
C a l c u l a t i n g t h e P r o b a b i l i t y

o f a P a r t i a l P a r s e o f a S e n t e n c e

bred Kochman and Joseph Kupin

Center for Communications Research
Institute for Defense Analyses
Princeton, New Jersey 08540

A B S T R A C T
A standard problem in parsing algorithms is Lhe organizaLion o~

branched searches to deal with an~iguous sentences. We discuss shift-
reduce parsing o£ stochastic context-Gee granlnmrs and show how Lo
construct a probabilistic score for tanking compeLing parse hypotheses.
The score we use is the likelihood Lhag the collection of subtrees can
be completed into a l~ull parse tree by means of the steps the parser is
constrained to [oUow.

I N T R O D U C T I O N
Stochastic context-free grammars have been suggested for a

role in speech-recognition algorithms, e.g. [1, 4, 9]. In order to
he fully effective as an adjunct to speech recognition, the power
of the probability apparatus needs to be applied to the problem
of controlling the branched search for parses of ambiguous input.

The method we suggest for doing this employs shift-reduce
(LR) parsing of context-free grammars together with a probabil-
ity based score for ranking competing parse hypotheses. Shift-
reduce parsers can be made very efficient for unambiguous gram-
mars (and unambiguous inputs) and Tomita [7] shows how much
of this efficiency can be maintained in the face of ambiguity. This
makes this class of parsers a good candidate for many speech
problems. The structural simplicity of shift-reduce parsers makes
the analysis of the interaction of the parser with the stochastic
properties of the language particularly clean.

The score we calculate is the likelihood that the collection of
subtrees constructed by the parser so far can he completed into a
full parse tree by means of the steps that the parser is constrained
to follow, taking into account all possibilities for the unscanned
part of the input. This score is the same as that suggested by
Wright [9], who also studied shift-reduce parsers. We provide an
exact method for calculating the desired quantity, while Wright's
calculation requires several approximations.

Why do we care about this particular quantity? As a first
rough answer, note that when this quantity is zero, then the hy-
pothesis should be abandoned; there is no possibility that the
parse tree can he completed. Furthermore, the bigger this quan-
tity is, the larger the mass of the probability space that can be
explored by pursuing that particular hypothesis.

For a more detailed answer, consider a breadth first search
of candidate hypotheses. For each one we would like to know

which is the correct one, given the grammar and the text seg-
ment we have observed: a, , . . . ,a t . We would like to calculate
P(Hla, , . . . , a~).

This quantity is equal to

P(H&al a~)/P(al , . . . , a~).

The denominator in the above expression P (a , , . . . , at) is the
grand probability of seeing the observations al , . . . , at given the
grammar. This is some fixed quantity. We might not know what
it is, but as long as we are only comparing hypotheses that all
explain the same string a h . - - , at, this quantity is a scaling factor
that can safely be ignored. The numerator is the quantity we
intend to calculate.

For a depth-first or best-first search, as employed by [1], the
quantity P (a l , . . . , at) cannot be ignored. This makes the depth-
first approach significantly more complicated.

In the rest of this paper we will restrict our attention to gram-
mars in Chomsky-normal form. A similar probability analysis can
be made for arbitrary context-free grammars, but the notation be-
comes cumbersome and the formulae more complicated. We note
that all the topics in this paper are treated in considerably more
detail, including proofs, in [3].

S H I F T - R E D U C E P A R S I N G
A bottom-up parser is one which reconstructs parsing trees by

first constructing parsing subtrees over short disjoint segments
of the text, then linking these together into a smaller number of
larger trees, and so on recursively until a single parse tree emerges,
covering the entire text. In this section we study a particular class
of bottom-up parsers, called shift-reduce parsers, which conform
to the following rules, leading to the reconstruction of a right-
most-first derivation of the sentence being parsed.

The parser receives symbols one at a time from left to right
and at each stage of the process, the parser's memory contains a
sequence of disjoint parsing subtrees which completely cover the
current input. Roughly speaking, as each new symbol is accepted
(or shifted-in) the parser decides how to incorporate it into a
subtree and perhaps how to link several existing subtrees together
(i.e. reduce). The sequence of subtrees in the parser's memory at
a given instant is called a parse hypothesis, or a parser stack.

237

To be more precise, here is how a shift-reduce parser updates
the current hypothesis into a new one. Consider a parse hy-
pothesis consisting of n subtrees: 7"1... I",,, having root symbols
B1 . . . B , , respectively.

The three possible "moves" for reacting to the next input sym-
bol ' z ' are listed below.

1. ' z ' can be shifted in and declared to be Tn+l.

