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Introduction 
The VOYAGER speech recognition system, which was de- 

scribed in some detail at the last DARPA meeting [9], is 
an urban exploration system which provides the user with 
help in locating various sites in the area of Cambridge, Mas- 
sachusetts. The system has a limited database of objects 
such as banks, restaurants, and post offices and can provide 
information about these objects (e.g., phone numbers, type of 
cuisine served) as well as providing navigational assistance be- 
tween them. VOYAGER accepts both spoken and typed input 
and responds in the form of text, graphics, and synthesized 
speech. Since the  last meeting, we have made developments 
to VOYAGER that have had an impact on the usability of the 
system. 

In this paper, we will describe these developments and 
report on evaluation results after these changes were incor- 
porated into the system. Two key developments to VOYAGER 

are a tighter integration of the speech and natural language 
components and a pipelined hardware implementation lead- 
ing to a speed-up in processing time from approximately 12 
times real time to approximately 5 times real time. We also 
discuss here a number of incremental improvements in the 
word-pair grammar, pronunciation networks, and the back- 
end capabilities. 

SR/NL Integration 
In our initial implementation of VOYAGER, the integration 

of speech and natural language components was accomplished 
by obtaining the best word sequence from the recognizer and 
passing that word sequence to the natural language system. 
Modifying the speech recognition component to produce a 
list of the top scoring word sequences provides a convenient 
means for increasing the level of integration of the speech 
recognition and natural language components [2]. In this way, 
the natural language system can be run successively on each 
of the word sequences to find the highest scoring sequence 
that passes the natural language constraints. 

Two-stage N-Best search 
Previously, to produce the top scoring word sequence, our 

speech recognition system used Viterbi search [4,10]. This al- 
gorithm provides an efficient search for the top word sequence 
but does not directly provide the top N word sequences. Oth- 
ers have chosen to modify this search by keeping track of the 
top N word sequences at each point in the search [2]. We also 

use a modification of Viterbi search to produce the top N 
word sequences. In our algorithm, we first use Viterbi search 
to compute the best partial paths both arriving and leaving 
each lexical node at each point in time. The algorithm then 
successively extracts the next best complete path by search- 
ing through the precomputed matrix of partial paths to find 
the highest scoring path that has not yet been extracted. 

To extract the N highest scoring paths from the precom- 
puted matrix of partial paths, this two-stage N-Best search 
utilizes the fact that each new path must either contain a new 
node-pair (a given lexical node at a given point in time) or 
must be some combination of portions of the paths found 
so far. So, the search must keep track of the best path 
passing through each node-pair (which is the sum of the 
scores of the best arriving and leaving paths computed by 
the Viterbi search) and must also keep track of all combina- 
tions of the complete paths found so far. The next highest 
scoring path can be found by taking the highest scoring path 
either through a new node-pair or from some combination of 
previous paths. 

The computation of the partial paths either arriving or 
leaving each lexical node at each point in time is the same as 
needed for the forward Viterbi search for the top scoring word 
sequence. Therefore, the total computation needed for this 
algorithm is two times the Viterbi search plus the amount 
of computation we need to extract the paths from the pre- 
computed matrix. We have measured the computation time 
and memory use of our implementation of this algorithm as 
a function of the number of sentence hypotheses. This re- 
source use is plotted as the open symbols in Figure 1. This 
experiment was performed on 495 utterances with a test set 
word-pair perplexity of 73 and a vocabulary size of 350 words. 

This algorithm is somewhat different from the frame- syn- 
chronous algorithm described previously [2], and has a num- 
ber of advantages and disadvantages. An important advan- 
tage for VOYAGER is that we do not have to choose N before 
performing the search. In the system, we are able to check 
each word string as it is produced by the recognizer and tell 
the system to quit as soon as one of the sentences passes the 
natural language constraints. Also, at least in our segment 
based system, this algorithm is quite efficient. This efficiency 
advantage may not hold for frame-based systems. As de- 
scribed above, it is necessary to keep track of pointers for the 
partial paths for the entire node-pair matrix. This is not a 
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large problem in our system, since the nodes are at a segment 
level rather than at a frame level. Furthermore, we needed 
to keep track of these pointers for the forward pass in the 
Viterbi search anyway, and so the memory requirements only 
increase by a factor of two. A disadvantage of this approach, 
at least when implemented on a per utterance-basis as de- 
scribed, is that more than two-thirds of the search cannot 
be started until the end of the utterance is reached. There- 
fore, this part of the processing cannot be pipelined with the 
incoming speech. 

