
Fragment Processing in the DELPHI System 
David Stallard, Robert Bobrow 

BBN Systems and Technologies 
10 Moulton St. Calnbfidge, MA 02138 

ABSTRACT 

This paper presents the fallback understanding component of 
BBN's DELPHI NL sysystem. This component is invoked when 
the core DELPHI system is unable to understand an input. It 
incorporates both syntax- and frame-based fragment combination 
sub-components, in an attempt to provide a smoother path from 
accurate but fragile conventional parsers on the one hand to the 
robust but less accurate schema-based methods on the other. The 
frame-based sub-component is fully integrated with the DELPHI's 
core grammar and parser, and represents an advance over previous 
proposals. 

The complete fallback understanding component, incorporating 
both sub-components, was used in the February 1992 NL and SLS 
evaluations of the DELPHI system and we report on its contribu- 
tion to these results, and those of its two separate sub-components. 
For SLS, use of the frame-based sub-component alone resulted in a 
figure 39.2% Weighted Error--signifigantly lower than our lowest 
official score of 43.7% Weighted Error. 

1. INTRODUCTION 

We describe the fallback understanding component of  the 
DELPHI Natural Language component of  BBN's  Spoken 
Language System. This component is invoked when DEL- 
PHI ' s  regular chart-based unification grammar parser is un- 
able to parse an input; it attempts to come up with a 
parse and semantic interpretation, or a semantic interpre- 
tation alone, based on a fragmentary analysis o f  the input. 

The fallback understanding component consists of  three sep- 
arate stages, which are invoked successively. First, the Frag- 
ment Generator produces a sequence of  fragmentary sub- 
parses from the chart state left over from the unsuccess- 
ful parse. Next, two different combination modules---the 
Syntactic Combiner and Frame Combiner - employ alterna- 
tive and complementary strategies for combining these frag- 
ments. 

The Syntactic Combiner uses extended grammar rules that 
can sldp over intervening material to combine constituents 
in an attempt to re-construct a plausible parse of  the input. 
This parse can be a clause or some other useful constituent 
such as an imperative VP. A semantic interpretation for this 
reconstructed parse is automatically provided through the 

305 

action of  the grammar rules. 

The Frame Combiner is invoked when the Syntactic Com- 
biner is unsuccessful. It utilizes a set of  pragmatic slot-filling 
schemata that embody the goals that ATIS users most com- 
monly have, such as finding a flight or fare that satisfies 
some set o f  constraints, or asking about ground transporta- 
tion between an airport or a city. As such, it detennines 
only a semantic interpretation and not a parse. 

The intent o f  this multi-step approach to fallback process- 
ing is to provide a smoother path between the accuracy but 
fragility of  regular parsing on the one hand, and the robust- 
ness but possible inaccuracy of  schemata-based methods on 
the other. 

The remainder of  the paper is taken up with detailed de- 
scription of  each component. The next section, Section 2, 
describes the Fragment Generator. Section 3 describes the 
Syntactic Combiner and Section 4 the Frame Combiner. Fi- 
nally Section 5 gives the February 1992 NL and SLS eval- 
uation test results for these components, separate and com- 
bined, and our conclusions based on these results. 

2. THE FRAGMENT GENERATOR 

The core DELPHI system consists of  a unification-based 
grammar, an agenda-driven chart parser, a discourse compo- 
nent and a question-answering back-end. DELPHI ' s  gram- 
mar roles incorporate semantic constraint and interpretation 
components by associating with each element of  the fight- 
hand side a grammatical relation label which keys into an 
associated system of  semantic rules. This feature means that 
any term which is inserted into the chart is guaranteed to be 
semantically well-formed and to be annotated with one or 
more semantic interpretations. 

The fragment generator generates a set o f  such semantically 
annotated fragments from the chart state left over after an 
unsuccessful parse. The algorithm for generating fragments 
from the chart extracts the most probable terms associated 
with longest sub-strings of  the input, using probabilities as- 
sociated with the producing rules [2]. 

