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ABSTRACT 
This paper describes the tree-structured maximum mutual 

information (MMI) encoders used in SSrs Phonetic Engine ® 
to perform large-vocabulary, continuous speech recognition. 
The MMI encoders are arranged into a two-stage cascade. At 
each stage, the encoder is trained to maximize the mutual 
information between a set of phonetic targets and 
corresponding codes. After each stage, the codes are 
compressed into segments. This step expands acoustic- 
phonetic context and reduces subsequent computation. We 
evaluated these MMI encoders by comparing them against a 
standard minimum distortion (MD) vector quantizer 
(encoder). Both encoders produced code streams, which were 
used to train speaker-independent discrete hidden Markov 
models in a simplified version of the Sphinx system [3]. We 
used data from the DARPA Resource Management (RM) 
task. The two-stage cascade of MMI encoders significantly 
outperforms the standard MD encoder in both speed and 
accuracy. 

INTRODUCTION 
Most hidden Markov model systems use minimum 

distortion (MD) vector quantizers (encoders) to convert 
continuously valued speech parameters into streams of 
integer codes. However, MD encoders do not optimize a 
criterion that is directly related to recognition accuracy. 
Moreover, they use a single distortion measure that may not 
be appropriate for all speech classes. In this paper, we 
propose the use of maximum mutual information (MMI) 
encoders that are trained to extract phonetic information and 
thereby minimize phonetic recognition errors. We further 
compress the frames into larger segments and repeat the 
encoding. 

Our MMI encoders are binary decision trees built to 
maximize the average mutual information between the 
phonetic targets and the codes assigned to them. The task of 
training such encoders has been extensively addressed in the 
theory of binary decision trees [5, 8, 2]. For example, 
Breiman et al. systematically consider binary decision trees 
applied to various classification tasks. The decision (interior) 
nodes of the tree are allowed to use linear combinations of 
feature vectors, as well as unordered categorical features. 
Training criteria ("impurity" criteria) for the binary decision 
trees include the average leaf-node-conditional class entropy. 
Training is performed in a top-down node-at-a-time fashion, 

adding new leaf nodes and maximizing reduction in the 
average leaf node impurity attained by such additions. It is 
demonstrated on many practical classification problems that 
the above procedure results in a suboptimal, but sufficiently 
accurate tree. 

Labelled data necessary for the supervised training is 
obtained by aligning speech frames with phonetic 
transcriptions using dynamic programming. We train a two- 
stage cascade of binary-tree encoders. In the first stage, 
f rames are encoded to extract maximum information about 
their target label classes. Feature vectors used in the tree 
encoder are frame-based. Contiguous runs of frames with the 
same code are compressed into segments. In the second stage, 
the resulting segments  are encoded to extract maximum 
information about their target label classes (we assign a 
single target label class per segment). Segment-based 
acoustic feature vectors are used in the second-stage tree 
encoder, along with some categorical features based on the 
phonetic identities uncovered by the first-stage tree encoder. 
Segment duration features are also used. Resulting runs of 
segments with the same code are again compressed into 
larger segments. 

Speech Systems Incorporated (SSI) has been using a 
version of this two-stage cascade of the MMI encoders in the 
Phonetic Engine ®, an integral part of SSI's large- 
vocabulary, continuous speech recognition system [6, 1]. 
The two-stage trees are very fast; they encode one second of 
speech in one-third of a second on a 16 mHz 68020 
microprocessor. In this study, we apply these MMI encoders 
in a more limited sense -- as vector quantizers for the Sphinx 
speech recognition system [3]. This enables a direct 
comparison of MMI encoders and standard MD encoders. In 
our experiments, for the sake of expediency, we used a 
simplified version of the Sphinx system limited to 48 
context-independent phonetic HMMs and 26 acoustic frame 
features. The two-stage cascade of MMI encoders outperforms 
the standard MD encoder: Word error rate drops by 33% and 
recognition is performed roughly 1.6 times faster. 

We also ran a preliminary evaluation of the MMI and MD 
encoders using the Sphinx 1100 context-dependent 
(generalized triphone) HMMs. We used the same codes 
without re-growing the trees for context-dependent class 
targets. Error rate was reduced by more than half relative to 
no use of context. 
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SYSTEM O V E R V I E W  
Here we briefly describe the system used in our 

experiments. Figure 1 summarizes the encoding process and 
the experiments performed. 

