We have reported on several methods that result in some reduction 
in word error rate on the 5K-word WSJ test. In addition, we have 
described several experiments that answer questions related to 
training scenarios, recognition search strategies, and microphone 
independence. In particular, we verified that there is no reason to 
collect speech from a large number of speakers for estimating a 
speaker-independent mode l  Rather, the same results can be ob- 
tained with less effort by collecting the same amount of speech 

from a smaller number of speakers. We determined that the N- 
best rescoring paradigm can degrade somewhat when the error 
rate is very high and the sentences are very long. We showed that 
a simple blind deconvolution preprocessing of the cepstral fea- 
tures results in a better microphone independence method than the 
more complicated RASTA method. And finally, we introduced 
a new microphone adaptation algorithm that achieves improved 
accuracy by adapting to one of several codebook transformations 
derived from several known microphones. 
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