
D e v e l o p m e n t and Pre l iminary Evaluat ion
of the M I T ATIS Sys tem 1

Stephanie Seneff, James Glass, David Goddeau, David Goodine, Lynette Hirschman,
Hong Leung, Michael Phillips, Joseph Polifroni, and Victor Zue

Spoken Language Systems Group
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

A B S T R A C T
This paper represents a status report on the MIT ATIS sys-

tem. The most significant new achievement is that we now have
a speech-input mode. It is based on the MIT SUMMIT system us-
ing context independent phone models, and includes a word-pair
grammar with perplexity 92 (on the June-90 test set). In addi-
tion, we have completely redesigned the back-end component, in
order to emphasize portability and extensibility. The parser now
produces an intermediate semantic frame representation, which
serves as the focal point for all back-end operations, such as his-
tory management, text generation, and SQL query generation.
Most of those aspects of the system that are tied to a partic-
ular domain are now entered through a set of tables associated
with a small artificial language for decoding them. We have also
improved the display of the database table, making it consider-
ably easier for a subject to comprehend the information given.
We report here on the results of the official DARPA February-91
evaluation, as well as on results of an evaluation on data collected
at MIT, for both speech input and text input.

I N T R O D U C T I O N
In June 1990, we reported on the initial development of

the MIT ATIS system, and participated in the first round of
DARPA common evaluation using text input [5]. Since then,
a number of changes have been made to our system, particu-
larly the back-end component that transforms the parse tree
into a representation that can be used to maintain discourse,
generate confirmation messages, and produce SQL queries
for accessing the OAG database. We have also connected the
SUMMIT speech recognizer to our ATIS system, so that it can
now accept verbal input.

This paper gives a progress report on the MIT ATIS de-
velopment, with particular emphasis on how the system pro-
cesses an input utterance to achieve understanding and gen-
erate responses. We will also report on the evaluation of
the system for both text and speech input, using the data
provided by TI through NIST, as well as the data that we

XThis research was supported by DARPA under Contract N00014-
89-J-1332, monitored through the Office of Naval Research.

have collected over the past few months [3]. Aspects of the
system involving discourse and dialogue are based on simi-
lar principles as before, but has been modified to reflect the
new semantic representations. A detailed description of our
discourse model can be found in a companion paper [4].

S Y S T E M D E S C R I P T I O N
In this section we will describe those aspects of the system

that have changed significantly since our report last June [5].
The most significant change has been the incorporation of
the speech recognition component. We begin by describing
the recognizer configuration and the interface mechanism we
are currently using. In the natural language component, the
parser and grammar remain unchanged, except for augmen-
tations to improve coverage. However, we have completely
redesigned the component that translates from a parse tree
to executable SQL queries, and the component that gener-
ates verbal responses. Both of these areas are described here
in more detail.

S p e e c h R e c o g n i t i o n C o m p o n e n t

The speech recognition configuration is similar to the one
used in the VOYAGER system and is based on the SUMMIT sys-
tem [6]. For the ATIS task, we used 76 context-independent
phone models trained on speaker-independent data collected
at TI and MIT [3]. There were 1284 TI sentences (read and
spontaneous versions of 642 sentences) and 1146 spontaneous
sentences taken from the MIT training corpus. The lexicon
was derived from the vocabulary used by the ATIS natural
language component and consisted of 577 words. In order to
provide some conservative natural language constraints, the
speech recognition component used a generalized word-pair
grammar derived from the speech training data augmented
with a large number of additional sentences pooled from all
available sources of nTIS related text material. The word-
pair grammar was generated by parsing each sentence, and
then generalizing each word in a terminal node to all words
in the same semantic class. Thus for example, an instance
of the word "Boston" would generalize to all cities. In the

8 8

case where a sentence did not parse, no additions were made
to the word-pair grammar. When evaluated on the TI June-
90 data set of 138 sentences, the word-pair grammar had a
coverage of 70% and a perplexity of 92. Overall, 3.6% of the
sentences that parsed failed to pass the word-pair grammar.