Acoustic Processing 
The speech is sampled at 16 kHz and is converted into a 

sequence of 10-msec frames of 26 acoustic parameters: 12 
cepstrum coefficients, 12 differenced cepstrum coefficients, 
power and differenced power [3]. 

Labelling 
Training of the tree-structured MMI encoders is performed 

using labelled speech data. The set of label classes used for 
labelling contains 144 classes: there is a unique label class 
for each of the three pdf's (roughly corresponding to 
beginning, middle, and end) of each of the 48 Sphinx 
context-independent phones. Labelled frame data for training 
is obtained via Viterbi alignment using the Sphinx system. 

First-Stage (Frame) MMI Encoder 
At the first (frame-coding) stage, frames are encoded in 

such a way as to convey maximum information about their 
underlying label class identities. To perform frame encoding, 
the frame time-sequence is scanned by a "sliding window" 
covenng W frames; in our experiments, we kept W = 1 (a 
constraint imposed for the sake of a fair comparison between 
the first-stage MMI encoder and the standard MD encoder; 
normally, we use a three-frame window). A set of the 26 
acoustic parameters of a frame was used as a feature vector 
accessed by the window. The tree frame encoder takes as 
input this feature vector and outputs a code for the frame at 
the center of the window. The encoder is trained to maximize 
the average mutual information between its code alphabet and 
the alphabet comprised of the 144 target label classes. 

The resulting sequence of coded acoustic frames is further 
processed to form acoustic segments by merging time- 
contiguous blocks of frames with the same code. Also, the 
most likely broad phonetic class is assigned to each formed 
segment. The stream of the acoustic segments with the 
assigned segmentation classes constitutes the input to the 
segment-coding stage. 

Second-Stage (Segment) MMI Encoder 
The second (segment-coding) stage processing is similar 

to that of the frame-coding stage. Namely, segments are 
encoded in such a way as to convey maximum information 
about their underlying phonetic classes. 

To perform segment encoding, the stream of segments is 
scanned by a sliding time window covenng three segments 
(W = 3). A set of pre-defined feature vectors is extracted from 
the acoustic parameters of all the frames encountered in the 
segments accessed by the window. Also, the most-likely 
broad phonetic classes assigned after the first stage to each of 
the three segments in the window comprise additional 
categorical variables. These variables provide phonetic 
features complementing the acoustic features. Segment 
duration features are also computed. The segment encoder tree 
takes as input these sets of features and outputs a code for the 
segment in the center of the window. The encoder is trained 
to maximize the average mutual information between its 
code alphabet and the alphabet comprised of the 144 target 

label classes. The target labels for segments were derived 
from the labels of the constituent frames. 

To obtain a categorical feature for use in the tree based on 
the phonetic class of a segment, we combined 144 target 
phonetic classes into nine broad superclasses, and used the 
most likely superclass number for each code. The selected set 
of broad phonetic superclasses is shown in Table 1 (in the 
standard notation of the Sphinx phonetic system, [3]). 

Class  Phones  
0 SIL 
1 S SH Z ZH TS JH CH 
2 W L  
3 V F T H  
4 T K P H T D P D  KDG B DDHDX DD 
5 R ER 
6 N M NG 
7 AH AE AA AY AO OW OY AW 
8 EH EY IH IY AX IX Y UH UW 

Table 1: Superclasses used in a categorical variable for the 
second-stage tree. 

The resulting sequence of coded segments is further 
processed to form larger segments as in the first stage. The 
stream of the enlarged segments with the assigned codes 
constitutes the output of the second stage. 

MMI Training 
The first- and second-stage MMI encoders are trained 

using labelled data (supervised training). The encoders are 
trained as binary decision trees using maximization of the 
average mutual information I(classes, codes) between the set 
of target label classes and the set of leaf-node numbers 
(codes), as the training criterion: 

I( classes, codes) = 

E Pr(class,code)*log(Pr(class,code)/(Pr(class)*Pr(code))), 
class code 

where Pr(class,code) is the joint probability of the class and 
the code assigned to a training sample, Pr(class) and Pr(code) 
are the marginal class and code probabilities, respectively. 