A* search 
Passing the top N word sequences to the natural language 

system is an improvement over passing only the single best 
scoring sequen6e, but our goal is to make better use of the 
natural language constraints at an early stage of the search. 
The A* search algorithm can Provide a flexible mechanism for 
making use of natural  language constraints because it keeps a 
stack of partial paths that are extended based on an evalua- 
tion function. Non-probabilistic natural  language constraints 
can be used to prune partial  hypotheses either before they 
are put on the stack or before they are extended. Prediction 
capability of the natural  language system can be used to pro- 
pose ways of extending partial  paths. Finally, probabilities 
of partial  paths provided by the natural language system can 
be incorporated into the evaluation function. 

The A* search evaluation function is defined as 

if(p) = g(p) + h*(p), 

where f*(p) is the estimated score of the best path con- 
taining partial path p, g(p) is the score for the match from 
the beginning of the utterance to the end of the partial  path 
p, and h*(p) is an estimate of the best scoring extension of 
the partial path p to the end of the utterance [1]. This search 
is admissible if h*(p) is an upper bound on the actual best 
scoring extension of partial  path p to the end. 

To efficiently apply A* search to spoken language sys- 
tems, it is important to have as tight a bound as possible for 
ha(p) since a looser bound results in increased computation. 
We can use Viterbi search to compute this upper bound by 
searching back from the end of the utterance to find the best 
score to the end for each lexical node at each point in time. 
If the constraints we use in the Viterbi search to compute the 
best score to the end are a subset of the full natural  language 
constraints, this estimate of the best score to the end is guar- 
anteed to be an upper bound on best score to the end given 
the full constraints. 

The A* search allows a large amount of flexibility in when 
to apply the natural  language constraints. For example, we 
can wait until we have entire sentence hypotheses before ap- 
plying the full natural  language constraints. This turns the 
A* search into an N-best algorithm [3] and allows us to com- 
pare it directly to the other N-best algorithms. We computed 
processing time and memory use for our implementation of 
this algorithm and plotted it in Figure 1. For the top 1 word 
sequence, this algorithm requires about the same amount of 
resources as our implementation of Viterbi search and the 
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F i g u r e  1: This figure compares the CPU and 
Memory usage of the A* N-Best search with the 
Two-Stage N-Best algorithm as a function of N. All 
quantities are relative to the resource use of our im- 
plementation of Viterbi search for the top scoring 
word sequence. 

amount of resources increases approximately linearly with N 
at least for small N. 

We have begun to perform experiments to determine which 
natural language constraints to apply at an earlier stage of 
the A* search. There is a tradeoff between the cost of apply- 
ing the constraint and the amount of other computation that  
is saved by the application of the constraint. Since we are 
able to apply word-pair constraints at a very small cost (by 
precompiling them into the lexical network), we have been 
applying word-pair constraints at the lowest levels in all of 
these experiments. 

Word pair constraints 
In our initial implementation of VOYAGER, the search was 

constrained by a word-pair language model obtained directly 
from the. training utterances. This word-pair language model 
had a perplexity of 22 and a coverage of 65%. However, this 
word-pair language model was obtained without considera- 
tion of the constraints from TINA and,  therefore, did not 
match the capabilities of the full system. Utterances that  
TINA could accept as well-formed were sometimes rejected by 
the word-pair language model. 

Now that  we are moving towards tighter integration of 
the speech and natural language components, we are not so 
dependent on the constraints of a simple language model. 
However, if it is possible to automatically extract the local 
constraints of the natural  language system, we can save com- 
putation by making use of them. Even in a tightly integrated 
speech and natural  language system, it is possible to compile 
these constraints directly into a lexical network. The overall 
accuracy will not suffer as long as we can guarantee that the 
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constraints of the local language model are a subset of the 
full constraints. 

A useful facility for deriving inexpensive recognizer con- 
straints from a natural  language system would be a mecha- 
nism to extract an exhaustive word-pair language model auto- 
matically from the parent grammar. To this end, we explored 
a number of procedures to discover all legitimate two word 
sequences allowed by TINA. We assessed the resulting lan- 
guage models by measuring coverage and perplexity on our 
designated development set of about 500 sentences. 