2. If there is a rule A ~ B , in the grammar, then r , can be
replaced by a new ~-, having A as a root and old ~-, as the
left child of A. (Note that ' z ' has not yet been shifted in.)

3. If there is a rule A ~ B n - i B , in the grammar, then r , -1
and 7, can be removed from the hypothesis and a new sub-
tree 7",,-1 is added, having A as a root and old ~',-1 as the
left child of A and old ~-, as the right child of A. Again note
that z remains to be shifted in.

The "input cycle" of a shift-reduce parser is typically to shift
in a new symbol via move 1, use move 2 to give that symbol a
nonterminal root, and then to perform some number of moves of
type three. Choosing which (if any) of the allowable type-two
and type-three rules should be used next in the parse can be
quite difficult, but doing so cleverly makes the difference between
efficient and inefficient parsing algorithms. When faced with a
choice among possible moves some parsers make a breadth-first
search among the possibilities. Others use a depth-first scheme, or
even something intermediate between these two extremes. We will
not be concerned with such schemes here. We concern ourselves
only with a probabilistic score for the plausibihty of available
choices. (The best use of that score is a study in its own right.)

The important fact about shift-reduce parsers from our point
of view is that they are quite limited in the kind of superstructure
they can build above a given set of subtrees. Since new parent
nodes can only be generated over the final few subtrees in the
hypothesis, one can not "go back" and make non-final pairs of
subtrees into siblings. (A precise result is proved in [3]). Figure 1
shows the necessary superstructure for an n-subtree hypothesis.

In this figure, the ellipses represent sequences of zero or more
nodes in which each node is the left child of its parent. The
diagram is also meant to admit the possibihty that Ai is the
same node as C i - l . The right children of the nodes labeled C
(labeled X) as well as those in the ellipses are all to be found in
the remaining input.

T H E L E F T - E D G E P R O C E S S
In order to calculate the sum of the probabilities of all com-

plete parse trees that could result from the parser's further pro-
cessing of a given hypothesis, we must sum across all the possi-
bilities for the As and the Cs in figure 1 (which is a finite set)
as well as summing over the potentially infinite set of sequences
of nodes that could be lurking behind the ellipses. This sounds
prohibitive, but we are saved by the fact that the sequences of
nodes along the left-edge of a tree can be analyzed as the output
of a Markov process. This fact is implicit in the work on trees
and regular sets by [6], and was discovered independently by [2].

Happily, this observation leads to a closed form solution to
the problem of calculating all the necessary probabilities for the

b c . . . d . . . w . . . x y . . . z

XO

X1

X2

Xn-i

Figure 1: A parse hypothesis, wish implied superstrucLure

infinite set of sequences. To begin, construct the matrix M which
is the transition matrix of a Markov chain in which nonterminal
symbols are transient states and terminal symbols are absorbing
states.

M (A , B) = ~ P (A ~ B C) for nonterminals B
O

M (A , b) -- P (A ~ b) for terminals b

Rows of M indexed by terminal symbols are identically zero.

To illustrate the use of Markov chain theory for the left-edges
of trees, we compute the probability of the event that the left edge
of a randomly generated subtree terminates in a specified terminal
symbol a, given that the root is a specified nonterminal symbol
A. This event is the disjoint union of the events that a is the n th
symbol in the left-edge sequence, for all n > 1. Correspondingly,
we want the sum

P(the n th left-edge symbol is a I the root is A)
n > l

which is the sum of the (A, a) th entries in the sequence M, M 2,
M 3, etc., which is in turn the (A, a) th entry in M + M 2 + M 3 +
As it turns out, this matrix sum converges. The sum is equal to
M (I - M) -1. Thus the number we seek is the (A, a) th entry of
M (I - M) -1. Note our convention that the root is the 0 th symbol
along the left edge of the tree.

As another illustration we compute the probability that the
left edge of a subtree T terminates in some specific subtree ~',
again given that the root of T is A. More precisely, we compute
the conditional probability that the subtree ~- appears as a subtree
of T, with its root B somewhere in the left-edge of T, given that
the root of T is A. This is the disjoint union of the events, as n
varies, that B is the n th symbol in the left edge of T and that T
then appears rooted at this B.

238

If (just for a moment) we exclude the possibility that v is
identical to T, then n must be at least 1. For each n > 1, the
conditionM probability that ~- appears rooted at the n m symbol
B, is P(r]B) multiplied by the (A, B) th entry of the n th power of
M. In this case we can find, much as in the preceding illustration,
that the sum from 1 to infinity of these l~obabilities is

P(r lB) x the (A, B) th e~try of M (I - M) -1.

To include the possibility that ~ is identical to T, then we
must add the term:

~'(~IB) x P(A = BS.