The interface to the natural language component was im-
plemented with the N-best mechanism we have described
previously for the VOYACER. system [6]. In our original im-
plementation, the first N-best output which parsed was used
by the back-end to generate a response. Since our natural
language component (TINA) is able to produce a parse prob-
ability derived from training data, we have tried to make use
of the probability in the selection of the N-best output. In
both the VOYAGER. and ATIS domains we have found that a
linear combination of the acoustic score produced by s v M M IT
and the parse score produced by TINA improved the overall
system performance [1]. In ATIS the improvement in recog-
nition accuracy was about 2% on the TI June-90 data set.

In order to control the number of false alarms produced
by the system, we investigated the use of severn,1 pruning
measures which could be applied to the N-best outputs. To
date we have found the N-best rank and the relative acous-
tic score (relative to the first choice output) to be effective
parameters.

T h e ATIS b a c k - e n d

After reassessing the status of our ATIS system last June,
we were concerned that the design of the back-end component
might not be as easily extended or ported to new domains as
we would like. We therefore decided to redesign the system,
with the goal of emphasizing both system modularity and
system portability. In choosing a design for the new system,
we had two major goals. One was to design a semantic frame
representation that would capture all necessary information
from the sentence and serve as a focal point for all compo-
nents of the back-end. The frame design should be flexible
enough to be able to extend to other domains. The sec-
ond goal was to provide a mechanism that would permit the
domain-dependent aspects of the system to be entered com-
pletely through table-driven mechanisms, without requiring
any explicit programming.

Processing of a sentence involves several steps. The first
step is to provide a parse tree for the input word stream.
A second-pass treewalk through the parse tree yields a se-
mantic frame, which is then integrated with available frames
from the history. Both an SQL query and a generated text
response are derived from the completed frame. The verbal
response is spoken to the subject and a table is retrieved from
the database through the database management system O R.-
ACLE. A table post-processing step converts the table to a
much more readable and informative form prior to display.
Finally, the system examines the goal plan and optionally
initiates an additional response, based on its assessment of

, Hi.qtnrv
R=nk"

Parser I = Semantic
I Frame

Input

_1 Tea I - I Generator

+
Verbal

Response

= Display ~
Table

Figure 1: Block diagram of system structure showing central
role of semantic frame.

a likely next step. A thorough description of dialogue and
discourse aspects of the system along with an example flight
reservations dialogue can be found in [4].

T h e S e m a n t i c F r a m e : The parse outputs of TINA are
first converted to a semantic frame representation which serves
three critical roles, as shown in Figure 1: it is translated to
SQL through table-driven pattern matching devices, it is de-
livered to a text-generation program to construct appropri-
ate verbal responses, and it serves as input to the discourse
history used to restore implicit information in subsequent
queries and resolve explicit anaphoric references.

Each frame is associated with a name, a type, and a
set of (key: value) pairs. The value can be an integer, a
string, a symbol, another frame, or a set of frames. There
are only a small number of possible types of frames, such as
clause, predicate, qset (for common noun phrases), reference
(for proper nouns), and quantifier. The type reference always
has a special key reflype associated with it, identifying the
class of proper nouns it belongs in (i.e., city-name would be
the reflype for "Boston.")

Conve r s ion of P a r s e Tree to S e m a n t i c F r a m e : The
process of producing a semantic frame involves a second-pass
tree walk through a completed parse tree. Only the names
of the nodes are needed, because of the semantic nature of
the grammar. In the tree walk, nodes pass along frames,
modifying them if necessary according to the node's seman-

8 9

tic significance. A completed semantic frame is ultimately
returned to the top-level sentence node and delivered as-is to
the back end for further processing.

About half of the nodes in the ATIS grammar have no
semantic significance, and hence they simply pass along to
their children and later to their right sibling whatever was
delivered to them. Each of the active nodes is associated
by name to a particular semantic name, which is often the
same as its "given" name. Each semantic name is in turn
associated with a particular functionality. There are fewer
than twenty possible functions, and during the tree walk, the
particular function to choose is dictated by the association.
Each function is called with three arguments: the semantic
name, the subparse tree and the current frame.

A simple example may help to clarify this process. The
node named dir-object is associated with the semantic name
theme which calls the function process-noun-phrase. This
function, during the top-down cycle, creates an empty frame
of type qset and inserts it into the current frame under the key
theme as specified by the argument. It then passes the empty
frame along to its children, who will fill it in. Finally, it passes
the original frame to its right siblings, with a completed entry
under the key theme.