The simplest approach is to exhaustively generate all ter- 
minal -pairs directly from the context-free rules, without ap- 
plying any other semantic or syntactic constraints. We tried 
this approach, and, as expected, it gave 100% coverage on the 
test set, but with a very high perplexity (~  200). In an at- 
tempt to reduce the perplexity, we tried some permutations 
of this method. We first discarded any rules that  did not 
show up in our set of 3000 training sentences. This resulted 
in a loss of coverage on 10% of the test sentences, so this idea 
was abandoned. A second, more conservative, idea was to 
allow the disappearance of trace nodes only within those rule 
contexts that  showed up in the training set. This resulted 
in a slight reduction in perplexity to 190, and the coverage 
remained at 100%. 

The other approach we tried was to make use of TINA'S 
generation capability to generate sentences at random, and 
then use the resulting terminal pairs to update the word- 
pair language model. This approach has the disadvantage 
that  it can never be guaranteed that  TINA's language model 
is exhaustively covered. However, it permits the incorpora- 
tion of local syntactic and semantic constraints. We decided 
to discard semantic match requirements in the trace mecha- 
nism, so that  a sentence such as "(What  restaurant)i is it (ti) 
from MIT to Harvard Square?" would be accepted. We did 
away with the trace mechanism in generation since these long 
distance constraints are generally invisible to the word-pair 
language model. This was necessary because, when seman- 
tic matches are required, generation usually picks the wrong 
path and aborts on constraint failure. As a consequence, 
paths with traces are rarely visited by the generator and may 
not show up in our word-pair language model. 

This method was quite successful. TINA can generate 
100,000 sentences in an overnight run, and the resulting word- 
pair language model had a perplexity of only 73 with a single 
missed word-pair in the test set. We therefore decided to in- 
corporate this word-pair language model into the recognizer. 

Increased Coverage 
As we have described previously [9], the command gener- 

ation component translates the natural  language parse to a 
functional form that  is evaluated by the system. This compo- 
nent has been made more flexible, in part due to our experi- 
ence with developing an ATIS system [6]. We have extended 
the capabilities of the back-end functions to handle more com- 
plex manipulations. Some of these changes were motivated 
by an examination of our training data. In other cases, we 

were interested in knowing if our framework could handle ma- 
nipulations commonly used in other database query systems. 
For this reason we included conjunction and negation, even 
though they are rarely used by subjects (except by those with 
a natural language processing background!). As a result of 
these modifications, the system is now capable of handling 
queries such as "Show me the Chinese or Japanese restau- 
rants that  are not in Central Square," or "Do you know of 
any other restaurants near the main library?" 

Pronunciation Networks  
Pronunciation networks and their expansion rules were 

modified as a result of the increased amount of training data. 
An effort was made to modify both the networks and the rules 
as consistently and minimally as possible. The V O Y A G E R  dic- 
t ionary was periodically reviewed to insure that  pronuncia- 
tions were consistent in terms of both segmentals and the 
marking of stressed and unstressed syllables. When phoneti- 
cally labelling the VOYAGER corpus, unusual or new pronun- 
ciations were noted by the labelers, who conferred on pho- 
netic transcriptions. New pronunciations were entered into 
the dictionary or added to the lexical rules when it was felt 
that the phenomena they represented were sufficiently gener- 
alizable to the corpus as a whole. Aberrant  pronunciations 
or mispronunciations were not included. 

Current Implementat ion 
In the initial implementation of VOYAGER, the system ran 

on a Sun 4/280 using a Macintosh II with four DSP32Cs as a 
front-end. That system was not pipelined and took approx- 
imately 12 times real time before the top-choice utterance 
appeared. Since that time we have developed a pipelined im- 

plementation of VOYAGER on a new set of hardware as illus- 
trated in Figure 2. We are using four signal processing boards 
made by Valley Enterprises, each of which has four DSP32C's. 
Each processor has 128Kbytes of memory and operates inde- 

pendently of the others (in the board configuration that we 
have been using). Communication with the host is through 
the VME bus of the host. The host may read from any loca- 
tion of any of the DSP32C's memory while the DSP processor 
is running. The host may simultaneously write to any com- 
bination of the four DSP32C's memories. For speech input 
and playback, we are using an A/D D/A made by Atlanta 
Signal Processing Inc. This has a high speed serial interface 
which connects to the serial port  of one of the DSP32Cs. We 
are currently using a Sun4/330 with 24Mbytes of memory as 
a host. We are running the natural  language and response 
generation components on a separate Sparcstation. These 
parts of the system are written in Lisp; they have fairly large 
memory requirements and would slow down the processing if 
run simultaneously on the same host as the speech recogni- 
tion system. Also, our Sun4/330 has no display. The entire 
system could easily run on a single host with more memory 
plus a display. 