Since the second factor is one or zero depending on whether B =
A, the sum of probabilities for all n > 0 is

P(v[B) x the (A, B) ̀ h entry of [I + M (I - M5 -I]

which simplifies to:

P (r l B 5 x the (A, B) th entry of (I - M5 -1. (15

In order to calculate the probability of the set of parse trees
which might complete a given parse hypothesis we will need for-
mulas like these, but with the proviso that we need to specify the
rule that is used to generate the root of ~ from its parent.

So to calculate all the probabilities that could ever arise due to
the ellipses, we have work of inverting a rather large, but rather
sparse, matrix. This work is done when the rule probabilities
are decided upon, and before any sentences are parsed. The size
of the matrix depends on the number of symbols (terminals and
nonterminals 5 in the grammar.

T H E P R O B A B I L I T Y C A L C U L A T I O N
The probability calculation must be divided into two cases. In

one ease we are in the midst of processing input and do not know
how many input symbols (if any 5 remain to be processed. The
second situation is that we know that all input symbols have been
processed. This second ease is special because it implies that the
only unknown events are which rules are to be used to link up
the subtrees to the root. In this case, the summation down the
left edges of subtrees is no longer needed.

W h e n i n t h e M i d s t o f t h e I n p u t

When there may be more input to be processed, the calcu-
lation of the probability of a parser hypothesis with only one
subtree is exactly the equation (15 in which the start symbol of
the grammar, S, takes the place of the symbol A in the formula.

For hypotheses with n > 1 subtrees we need to take the A and
C nodes from figure 1 into account. To calculate the probability
of a parser hypothesis with n subtrees ~-, . . . r,, with root nodes
B1 . . .Bn, we keep track of what rule is used to generate each
Bi. This defines the necessary relationships among the various
Ai Bi and Ci in figure 1. To perform our calculation we need the
following matrices:

Q(A,r) = p

= z e r o

z(r, c5 = I
=0

Mo = (I- M) -~

if rule ~" is A .L BC for some B, C
otherwise

if rule r is A .L BC for some A, B
otherwise

for M as defined above

The probability

1.

2.

3.

4.

calculation requires the following four steps:

Compute l.q* = the S th row of the product MoQ. Zero out
all entries except those corresponding to rules which have
Bi as a left child and call the result t~.

For i = 2 , . . . , n compute the product ~* = I,~-iZMoQ.
Zero out all entries except those corresponding to rules
which have Bi as a left child and call the result t~.

Construct a final vector Vii, by zeroing out all entries of
t~j-i except those corresponding to rules which have B , as
a right child.

The desired probability is the sum of the entries in Vn and
Vii n multiplied by the conditional probability of the sub-
trees already constructed:

[I e(~ln~)
i=1

W h e n a t t h e E n d o f t h e I n p u t

If there is no more input and the hypothesis has only one
subtree, then either the root of the subtree is the start symbol
of the grammar, and hence the hypothesis has yielded a well-
formed sentence with probability P(rlSS) or the hypothesis must
be abandoned since it has not yielded a sentence and no further
changes to it are possible.

Things are more interesting if the hypothesis contains more
than one subtree. Consider a parser hypothesis H, consisting
of n > 1 subtrees rl through rn with root symbols B, through
Bn respectively, with all of B1 through B , being nonterminal
symbols. Suppose that the leaves of these subtrees exhaust the
input, so no further shift operations are possible for the parser.

For each nonterminal B let MB be the {symbols) x {symbols)
matrix whose AC th entry is the probability P(A --* BC), if A --~
BC is a rule of the grammar while otherwise the AC th entry
is zero. Also, for each pair of nonterminals BC, let FBc be the
column vector indexed by nonterminals whose A th entry is P(A --~
BC) if A ~ BC is a rule of the grammar; otherwise the A th entry
is zero. Let Vs be a row vector indexed by nonterminals with a 1
in the entry for S and zeros elsewhere.

Then, for n > 1, the probability of the hypothesis is equal to

VS,%IB~MB2... ,~IB.-2FB.-IB. x f i P(rilBi)
i=1

P r o g r a m m i n g C o n s i d e r a t i o n s

There are several problems in making a practical parser based
on the probabilities eMeulated above. First we must invert the
rather large matrix I - M and then for each parse hypothesis we
must perform two or three matrix operations for each subtree of
the hypothesis. This is not actually as bad as it seems.

239

First note that we can absorb two matrix operations for each
subtree into one operation by precomputing MoQ. If we use this
as our "in-core" matrix, we can reproduce Mo when needed (for
n = I computations) by summing across the relevant rules.