Training is performed top-down, starting from the root of 
the binary decision tree. The decision function associated 
with each decision node of the tree effects the split of the 
feature space with a hyperplane (for the continuous-valued 
feature vectors) or a dichotomy of a discrete set (for a 
categorical feature). The training samples at each node were 
those which reached that node after passing through 
predecessor nodes. 

Training of the decision function at a node uses as an 
optimization criterion the reduction in the node's average 
class entropy. To find a decision hyperplane, we use 
conjugate gradient based search [9] where the gradient of the 
criterion function with respect to the hyperplane coefficients 
is computed by replacing the "hard limiter" decision function 
with a piecewise linear one (the threshold-logic type) and 
gradually annealing that non-linearity to the hard limiter. 
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Figure 1: Overview of the Multi-Stage Decision Tree 
(MMI) Encoder and Experiments. 
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Once the optimal coefficients are estimated, we use the hard 
limiter decision function to send the patterns to the left or 
the right child node. We don't  split a node if the highest 
reduction in the class entropy attained by the "node split" is 
less than a certain fraction of the node's class entropy; a final 
node is a terminal node. 

After the entire binary tree is created, its performance 
criterion (i.e. the average mutual information between the set 
of target classes and the set of the terminal nodes) is 
evaluated with a combination of the training and independent 
sets of labelled data. Some nodes are then removed, starting 
with the current terminal nodes, i.e., the tree is "pruned," to 
produce a more robust subtree with more accurate estimates 
of the node-class probabilities. The resulting terminal node 
numbers are used as codes. 

The above training and pruning of the trees was performed 
utilizing SSI tree-growing software. 

EXPERIMENTS 
We compared various MMI tree encoders with the standard 

MD encoders (quantizers), as used in Sphinx and other 
discrete HMM-based systems. Both MMI and MD encoders 
produce codes, which were used as input to the Sphinx 
System [3]. For this study, a simplified version of  the 
Sphinx system was used. Instead of  context-dependent 
modeling, we used only context-independent models. Instead 
of 51 features (as used in the latest version), we used only 26 
features (12 cepstrum coefficients, 12 differenced cepstrum 
coefficients, power and differenced power). Therefore, the 
results should be evaluated relatively rather than absolutely. 
We evaluated both a three-codebook version (256 codes per 
codebook) and a one-codebook version (1024 codes). For the 
one-codebook version, we also used co-occurrence smoothing 
and deleted interpolation [4] to smooth rarely observed codes. 
We used the standard inventory of 48 phonetic models, each 
with 7 states and 3 output pdt~s. 

We also started a preliminary evaluation of the second- 
stage segment MMI codes for a version of the Sphinx 
system using context-dependent HMMs. Results are given at 
the end of this section. 

The task for our study is the DARPA Resource 
Management (RM) task, with the perplexity 60 word-pair 
grammar [7]. We used the standard "extended training set" of 
3990 sentences from 109 speakers for speaker-independent 
training. We trained the phonetic HMMs on all 3990 
sentences. All results were evaluated on 300 independent test 
sentences from 12 speakers (the June 88 test set). Following 
that, selected cases were evaluated on the RM2 June 90 test 
set as a verification. 

We first generated a first-stage MMI tree encoder (MMI- 
1024). This tree was grown using 144 target phonetic classes 
(48 phones x 3 distributions). All 26 features were accessible 
at all nodes to form linear decision boundaries (via linear 
combination splits). We used half of the training sentences 
to grow the MMI tree encoder, and all of the training 
sentences to prune it. This tree was grown to 1430 codes, 
and then pruned to 1024 codes. The average code-class 
mutual information and corresponding error rate (substitution 

+ deletion + insertion) on the RM task (after the Forward- 
Backward training with co-occurrence smoothing and deleted 
interpolation) are shown in in Table 2. 

To evaluate this result, we also generated an MD encoder 
(quantizer) that used the same 26 features, utilizing a 
weighted Euclidean distance (MD-1024) [3]. The results of 
this encoder (again, after the Forward-Backward training with 
co-occurrence smoothing and deleted interpolation) are shown 
in Table 2. In this experiment, the MMI-1024 encoder error 
rate was 3.5% lower than the MD-1024 encoder (a 15% 
reduction in error raate). 