D e c o d i n g t h e F r a m e : A completed semantic frame
is passed to the back-end for interpretation. The top-level
frame is always of type clause, and its name determines a
particular clause-level analysis function to be executed. Op-
tions include request, statement, yes-no-question, clarifier,
etc. For example, the function for a yes-no question makes
two separate calls to the database. The first one determines
the set of all objects as specified by the topic, and the sec-
ond one finds the set defined by the topic restricted by the
predicate (or complement). A final step seeks a non-null
intersection between the two sets. There are three possi-
ble types of response, namely "There is no <topic>," "Yes,
< topic> does do <predicate>," and "No, <topic> does not
do <predicate>." Thus, to answer the question, "Does the
earliest flight serve lunch?" the system finds both the earliest
flight and the earliest flight that serves lunch, and determines
whether they are the same flight.

In addition to the high-level interpretation of clauses,
some low level routines serve to reorganize certain informa-
tion in the frame as delivered by the parser. For example,
there are many modifiers which can be attached to either
flights or fares. We decided that it would be easier for later
processing if all fare modifiers are physically transferred to
a flight object, which is created if it didn ' t exist explicitly
in the sentence. Thus if the person says, "Show fares from
Boston to Denver," the sentence is converted into: "Show
fares forflights from Boston to Denver." In addition, phrases
about t ime and date are regularized and turned into abso-
lute references. Thus "the following Wednesday," is decoded
as "the date which is on the subsequent Wednesday to the

Frame Format :

[name type

keyl: valuel
key2 : value2

. . .]
Frame :

[reques t c l a u s e

predicate: [display predicate
for-poss : ["me" reference reftype: pronoun]
theme: [fare qset

for: [auto qset
car-type: limousine
I;o: ["oakland" reference

reftype: city-name]]]]]

Figure 2: Semantic frame representation of the sentence, "Show
me the price of a limousine to Oakland."

date stored in the history table." After the frame is properly
restructured, it is sent off to the discourse module, which
augments noun phrases (mainly flights and fares) with ap-
propriate modifiers from the history.

S Q L Q u e r y G e n e r a t i o n M e c h a n i s m : All of the domain-
dependent information needed to map frames into SQL queries
is contained in a small set of tables, which are decoded through
a simple artificial language involving a small number of spe-
cial operations. The basic unit of recognition is a pat tern
containing (name (key value-type)), where name is the name
of the parent frame, and value-type is the uniquely defined
identifier for the value associated with the key. For example,
the value-type of a qset is simply its name~ the value-type
of a reference is its reflype, and the value-type of a string is
STRING.

We will explain the interface between the semantic frame
and the back end by walking through a simple example. The
semantic frame derived from the sentence, "Show me the
price of a limousine to Oakland," is given in Figure 2, and
the table entries needed to decode that frame are shown in
Figure 3. The final SQL query generated is given in Figure 4.

The top-level display-table defines a set of elements to be
displayed and the set of database tables in which to find these
elements. For our simple example, the instructions are to
display all elements in the ground_service table, given a qset
named fare with a for key whose value is a qset named auto.
The final set of elements and tables to be displayed is con-
structed as the union of all sets whose patterns are matched
in display-table. In some cases, entries from multiple tables
must be displayed, and for these cases there is an additional
table that defines how to link the two database tables.

The qset-table contains a set of patterns particular to
frames of type qset, which trigger the augmentation of a sim-
ple database SQL query with a set of where-clause's. The
system processes a top-level qset through recursive process-
ing of possible nested qsets. In our example, both the top-

9 0

One entry in the "display-table":
((fare (for AUTO)) ground_service (*))

Three entries in the "qset-table":
((fare (for AUTO))

(add-where-clauses 0 $1))
((auto (car-type STRING))

(= transport_code (use-table auto-table)))
((auto ((from to in) (CITY CITY-CODE CITY-NAME)))

(in city_code (cvt CITY-CODE $i)))

One entry in the "conversion-table":
((CITY-NAME CITY-CODE)

(sql city city_code O ((= city_name $1))))

An auto-table :
(("taxi" T) ("limousine" L)("air-taxi" A)
("rental-car" R) ("car" R))

Figure 3: Table entries needed to decode the sentence, "Show
me the price of a limousine to Oakland," whose semantic frame
is shown in Figure 1

level fare and the auto entry under the for slot are qsets. The
entry under fare that matches this pat tern instructs the sys-
tem to add to the parent query all the where clauses that are
generated by the auto qset where the special code $1 stands
for the argument.