Next we note that the vector by which we are premultiplying
is very sparse. This is true since the preceding step was to zero-
out all entries in the vector that have the "wrong" left child. This
means that there are only a few rows of the big MoQ matrix that
concern us.

Also note that immediately after we calculate the vector re-
sult, we will again zero out entries with the "wrong" left child.
This means that we really only need calculate those few entries
in the result vector that have the desired left child. This reduces
the matrix operation to much lower order, say 5 × 5. The size
of the calculation is determined by how many rules have a given
nonterminal as left child. A grammar will be easy to parse with
this method if each nonterminal only appears as the left child in
a few rules.

Finally, we note that each parse step can only create one new
subtree, and that at the end of the hypothesis. So, ff we remem-
ber the vector associated with each subtree as we make it, we
only need to do one of these order 5 x 5 calculations to get the
probability of the new hypothesis.

B U I L D I N G A P A R S E R

One might consider implementing the above probability calcu-
lation in conjunction with some conventional shift-reduce parser.
In this case one would let the LR0 parser suggest possibilities for
updating a given parse hypothesis and use the above scheme to
compute probabilities and discard unpromising hypotheses.

It is worth pointing out that all the information needed for
LR0 parsing can in fact be reproduced from the probability vec-
tors we calculate. Hence we do not really need to construct such
a parser at all! The point is that starting from a particular hy-
pothesis, a given proposal for a next move leads to a nonzero
probability if and only ff there is some completion of the input
that would not "crash" for the conventional parser. The vectors
¢~, and ~ i , contain all the information we could desire about the
next step for the parser.

Finally, let us remark that our matrix calculations can be
adapted to yield a shift-reduce parser even when no probabilities
are initially present. We simply replace the transition matrix M
with a suitably scaled incidence matrix M' , in which M'(A, B) =
¢ if B is the left child of A via sorae rule. Otherwise M'(A, B) = O.
A similar replacement is made for the matrix Q. The specific
values of the "probabilities" then arising from our calculations do
not matter, only whether or not they are zero. Thus, the off-line
construction of parser tables could be accomplished via a matrix
inversion, rather than the conventional recursive calculations.

C O N C L U S I O N S

With the addition of this score, there are now a number of
different methods for controlling the parsing of sentences from
a stochastic grammar, each with its own kind of parser and ex-
pected form of the grammar. The four we know of are: [1, 5, 8, 9].
It is possible to find "expensive" grammars for each of these

240

scores. For our score, a "cheap" grammar is one in which each
symbol is the left child in relatively few rules.

The goal, then, must be to find a parser, score and grammar
that meet the needs of a particular application. We take at least
some small comfort from the fact that our score has a Bayesian
"maximum likelihood" interpretation, even though the superior-
ity of that approach depends on the shaky assumption that the
input being parsed really is the randomly-generated output of the
stochastic grammar under consideration.

R E F E I ~ E N C E S
[1] Chitrao, M. V. and R. Grishlimn., "Statistical Parsing of Mes-

sages," Proc. DARPA Speech and]f alawl Language Workshop, pp.
263-266, June 1990.

[2] Jelinek, F., "Computation of the Probability off Initial Substring
Generation by Stochastic Context Free Graznmars', InlefTtal Re-
porl, Continuous Speech Recognition Group, IBM Research, T.J.
Watson Research Center, $%rktown Heights, ~ " 10598, 10 pages.

[3] Koch,ran, F. and J. Kupin, "Sequential Processing off Input Using
Stochastic Graannars" to appear.

[4] Lari, K and S. J. $%ung., "The Estimation off Stochastic Context-
free Gra[mnars Using the Inside-Outside Algorithm," Compuler
Speech and Language vol. 4, pp. 35-56, 1990

[5] Lee, H. C. and K. S. Fu., "A Stochastic Syntax Analysis Procedure
and its Application to Pattern Classification," IEEE T,~n,. Vol.
C-21, pp. 660-666, July 1972.

[6] Thatcher, J. W., "CharacLerizing Derivation Trees off Context Free
Granunars through a Generalization of Finite Automata Theory"
Journal of Compaler and System Sciences, VoI1A Dec. 1967.

[7] Tomita, M., Efficient Parsing for Araluf~l Language, Kluwer Aca-
denfic Publishers, Boston, 1986.

[8] Velaseo, F. R. and C. R. Souza, '~Sequential Syntactic Decoding,"
InL J. CompaL Inform. Sci. Vol. 3.4, pp. 273-287, 1974.

[9] Wright, J. H., "LR parsing off Probabilistie Gra, unars with Input
Uncertainty for Speech Recognition." Compgler Speech and Lan-
guage ~,%1. 4, pp. 297-323, 1990.