It has been straightforward to divide the processing for 
VOYAGER's front-end [9] into subsets which can each be per- 
formed in real-time by a single DSP32C and which do not 
require excessive amounts of intercommunication. The au- 
ditory model can be broken up by frequency channel and 
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F i g u r e  2: This figure shows the current hardware 
configuration of the VOYAGER, system. 

With further optimization of DSP code, we believe that 
the processing through phonetic classification will run in real 
time in the present hardware configuration. When combined 
with lexical access, the entire system will run in approxi- 
mately 3 times real time on a Sun4/330 and in approximately 
2 times real time on a Sun 4/490. 

E v a l u a t i o n s  
At the October 1989 DARPA meeting, we presented a 

number of evaluations of our initial version of VOYAGER [8] 
and we have used the same test set to measure the effects of 
the changes made since that  time. To measure the effects of 
multiple sentence hypotheses, we allowed the system evalu- 
ated in [8] to produce the top N word sequences rather than 
the highest scoring word sequence. Its performance is plot- 
ted as a function of N in Figure 3. For each utterance, we 

therefore the current representation could be run on up to 40 
different processors. The dendrogram computation is difficult 
to divide among processors, but fortunately it runs in under 
real time on a single DSP32C. The computation of acoustic 
measurements and phonetic classification is done on a seg- 
mental basis and could be broken up by segment if necessary. 

We have implemented each processor-sized subset of the 
computation for the DSP32C with a circular input and output 
buffer. Each of these processes monitors the input and output 
buffers, and runs as long as the input buffer is not empty and 
the output buffer is not full. The host keeps larger circular 
buffers for each of the intermediate representations aud fills 
the input buffers and empties the output buffers of the DSP 
processors as the data become available. We have used the 
same general mechanism for each part of the system, allow- 
ing us to easily change the various parts of the system as new 
algorithms are developed. All parts of the system before nat- 
ural language processing are written in C with the exception 
of a small number of hand-optimized DSP32C functions. 

The lexical access component is using a reversed version 
of the A* N-Best search as described above and in [3]. So, 
rather than using Viterbi search to compute the best com- 
pletion of partial paths and A* search to search forward, we 
use Viterbi search to find the best path from the beginning 
of any partial  path and use A* search to find the best path 
from the end. This allows us to pipeline the Viterbi search 
with the incoming speech. 

We are still in the process of optimSzing the code on the 
DSP32C's, so we are not sure what the final configuration will 
be, but we are currently using one processor for data capture, 
one processor for input normalization, eight processors for the 
auditory model, two processors for some additional represen- 
tations, one processor for the dendrogram, one processor for 
acoustic measurements, and two processors for phonetic clas- 
sification. The current implementation computes these parts 
of the system in 2.3 times real time. When we combine lex- 
ical access on the same host the total  processing time for 
VOYAGER is 5 times real time to completion. 
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F i g u r e  3: This figure shows the overall performance 
on the test set as a function of the number of word 
strings produced by the speech recognition compo- 
nent. Curve (d) shows the percentage of utterances 
where the correct word string is found. Curve (c) 
shows the percentage where the correct response 
is generated (see text for definition of "correct"). 
Curve (b) shows the percentage of utterances where 
VOYAGER produces any response. The horizontal 
line (e) shows the percentage of utterances where a 
response would have been produced if the correct 
word string had been found by the speech recogni- 
tion component. Finally, curve (a) shows the per- 
centage of utterances where either a response was 
produced from the top N word sequences from the 
recognition, or a response would have been produced 
given the correct word string. 