For example, the utterance: 



I want a flight uhh that arrives in Boston let's say at 3 pm to make the new VP: 

is conventionally unparseable due to the interpositions "uhh" 
and "let's say". The Fragment Generator produces the fol- 
lowing set of four fragments: 

S[I want a flight] 
NO-XNTERP [uhh ]  
REL-S[that arrives in Boston] 

NO-INTERP [let' s say] 

~P [at 3 pro] 

3. T H E  S Y N T A C T I C  C O M B I N E R  

The Syntactic Combiner uses a special set of grammar rules, 
called fragment rules, to combine these fragments into a sin- 
gle parse. These rules have the same form as rules of  the reg- 
ular DELPHI g a m m a r  and incorporate semantic constraints 
and interpretation rules in the same way. But the method 
for applying the fragment rules differs in that it allows them 
to combine constituents even when these constituents are 
separated by intervening portions of the input, or when they 
occur in a reversed order. 

Each fragment rule is adjunction oriented, in the following 
form: 

X -~ :head X, :other-relation C 

The following is an example, from which unification features 
have been omitted: 

VP -~ :head VP, :pp-comp PP 

This rule says that an existing Verb Phrase fragment and 
an existing Prepositional Phrase fragment can be combined 
together to make a new Verb Phrase with the original VP as 
head and the original PP as pp complement, provided they 
satisfy the semantic constraints associated with ":head" and 
":pp-comp". 

The central operation of the Syntactic Combiner is adjunc- 
tion. The example rule licenses the Syntactic Combiner to 
"adjoin" one fragment tree into another--that is to replace a 
node of the first tree with a new node whose head daughter 
is the old node and whose other daughter is second tree. An 
example, using the rule above, would be the combination of 
the two fragments: 

PP [at 3 pro] 

VP[arrives in Boston] 

306 

VP[arrives in Boston at 3 pm] 

Note that the adjunction node does not have to be the top of 
the first fragment tree: it can be any non-terminal node, as 
in the following pair of  fragments: 

PP [at 3 pro] 

StNP[I]  
VP [want 

NP [NP [a flight] 
REL-S [that 

VP [ arrive s in Boston]] 

The algorithm that applies these rules first scans right to left 
taking each successive fragment and looking for fragments 
to its left to adjoin the first fragment into. The search for an 
attachment point within a fragment is fight-to-left, bottom- 
up first, and deterministic. 

The reason for the directional priority is to enforce the pref- 
erence of fragment rules that the sub-term of the adjunction 
be to the right of the head. The algorithm then reverses di- 
rection, attempting to adjoin any remaining fragments into 
other fragments on their right. It oscillates back and forth 
in this fashion until no more fragments can be combined. 

At the end of this process the largest fragment (possibly 
now containing other fxagments which it has absorbed) is 
returned as the reconstructed parse, subject to cnt-off re- 
strictions which we discuss below. More than one fragment 
is returned in the case of  multiple clausal fragments, and the 
discourse module is invoked to construct the interpretation 
of the whole. 

As a simple example, let us return to the example of the 
previous section: 

I want a flight uhh that arrives in Boston let's say at 3 p m  

which generates the fragments: 

S[I want a flight] 

NO-INTERP [uhh] 
REL-S[that arrives in Boston] 

NO-INTERP [let' s say] 
PP [at 3 pm] 

The rules that enable combination of these fragments are: 



VP-~ :head VP, :pp-comp PP 
NP-~ :head NP, :tel-clause REL-S 

The first rule above licenses the attachment of "at 3 pm" to 
"arrives" inside the existing REL-S structure "that arrives" 
and the second the attachment of the combined REL-S struc- 
ture to the NP "a flight" inside the clause "I want a flight". 
After this combination, we are left with two fragments: a 
clause and an unanalyzable portion of the string. Since all 
grammar rules in DELPHI include a semantic interpretation 
component[3,4], a semantic interpretation of the clause is 
also available. 