Experiment Encoder Info (bits) Error 
No. I Rate 

(%) 

2a MMI-1024 3.42 out of 6.63 19.2 
lb MD-1024 3.16 out of 6.63 22.7 
1 See Fig. 1. 

Table 2: Comparison of an MD encoder with an MMI 
frame stage encoder: a single codebook. 

Since the standard Sphinx system uses three separate VQ 
codebooks, we also compared the performance of a 3- 
codebook MD encoder and a 3-codebook MMI encoder. In 
each case, the encoder has access only to a subset of the 
features (VQ1 - 12 cepstrum coefficients, VQ2 - 12 
differenced cepstrum coefficients, and VQ3 - power & 
differenced power). The codebook size was the same for all 
the encoders (256 codes). Co-occurrence smoothing of the 
output code pdfs was not performed in these experiments, 
but deleted interpolation was done. The results (see Table 3) 
indicate that the MMI encoder gives slightly higher error 
than the MD encoder (despite higher information extracted), 
and both were worse than the MMI-1024 encoder. We 
conclude that effective tree encoders require access to the 
entire feature vector, so as to exploit the between-feature 
relationships. 

Experiment E n c o d e r  In fo  (bits) Er ro r  
No. 1 (VO1. VO2.VO33 Rate 

(%) 

2b MMI 3-VQ 2.23, 1.77, 1.79 20.5 
out of 6.63 

la MD3-VQ 2.09, 1.51, 1.68 20.0 
out of 6.63 

1 See Fig. 1. 

Table 3: Comparison of  MD encoders with MMI 
frame-stage encoders: three codebooks. 

Next, we evaluated the second-stage MMI tree encoder. 
We used a three-segment sliding window to compute features 
derived from the 26 frame acoustic parameters, and 
categorical features derived from the segment phonetic 
identities discovered by the first-stage tree encoder. Segment 
duration features were also computed. 

The target labels for segments were derived from the 
labels of  the constituent frames. Using those targets, we 
grew a second-stage MMI tree encoder to 1417 codes (using 
all of the training sentences) and then pruned it to 1024 

349 



codes. The codes output by the encoder were further 
compressed by combining runs of segments with the same 
codes into larger segments. 

We evaluated the second-stage codes in two ways: as 
frame codes (every constituent frame of a segment was 
assigned the segment code, MMI-SF), and as segment codes 
(one code per segment, MMI-SS). Respectively, we trained 
two sets of the phonetic HMMs (standard 48 phonetic 
models of the SPHINX system) and ran recognition tests 
using streams of frame and segment codes. The code-class 
mutual information and corresponding error rates are shown 
in Table 4 (after the Forward-Backward training with co- 
occu~ence smoothing and deleted interpolation). 

Although MMI-SF extracts substantially more 
information, the performance was slightly lower. However, 
switching to segment codes (MMI-SS) resulted in a 
performance improvement of 4.0% (21% reduction in error) 
relative to the first stage alone. Performance was improved 
7.5% (33% reduction) over the MD-1024 baseline (Table 2). 

E x p e r i m e n t  Fdl.C..9.d.fJ: l n f o  (bits)  Error 
N o .  R a t e  

f%) 

2a MMI-1024 3.42 out of 6.63 19.2 
4 MMI-SF 3.85 out of 6.63 19.8 
3 MMI-SS 3.52 out of 6.73 15.2 

Table 4: MMI encoders: different temporal units. (MMI- 
SF is segment codes on frames; MMI-SS is 
segment codes on segments.) 

It was also found that MMI segment codes lead to 
significant frame compression (on the average, 1.6 
frames/segment) and therefore to significant speed advantages 
(which should be roughly proportional to the reduction in 
segments). Table 5 illustrates this phenomenon. Thus, there 
was a simultaneous improvement in speed and accuracy 
using an MMI segment encoder rather than an MD vector 
quantizer. 