took the highest scoring word string accepted by the natu- 
ral language component of VOYAGER. The lower curve shows 
the percentage of these strings that  are identical (after ex- 
panding contractions such as "what 's") to the orthographic 
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transcription of the utterance• The next curve shows the 
percentage that  produce the same action in VOYAGER as the 
action produced by the correct word string; these are the ut- 
terances that are "correct" at a functional level. The next 
curve shows the percentage of utterances that produced any 
response from VOYAGER. The difference between curve (c) 
and curve (b) indicates the number of incorrect responses 
(with "incorrect" meaning that  the utterance produces a dif- 
ferent response from the one that would have been produced 
with the correct word string). The remaining utterances, in- 
dicated by the area above curve (b), produce an "I 'm sorry, 
I didn' t  understand you" response from VOYAGER.  Of these 
remaining utterances, we found the number that  would have 
produced a response if the system was given the correct word 
string. This is plotted as the difference between curves (b) 
and (a). The horizontal line (e) shows the percentage of ut- 
terances that produce an action given the correct word string. 
The difference between curves (a) and the horizontal line is 
the percentage of utterances that  produce a response from 
VOYAGER when given the speech input but do not produce a 
response given the correct word string. These responses were 
judged either correct or incorrect by the system designers. 

There are a number of things to learn from this figure. 
If we search deeper (either by increasing N or by incorporat- 
ing the natural  language constraints earlier in the search), we 
still increase the number of utterances that  produce a correct 
response but at the expense of producing more incorrect re- 
sponses. The difference between curves (a) and (b) shows the 
number of utterances that  will produce a response if we can 
only find the correct word string with the search. So, this 
difference is the most that  we can hope to gain by increasing 
the depth of the search (although this is not quite true since 
it is possible to find a word string that  parses and produces 
the correct response even if the correct word string does not 
parse). 

The previous results were computed using the perplexity 
22 word pair grammar. As discussed previously, we have 
produced a word pair grammar with perplexity 73 that  better  
matches the constraints of the natural  language system. A 
comparison of these two sets of constraints can be seen in 
Figure 4. In this figure, we have plotted the upper three 
curves of Figure 3 for both the perplexity 22 grammar and 
the perplexity 73 grammar. It can be seen that  while the 
perplexity 73 grammar has slightly lower performance, this 
degradation decreases as N increases above 10. We would 
hope that  even with less constraint in the speech recognition 
component, the performance will be better  than the tighter 
constraints as we search deeper. This should be true since 
the constraints match the natural  language constraints much 
better. 

Summary/Future Plans 
The evaluations show that  compared to passing only the 

top scoring word string to the natural  language system, the 
performance of the overall system is much improved by in- 
creasing the degree of integration of the speech recognition 
and natural  language systems. However, the evaluations also 
show that  there is not much to be gained in our system by 
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F i g u r e  4: This figure shows the difference in per- 
formance for two different sets of speech recognition 
constraints. The curves are the same as the upper 
three curves in Figure 3 for perplexity=22 and per- 
plexity=73. 

increasing the depth of the search (either by increasing N 
in an N-Best search or by integrating the natural  language 
constraints at an earlier stage of the search) since this will 
increase the number of incorrect responses faster than in- 
creasing the number of correct responses. What  is needed 
are new sources of information for the search. Fortunately, 
our natural  language system is capable of providing probabil- 
ities that  we have not yet utilized. These probabilities have 
been shown to reduce the perplexity by at least a factor of 
three [9] and therefore should allow an increase in the depth 
of the search with a smaller number of incorrect responses. 

We may also gain some performance by incorporating 
some form of explicit rejection criterion. Currently we re- 
ject an utterance based on the number of word strings that  
fail to produce a response (by choosing an upper bound on 
N in the N-Best search). If we used a more explicit rejection 
criterion (by taking into account the scores of the top N word 
strings for example) we may be able to decrease the ratio of 
incorrect response to correct responses. 

There have been a number of developments in the speech 
recognition components that  we intend to incorporate into 
the VOYAGER system. These are discussed in more detail 
in [7]. 

We would like to begin exploring dynamic adaptat ion of 
the natural  language constraints. For example, we would like 
to increase the objects in VOYAGER's database to a much 
more complete set. In our current implementation, this would 
increase the perplexity of the speech recognition and result 
in poor performance. However, if we limit the vocabulary 
based on the discourse history, it is likely that  we can make 
large increases in the size of the VOYAGER domain without 
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significant increases in perplexity. 

Since we are interested in improving performance in the 
interactive use of the system, we have implemented a mecha- 
nism for automatically generating tasks for the user to solve 
with the help of the system [5]. This has allowed us to be- 
gin testing the system in a goal-directed mode and compare 
results obtained in such a mode to results obtained on data 
collected in a simulation mode. 
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