The other fragment rules combine NPs and their various 
modifiers and VPs and their NP complements: 

NP-~ :head NP, :pp-comp PP 

NP-~ :head NP, :post-nom NP 

NP-~ :head NP, :whiz-tel VP 

VP-~ :head VP, :direct-object NP 

The Syntactic Combiner uses a cut-off (currently .8) for the 
ratio of the number of  words included in the final recon- 
structed parse to the number of words of the original input 
to determine whether or not to accept the final analysis as 
plausible. The computation of this ratio is adjusted to ignore 
certain words that carry little meaning ("does" "me" "could" 
etc.) and to block intepretations which exclude other words 
which do tend to change the meaning ("first", "most" etc.). 

4.  T H E  F R A M E  C O M B I N E R  

4.1 O v e r v i e w  

The Frame Combiner seeks to combine together not frag- 
ments but the semantic interpretations of fragments, and does 
so based not on grammar rules but on pragmatic schemata 
which have various "slots" to fill. It works primarily with 
semantic intepretations of fragments at the NP and PP level. 
Its approach is similar in spirit to SRI's Template Matcher 
[1] but it differs from that work in a number of important 
ways. 

Most importantly, it is fully integrated with a conventional 
NLU system including grammar and parser. This makes it 
possible for it to work from recursive tree fragment struc- 
tures instead of sub-strings of input. AS a result, the slot- 
filling process is not limited to simple phrases such as "to 
BWI" but can also handle more syntactically and seman- 
tically complex phrases such as "to the airport closest to 
Washington DC". All the complex modifier structure inter- 
nal to NPs which a conventional parser normally uncovers 
can be incorporated into slot-filling. 

Moreover, while the system does not use larger constituents 

such as VPs and clauses to frill slots directly, it does make 
use of  a candidate NP or PP's occurence inside such a larger 
phrase to determine which slot the candidate should frill. This 
enables the Frame Combiner to cope with such cases as the 
PP "before 3 pro", which means entirely different things, 
and therefore constraints entirely different slots, depending 
on whether it modifies the verb "arrive" or "depart". 

A final difference is that the Frame Combiner attempts to 
determine the actual items of information that the user wants 
to have presented to him---that is, what slots in the frame are 
being asked about, as opposed to filled or constrained. This 
last has practical importance within the context of the ATIS 
task domain because it enables only what is asked about to 
be displayed to the user. Formerly it was sufficient simply 
to provide the entire extension of a suitably frame as the 
answer, but given the MIN/MAX scoring procedure, such a 
tactic is likely to result in numerous wrong answers. 

The basic operation of the Frame Combiner is to input a 
sequence of semantically annotated fragment trees and to 
output a logical form as a proposed interpretation of the ut- 
terance. As intermediate steps it generates alternative sets of 
attribute-value "triples" and filters these according to plan- 
sibility criteria before generating a final interpretation from 
the chosen set. We next describe each of these steps. 

4.2 R e p r e s e n t a t i o n a l  T r i p l e s  

As intermediate output, the frame combiner first produces a 
set of attribute-value triples with the following structure: 

<OPERATOR, ATTRIBUTE, VALUE> 

The ATIRIBUTE is a single or multi-valued function. The 
VALUE is an element or set of elements from this function's 
range. The OPERATOR is a binary relation over elements 
of the range. In the following example: 

<EQUAL, ORIGIN-CITY, BOSTON> 

The operator is the relation EQUAL. The attribute in this 
example is the function ORIGIN-CITY, whose domain is 
the class FLIGHT and whose range is the class CITY. The 
value in the example is the individual city BOSTON. 

Other typical operators are relations like TIME-BEFORE 
and GREATER-THAN. There is a special operator, HAS- 
PROPERTY, which is combined with a truth-valued (i.e. 
one-place predicate) attribute and the value TRUE for ad- 
jectival meanings like "non-stop". 

Currently there are three classes which can serve as the 
domain of an attribute FLIGHT, FARE and GROUND- 
TRANSPORTATION. We refer to these as the "core" classes 

307 



of the ATIS task. These core classes are associated, respec- 
tively, with the distinguished attributes FLIGHT-OF, FARE- 
OF and TRANS-OF, which we term the "explicit" attribute 
of  the core class, Explicit attributes are neccesary to in- 
corporate well-formed,parsed NP fragments whose semantic 
type is one of the core classes, such as "the USAir flight 
from Boston to Denver", without having to break them up 
into their component modifiers. Explicit attributes are al- 
ways combined with the EQUAL operator and an element 
of the domain, and effectively correspond to the identity 
function for the domain. 