There are two entries under auto that are activated by our
frame. The one matched by car-type constructs the where-
clause for the unit: "where transport_code = 'L' " and the
one under the key to constructs the where-clause for the
city_code. The decoding of the city "Denver" is done through
the conversion-table, keyed by the special operator cvt (con-
vert). The operator sql in conversion-table triggers the con-
struction of another SQL query, "select distinct city_code
from city where city_name = 'DENVER,' " which is inserted
into the where-clause for city_code in ground_transport. What
is constructed through this decoding step is not the actual
string appropriate for calling the database, but rather a hi-
erarchy of structures representing queries and where clauses,
which can be converted to the query string through a print-
query function, resulting in the SQL command shown in Fig-
ure 4.

T h e Tab le Di sp lay : We felt that in many cases the raw
information from the database would not be readily com-
prehended without a further transformation. Therefore, we
wrote a set of conversion routines associated with each col-
umn heading that would make the table easier to understand.
Thus a clock time would be converted from "1426" to "2:26
P.M.", an airline name from "DL" to "Delta", and a fare
class from "QX" to "QX: coach class discounted weekday."
In some cases, we felt the database column was sufficiently

select distinct * from ground_service
where transport_code = 'L'
and city_code in

(select distinct city_code from city
where city_name = 'OAKLAND')

Figure 4: The SQL query for the sentence "Show me the price
of a limousine to Oakland."

confusing that it was better to leave it out altogether, espe-
cially in cases where the text response redundantly carried
the information. For instance, we never display the column
"flight days," since the verbal response will always say, "on
Tuesday" when appropriate. Likewise, we omit the flight-
code column because it invites the user to refer to flights
by their flight code using unpredictable language constructs.
Our paper on database collection [3] discusses the effects of
this transformation on solicited speech.

V e r b a l R e s p o n s e : A completed semantic frame is sent
to a text generation program along with the database ta-
ble indicating the answer. Text generation is mostly guided
through tables, associating keys with both a print function
and a positional specification within the parent frame's over-
all scheme. For example, adjectival modifiers precede the
main noun, a flight-number immediately follows the main
noun, and a post-modlfier such as a relative clause or a
gerund occurs at the end. Clause level generation is done
through specialized functions, each associating with a partic-
ular clause type, such as yes-no-question. The database table
is used both to infer what should be said at the top-level, and
to determine whether the noun phrase is singular or plural.
Thus, for example, an existential clause would be required
to produce one of, "There is" There are" or "There are no"
preceding a noun-phrase describing the intended flight set.
When a person asks a wh-query, such as "What meals do
these flights serve?" the system detects the trace under the
object of the verb "serve" and inserts the canned phrase, "the
following meals" into the verbal response. The database table
is then displayed providing the answer in a meals column.

O t h e r A s p e c t s of t h e S y s t e m : There are two other
major components of the system that have not yet been dis-
cussed. These are the discourse history management system
and the dialogue component. Both of these are described in
detail in [4] and therefore will only be briefly mentioned here.

Discourse is managed through a history table contain-
ing several types of elements derived from the previous sen-
tences, including both semantic frames identifying named
objects such as flights and dates, display tables from the
database, and, in the case of bookings, previous states of the
ticket. Most of the history revolves around a flight-event ob-
ject. Modifiers are inherited from the history either if they
are not explicitly mentioned in the current frame or if no

9 1

"masker" modifiers are present. For each history modifier,
a set of maskers is specified in a table. We determined the
masking conditions based on experience with real data. For
example, if the subject asks about "non-stop" flights, then a
connection-place would not be inherited. The most complex
history management involves references to "return flights," in
which a previously mentioned source and destination must be
"swapped," unless the previous sentence also concerned re-
turn flights. In addition, only fare restrictions and airline
should be inherited, along with source and destination. Any
previous references to a date or a flight number would be
dropped when talking about return flights.