Table 5 displays the average number of temporal units 
(frames or segments) per target label class in the Per Target 
column. The number of segments decreases with each stage 
of successive temporal compression. In the final 
segmentation, the number of temporal units per target label 
class is reduced by a factor of 1.6. We can measure whether 
the temporal compression loses target class segment 
boundaries, by examining the percentages of the target label 
classes which were merged into groups of two or more 
within single segments (Merged Targets column); only 3.2% 
of such targets were merged by the final segmentation stage. 

S e g m e n t a t i o n  ~ Merged  
T a r g e t s  

before 1st stage 3.18 frames 0% 
after 1st stage 2.48 segments 1.6% 
after 2nd stage 2.01 segments 3.2% 

Table 5: Effect of segmentation. 

We conjecture that the observed improvement in the 
recognition accuracy for the segment codes versus frame 
codes is mainly due to the following. First, the underlying 
assumption of independence of the output code distributions 
given a transition in a phonetic class model (made for use of 
the hidden Markov models of phonetic classes) is satisfied to 
a greater extent when the runs of frames with the same code 
are merged in a single segment code, thus absorbing short- 
time dependencies. Therefore, the HMMs become more 
adequate models of the phonetic classes. Second, there 
remains a sufficient amount of training data for the segment 
codes after the data is compressed due to segmentation. 
Finally, segmentation does not lead to any significant 
merging of the target label classes within the resulting 
segments, thereby retaining temporal resolution of phonetic 
targets. 

We also made a preliminary evaluation of the 2nd-stage 
segment MMI codes for a version of the Sphinx system 
using context-dependent HMMs (1100 generalized triphone 
models for within- and between-word triphones). The results 
are shown in Table 6. Results for a comparable Sphinx 
configuration using 3 MD codebooks (using subsets of the 
26 features) is shown for comparison. In both cases, co- 
occurrence smoothing was performed along with deleted 
interpolation. Although the word accuracy is close for both 
cases, the decoding speedup for the segment codes gives the 
advantage to the MMI encoder. We view these results as 
rather encouraging, in view of the following limitations: (a) 
the encoder tree's topology was not utilized for pdf 
smoothing, and (b) training of the MMI encoders was done 
on the pdf labels of the 48 phones, and not on the generalized 
triphones. Further investigation of the use of MMI encoders 
with context-dependent HMMs will be conducted in the 
future. 

E n c o d e r  

MMI-SS-Context Dependent 
MD 3-VQ-Context Dependent 

Error 
R a t e  

7.1 
7.0 

Table 6: Context-dependent decoding. 

Results for the RM2 (June 90) test set are shown in table 7. 
They show the same trend. 

Fdllf.O.dg.i: Error 
R a t e  
f%) 

MD-1024 19.5 
MMI-SS 15.6 
MMI-S S -Context Dependent 8.0 

Table 7: Results on June 90 RM test set. 

CONCLUSION 
We compared vector quantization (the MD encoder) with 

no segmentation to a multi-stage decision-tree encoder (the 
MMI encoder) with and without segmentation. We found that 
the MMI encoder (1) extracts a significantly larger amount of 
information than the MD encoder; (2) works better with a 
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combined feature set (as a single tree); and (3) yields higher 
accuracy with faster decoding time when segment codes are 
used. 

In order to make a controlled comparison, neither the best 
decision tree technology nor the best Markov model 
technology was used. In decision trees, we did not use wider 
context in the frame tree, as in previous work [1]. In 
addition, we have found that a third segmentation stage 
helps, creating even larger yet "clean" segments (unpublished 
work at SSI). The decision tree can easily use more features 
simultaneously, providing the prospect of more informative 
codes. Since the trees make dichotomous decisions, more 
extensive smoothing of the codes (utilizing tree topology) 
should help. Further, several iterations of the entire process 
of labelling the frames and tree-growing can be repeated to 
improve accuracy (as long as the resulting recognizer 
provides more accurate decoding than that of the previous 
iteration). Finally, due to temporal compression of frames 
and resulting data reduction, a reduced topology of the 
phonetic HMMs (e.g., fewer states/transitions) may yield a 
better fit to the segment codes. Future research will include 
trying some of these variations. 

In our experiments, we have not fully explored the context 
dependency of the phonetic models. Further investigation of 
the use of MMI encoders with context-dependent HMMs will 
be conducted in the future. 
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