An attribute-value triple can be formally viewed as a spec- 
ification of a subset of the domain of the attribute of the 
triple. While they have a clear relationship to the notion of 
a template or frame, they are perhaps better thought of  as 
disembodied "slot-constraints". Note in particular that a set 
of  such triples is a more flexible representation than a single 
template in that it can uniformly combine triples whose at- 
tributes have different domains. This is important when the 
question itself concerns more than domain--such as both 
FLIGHTs and FAREs. 

4.3 Generating Triples 
Triples are produced from fragment trees using a recursive- 
descent algorithm that applies a set of pattern rules that 
match against fragment trees and their attached semantic 
interpretations. Rules can produce disjunctions of triples in 
case of ambiguity. The rules primarily match against NP 
and PP constituents, associating the semantic intepretation 
of the NP constituents with the value element of a triple. 
The algorithm mainly recurses through other types of con- 
stituents, though it does note and pass down certain items of 
information associated with them, such as the head-predicate 
of  a VP. 

Rules consist of a syntactic pattern component followed by 
optional extra constraints and an attribute assignment com- 
ponent. For example the rule: 

(PP :pp FROM :object) 

(SORT :object CITY) 
(RESTRICT-SLOT EQUAL 

(:OR ORIGIN-CITY 
TRANS-TO-CITY) 

:object) 

applies to PPs whose preposition is "from". It requires that 
the NP object of the PP be of the semantic class CITY. 
It restricts either the ORIGIN-CITY or TRANS-TO-CITY 
attributes to be EQUAL to the semantics of the NP object. 
When applied to the fragment: 

308 

[PP from 
[NP boston]] 

it generates the following two alternative triples: 

<EQUAL, ORIGIN-CITY, BOSTON> 

<EQUAL, TRANS-TO-CITY, BOSTON> 

corresponding to the two altematives possible in a situation 
where "from Boston" is uttered: either the user wants to fly 
from Boston to some different city or he wants to get from 
Boston to its airport. 

Rules have a slightly more complicated form when they in- 
volve an important feature of  the Frame Combiner's triple- 
generation process: its use of syntactic structure and con- 
text. For example, in the ATIS domain the PP "at 3 pm" 
means something very different when attached to a verb like 
"arrive". This phenomenon tends to pose a problem for con- 
ventional non-integrated template matching system, as has 
been noted in earlier work [1]. 

In the Frame Combiner this is handled by passing down the 
predicate representing a verb's meaning as an extra argu- 
ment to the recursive descent algorithm. I f  a constituent 
was attached to a VP with a particular meaning, the slot- 
filling process knows this when it reaches the constituent. 
Slot-filling rules can be written in such a way as to behave 
differently depending on whether the constituent under con- 
sideration is in the context of a particular verbal predicate. 

For example, in order to deal with the above phenomenon, 
the following rule applies to PP fragments where the NP 
:OBJECT is of  type TIME-OF-DAY, and :PREP is any 
preposition from which a temporal relation can be derived. 
This temporal relation restricts whatever slot is determined 
appropriate by the ATI'RIBUTES component of  the rule: 

(PP :PP :PREP :OBJECT) 

(SORT :OBJECT TIME-OF-DAY) 
(TEMPORAL-RELATION : PREP : REL) 
( RE STRICT- SLOT 

: REL 
(ATTRIBUTES 

(CONTEXT ARRIVE ARRIVAL-TIME) 
(DEFAULT DEPARTURE-TIME) 
(GENERAL ARRIVAL-TIME 

DEPARTURE-TIME) ) 
: OBJECT ) 

The A'VI'RIBUTES expression delivers zero or more at- 
tributes as a disjunction the specific attributes depending 



upon which of its evidence clauses is satisfied. CONTEXT 
evidence is the strongest. NON-LOCAL evidence is next, 
and it includes situations where a particular verb is merely 
present elsewhere in the input, without dominating the con- 
stituent. DEFAULT evidence is the assignment preferred 
whereas GENERAL evidence is all the assignments allowed. 