The computer essentially always gives a verbal response
to the subject 's question identifying the contents of the dis-
played table. Dialogue is maintained through a dialogue state
stack which is popped and evaluated after each input sentence
is fully processed. A clear division is kept in the computer
code between the subject 's half of the conversation and the
computer's half. During the analysis of the subject 's con-
tribution, the dialogue state may be modified, but none of
the dialogue execution routines are called. Most of the time
the dialogue stack is empty, and it rarely contains more than
one previous state. Dialogue is used mostly during bookings,
which involve a complex interplay between the subject and
the computer. For example, if the subject says, "Book the
cheapest flight." the system must remember that a booking
is underway, but must first ask whether the subject wants a
one-way or round-trip fare. Hence the stack becomes two-
deep at this point.

E V A L U A T I O N
Table 1 summarizes our results for the three obligatory

system evaluations using the February-91 test set provided by
NIST. The first test takes as input the transcriptions of the
so-called Class A sentences, i.e., sentences that are context
independent, and produces a CAS 2 output. The second test
is the same as the first one, except that the sentences are
Class D1, i.e., their interpretation depends upon a previous
sentence, which is provided as additional input. The last test
is the same as the first, except that the input is speech rather
than text. For each data set, we give the percent correct,
percent incorrect, percent with no answer, and the overall
score, where the score penalizes incorrect answers weighted
equally against correct answers.

Comparing the first row of Table i with last June, our cur-
rent implementation makes considerably fewer false alarms
for text input. The two errors that the system made were
due to a minor system bug; while the correct answer was dis-
played to the user locally, we inadvertently sent the wrong
one to the comparator. We are encouraged by this result,

2CAS, or Common Answer Specification, is a standardized format for
the information retrieved from the OAG database, which is compared
against a "reference" CAS using a comparator provided by NIST.

Data No. of I Correct Incorrect No Answer Score I
Set Sentences (%) (%) I (%) (%) I

Class A Text 145 I 56.6 1.4 i 42.1 55.2
Class D1 Text 38 I 47.4 5.3 I 47.4 42.1

I[Class A Speech]45 I 31.7 13.1 [55.2 [18.6 H

Table 1: Results for the standard ATIS test sets for three test
conditions.

since the errors were all due to factors unrelated to the de-
velopment of the natural language technology, and as such
can be fixed trivially.

The results for the context-dependent sentences are given
in column 2 of Table 1. Our system provided correct answers
for 18 of the 38 context pairs, and made only 2 errors. This
is a more stringent test than the first one, since providing
the correct answer in this case demands that both sentences
be correctly understood. One of the errors was due to the
same system bug describe above, i.e., the right answer was
displayed but not sent. In the second one, which we con-
sidered to he the only error made by the natural language
system, the system simply ignored the context.

The results for the Class A sentences with speech input
are given in Column 3 of Table 1. Of the 19 sentences that
provided an incorrect answer, 2 were correctly recognized,
but failed due to the system bug mentioned above.

We recently collected a sizable amount of spontaneous
speech data, using a paradigm very different from the one
used at TI. Our preliminary analyses of the two data sets
have indicated significant differences in many dimensions, in-
cluding the speaking rate, vocabulary growth, and amount
of spontaneous speech disfluencies [3]. We thought it might
be interesting to compare our system's performance on the
two data sets. To this end, we asked B. Bly of SRI to help
us generate the CAS reference answers for the designated
development-test set of our database. The test set consists

'of 371 sentences, of which 198 were classified by Ms. Bly as
Class A. Since'no aspects of our system had been trained on
these data, we consider it to be a legitimate test set for pur-
poses of this experiment, although we plan to use it in the
future as a development test set.

The results for CAS output with both text and speech in-
put for the MIT data are given in Table 2. We should point
out that in an initial run of the text-input condition, several
answers marked as "incorrect" were judged by us to be du-
bious. We submitted these questionable answers to Ms. Bly,
as part of the customary follow-up process of "human aju-
dication" established at NIST. The results in Table 2 thus
represent the final outcome. Some of the discrepancies were
due to an error on the part of the reference answer, several
were due to the "yes/no" vs. table problem, several were due
to the fact that SRI assumed 1990 for all dates, whereas most

9 2

I Data No. of !Correct Incorrect No Answer Score }]
Set Sentences (%) (%) (%) (%)]

Class A Text 198 74.2 1.5 24.2 72.7
[[Class A Speech I 198 39.9 I 8.1 52.0 I 31.8 [I

Table 2: Results for 198 Class A utterances taken from the MIT
Development Test Set, with CAS reference answers provided by
SRI, for both text and speech input.

of the dates were actually in January of 1991.

For the text- in/CAS-out test condition, we obtained an
overall score of 72.7%, which is a dramatic improvement over
our results on the TI data. In two of the three errors, the
back-end ignored certain critical modifiers in the frame. The
third error was fairly subtle: we interpreted "I 'd like to book a
flight between Boston and San Francisco with stops in Denver
and Atlanta," to mean or rather than and for the stops.

We produced a correct answer for almost 40% of the ut-
terances when the speech recognizer was included in the sys-
tem, with an 8% false alarm rate. This gave an overall score
of 32%, which is again substantially higher than the 18.6%
score we received for the recognizer results on the standard
test set. The MIT test was run after some bug fixes, which
would have improved the score for the TI data to 24% (see
Table 3). However, this is still substantially lower than the
score for the MIT set. This is all the more surprising since the
MIT test data were not prescreened for speech disfluencies s -
we included all of the Class A sentences of each test speaker.
There are several possible explanations for the discrepancy.
We believe that the MIT sentences are spoken more fluently,
as suggested by the results of a statistical analysis reported in
[3]. We also suspect that MIT subjects tend to use constructs
that are more straightforward and conform more closely to
standard English. Finally~ the MIT sentences include very
few table clarification questions, a feature which allowed us
to reduce the size and perplexity of our grammar.

In general, the speech recognition error rate for our sys-
tem is significantly higher in the ATIS domain than what we
have experienced with the Resource Management domain.
One conclusion we may draw is that spontaneous speech,
with out-of-domain words and novel linguistic constructs,
can combine to degrade recognition performance drastically.
There are at least several other reasons that contribute to our
increased speech recognition error rate. The version of our
recognizer in the ATIS system used only context-independent
phoneme models. This is because we have focused our re-
search attention in speech recognition primarily on the Re-
source Management task, and did not really devote any effort
to the ATIS domain until late January. The word-pair lan-
guage model that we developed has a coverage of only 50% of

SThe TI class A sentences were screened to exclude disfiuencies for
the basic test set.

Data No. of CorlSub Del Ins Error
Set Sentences (%) (%) (%) (%) (%)

TI Feb 91 145 65.2 28.1 6.8 8.8 43.6
MIT Development 198 78 18 4 3 25.6

Table 3: Speech recognition results

the TI test set sentences. It also has a perplexity of over 90,
which is higher by a factor of at least four compared to what
others have used (see, for example, [2]). In the next few
months, we intend to incorporate context-dependent mod-
elling to the ATIS domain. We will also replace the word-pair
language model with a bigram so as to increase the coverage
and lower the perplexity.

S U M M A R Y
This paper gives a current status of our ATIS development

effort. A significant change since the last workshop is that the
system can now accept verbal input. We have also rewritten
the back-end component, adopting an approach that should
promote extension and portability. We have extended our
evaluations this time to include both Class A and Class D1
sentences. Our evaluations for both speech and text input
were performed on two different data sets, collected at TI and
MIT. The system's performance appears to depend strongly
on the conditions under which the data were collected.

R E F E R E N C E S
[1] Hirschman, L., Seneff, S., Goodine, D., Phillips, M., "Inte-

grating Syntax and Semantics into Spoken Language Under-
standing," These Proceedings.

[2] Paul, D. B., "New Results with the Lincoln Tied-Mixture
ttMM CSR System," These Proceedings.

[3] Polifroni, J., Seneff, S., and Zue, V. W., "Collection of Spon-
taneous Speech for the hwIS Domain and Comparative Anal-
yses of Data Collected at MIT and TI," These Proceedings.

[4] Seneff, S., IIirschman, L., and Zue, V. W., "Interactive Prob-
lem Solving and Dialogue in the ATIS Domain," These Pro-
ceedings.

[5] Zne, V.,Glass, J., Goodine, D., Lenng, I-I., PhiUips, M., Po-
lifroni, J., and Seneff, S., "Preliminary ATIS Development at
MIT," Third DARPA Speech and Natural Language Work-
shop, Hidden Vailey, PA, June 1990.

[6] Zue, V., Glass, J., Goodine, D., Leung, If., McCandleas, M.,
Phillips, M., Polifroni, J., and Seneff~ S., "Recent Progress on
the VOYAGER system," Third DAI~PA Speech and Natural
Language Workshop, IIidden Valley, PA, June 1990.

93