4.4 Filtering Sets of T r i p l e s  

When all fragments have been analyzed through recursive 
descent, the system takes the cartesian product of all dis- 
junctive interpretations to obtain the set of all alternative 
sets of triples. These are then filtered to leave only the most 
plausible sets of triples. 

There are several criteria for plausibility. The most obvious 
is that two or more triples on the same attribute not specify 
contradictory values for the attribute. Another is that a set 
not contain any two triples with clashing attribute domains. 
For example, in the ATIS task one never sees queries that 
combine flights and ground transportation (even though such 
are certainly expressible, e.g. "Show me USAir flights to 
airports that have limousine service"). Thus FLIGHT and 
GROUND-TRANSPORTATION are clashing domains. On 
the other hand, queries concerning both flights and fares do 
frequently occur ("Show flights to Boston and their fares") 
so FLIGHT and FARE are not clashing domains. 

Another criterion is that the set of triples have the com- 
monly seen linguistic form for the domain. Thus, while 
"the airport" and "the city" are plausible fillers for TRANS- 
TO-AIRPORT and TRANS-TO-CITY in the GROUND- 
TRANSPORTATION domain they are much less plausible 
fillers for FLIGHT domain attributes, simply because proper 
noun fillers are fare more common for these. 

Criteria such as non-clashing domains are hard criteria, and 
therefore any triple set which violates them is discarded. 
Other criteria, like the plausiblity of  linguistic domain, are 
softer, and the system merely prefers not to violate them. 

If  there is more than one plausible set of triples, the Frame 
Combiner will, depending on switch setting, either give up or 
appeal to extrasentential discourse to resolve the ambiguity 
(much as the core DELPHI system will do). 

4.5 Choosing the Information to Display 

At each turn in dialogue, any system performing an infor- 
marion retrieval task, such as ATIS, is essentially required 
to display a set of objects. This holds for WH questions 
("which flights... "), imperatives ("show me"), and existen- 
tial yes-no questions ("are there any flights..."). On this 
perspective, the different sets of  objects and relationships 
between them are one part of the meaning of the query, and 
are represented by the sets of triples. The other part of the 

309 

meaning is the question of which of these sets to display. 
We refer to as the "topic" of the query. 

To choose one (or more) of the triples as the topic means to 
display its value set, as it relates to all other value sets of 
the other triples. Several different heuristics are used, and 
are ranked in priority. Each is tried in succession until a 
topic is chosen. 

Most obvious is whether the filler of the triple is a WH noun 
phrase. I f  it is, it definitely must be the topic. 

Next are any "priority" domains that are not normally used 
merely to constrain other sets. An example is GROUND- 
TRANSPORTATION--the typical ATIS user does not 
ask to see cities that have a particular type of ground 
transportation--the user wants to see the ground transporta- 
tion itself. 

"Unconstrained" triples are another likely topic. A triple is 
"unconstrained" if its filler is a bare common nominal, such 
as "airline", and its attribute is a total function. Since every 
FLIGHT has an AIRLINE, the user is most unlikely to be 
imposing the vacuous constraint that the flight is on some 
airline (even though this is again expressible). Rather, the 
user is much more likley to be interested in seeing the airline 
of the flight. 

4.6 Generating the Final Interpretation 

The Frame Combiner generates a final logical form from 
a chosen set of triples by first associating a variable with 
each triple filler ("value" slot) and a variable with each of 
the core classes present, in the set, whether through explicit 
attributes on the class or impficitly as the domain of an- 
other attributes. It generates a matrix formula in which all 
the attributes present are binary relations and the generated 
variables are the arguments to these binary relations. Quan- 
tificational structure, corresponding to the fillers of triples, is 
then generated. The quantifiers for topic triples are treated 
as though they were WH quantifiers, and appropriate display 
commands generated. 

5. R E S U L T S  A N D  D I S C U S S I O N  

This system was mn with the DELPI-I/ NL system in the 
February 1992 official evaluation. Using the same constant 
executable Lisp image ("disksave") run for the official re- 
suits, the test was run using a number of different switch 
settings, and scored with the version of the NIST comparator 
used for the official results. The switch conditions were: no 
fallback processing at all (which is simply the core DELPHI 
system), Syntactic Combiner only, Frame Combiner only, 
and both Syntactic Combiner and Frame Combiner work- 
ing together (which was the condition used in the official 
results). The figures for NL only are reported in Table 1. 



%T %F %NA %WE 
no fallback 69.3 7.4 23.3 38.1 
syn only 73.1 8.9 18.0 35.8 
frame only 78.3 9.6 12.1 31.3 
both(official) 76.7 10.6 12.7 33.9 

Table 1: NL Results 

Note the flame-only condition is actually better than result 
officially reported, in which both fallback sub-components 
were used. 

For the SLS test, the output o f B B N ' s  BYBLOS N-best rec- 
ognizer was used, with N = 5. The core DELPHI system 
(without fragments) was first tested against the five theo- 
ries. I f  an intepretation was found for one of them, it was 
returned. Otherwise, the fallback methods were applied. 

Results for three of the four conditions are seen in Table 2 
(results for the no-fallback = core DELPHI condition were 
unavailable as of this writing). The figure for the combina- 
tion of both fragment modules (the configuration used in the 
official test) reflects an slight downward adjustment from the 
original value of 43.7 that corrects a purely procedural error 
committed during our running the test (the file that specifies 
"todays's date" for each query was not loaded, leading to a 
small increase in the number of  wrong answers). This prob- 
lem was fixed in obtaining the results in Table 2. As in the 
regular NL test, the SLS results show an noticeable improve- 
ment over the official results when the Frame Combiner is 
used alone. 

These results tend to undercut a central premise of  our orig- 
inal strategy: namely that using both fragment combination 
methods together would improve the result over the use of 
either alone. Our tentative hypothesis is that the Syntac- 
tic Combiner, when failing and passing to the Frame Com- 
biner the best results of its combination attempt, is pass- 
ing wrongly combined fragments which mislead the Frame 
Combiner. 

On the other hand, these results do show the utility of the 

Frame Combiner when used alone. For NL only, it reduced 
the No Answer rate by 11.2 percentage points, and Weighted 
Error by 4.2 percentage points. For SLS, it reduced the 
Weighted Error from the adjusted official value of 43.2% to 
the signifigantly lower value of 39.2%. 

A C K N O W L E D G E M E N T S  

The work reported here was supported by the Advanced Re- 
search Projects Agency and was monitored by the Office 
of  Naval Research under Contract No. N00014-89-C-0008. 
The views and conclusions contained in this document are 
those of the authors and should not be interpreted as neces- 
sarily kepresenting the official policies, either expressed or 
implied, of the Defense Advanced Research Projects Agency 
or the United States Government. 

REFERENCES 
1. Jackson, E., Appelt, D., Bear, l., Moore, R. and Podlozny, 

A. A Template Matcher for Robust NL Interpretation, in Pro- 
ceedings Speech and Natural Language Workshop February 
1991 

2. Bobrow, R.L Statistical Agenda Parsing in Proceedings 
Speech and Natural Language Workshop February 1991 

3. Bobrow, R.L, Ingria, R. and Stallard, D. Syntactic~Semantic 
Coupling in the DELPHI System to appear in Proceedings 
Speech and Natural Language Workshop February 1992 

4. Bobrow, Ingna, R. and Stallard, D. The Mapping Unit Ap- 
proach to Subcategorization in Proceedings Speech and Nat- 
ural Language Workshop February 1991 

%T %F %NA %WE 
no fallback 65.2 10.5 24.3 45.6 
syn only 68.9 11.5 19.7 42.6 
frame only 73.8 13.0 13.2 39.2 
both(official) 71.8 15.4 12.8 43.7 
both(adjusted) 71.9 15.1 13.0 43.2 

Table 2: SLS Results 

310 




