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Abstract 
In this paper we discuss recent results from our efforts 

to make SPHINX, the CMU continuous-speech speaker- 
independent recognition system, robust to changes in the 
environment. To deal with differences in noise level and 
spectral tilt between close-talking and desk-top 
microphones, we describe two novel methods based on ad- 
ditive corrections in the cepstral domain. In the first algo- 
rithm, an additive correction is imposed that depends on 
the instantaneous SNR of the signal. In the second tech- 
nique, EM techniques are used to best match the cepstral 
vectors of the input utterances to the ensemble of codebook 
entries representing a standard acoustical ambience. Use of 
these algorithms dramatically improves recognition ac- 
curacy when the system is tested on a microphone other 
than the one on which it was trained. 

Introduction 
There are many sources of acoustical distortion that can 

degrade the accuracy of speech-recognition systems. For 
example, obstacles to robustness include additive noise 
from machinery, competing talkers, etc., reverberation 
from surface reflections in a room, and spectral shaping by 
microphones and the vocal tracts of individual speakers. 
These sources of distortion cluster into two complementary 
classes: additive noise (as in the first two examples) and 
distortions resulting from the convolution of the speech sig- 
nal with an unknown linear system (as in the remaining 
three). 

A number of algorithms for speech enhancement have 
been proposed in the literature. For example, Boll [3] and 
Beroufi et al. [2] introduced the spectral subtraction of 
DFT coefficients, and Porter and Boll [11] used MMSE 
techniques to estimate the DFT coefficients of corrupted 
speech. Spectral equalization to compensate for convolved 
distortions was introduced by Stockham et al. [13]. Recent 
applications of spectral subtraction and spectral equaliza- 
tion for speech recognition systems include the work of 
Van Compemolle [5] and Stem and Acero [12]. Although 
relatively successful, the above methtxls all depend on the 
assumption of independence of the spectral estimates 
across fr~uencies. Erell and Weimranb [6] demonstrated 
improved performance with an MMSE estimator in which 
correlation among frequencies is modeled explicitly. 
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Acero and Stem [1] proposed an approach to environment 
normalization in the cepstral domain, going beyond the 
noise stripping problem. 

In this paper we present two algorithms for speech nor- 
malization based on additive corrections in the cepstral 
domain and compare them to techniques that operate in the 
frequency domain. We have chosen the cepstral domain 
rather than the frequency domain so that can we work 
directly with the parameters that SPHINX uses, and because 
speech can be characterized with a smaller number of 
parameters in the cepstral domain than in the frequency 
domain. The first algorithm, SNR-dependent cepstral 
normalization (SDCN) is simple and effective, but it can- 
not be applied to new microphones without microphone- 
specific training. The second algorithm, 
codeword-dependent cepstral normalization (CDCN) uses 
the speech knowledge represented in a codebook to es- 
timate the noise and spectral equalization necessary for the 
environmental normalization. We also describe an inter- 
polated SDCN algorithm (iSDCN) which combines the 
simplicity of SDCN and the normalization capabilities of 
CDCN. These algorithms are evaluated with a number of 
microphones using an alphanumeric database in which ut- 
terances were recorded simultaneously with two different 
microphones. 

Experimental Procedures 
The alphanumeric database and system used for these 

experiments has been described previously [12] [l]. 
Briefly, the database contain.q utterances that were recorded 
simultaneously in stereo using both the close-talking Sen- 
nheiser HMD224 microphone (CLSTK), a standard in pre- 
vious DARPA evaluations, and a desk-top Crown PZM6fs 
microphone (CRPZM). The recordings with the CRPZM 
exhibit not only background noise but also key clicks from 
workstations, interference from other talkers, and rever- 
beration. The task has a vocabulary of 104 words that are 
highly confusable, A simplified version of SPHINX with no 
grammar was used. 

Baseline recognition results obtained by gaining and 
testing SPHIlqX using this database are shown in the first 
two columns of Table 1. With no processing, training and 
testing using the CRPZM degrades recognition accuracy by 



about 60 percent relative to that obtained by training and 
testing on the CLSTK. Although most of the "new" errors 
introduced by the CRPZM were confusions of silence or 
noise segments with weak phonetic events, a significant 
percentage was also due to crosstalk [12]. It can also be 
seen that the "cross conditions" (training on one 
microphone and testing using the other) produce a very 
large degradation in recognition accuracy. 

Independent Compensation for 
Noise and Filtering 

In this section we examine the performance of SPHINX 
under some of the techniques that have been used in the 
literature to combat noise and spectral ilk: multi-style train- 
ing, short-time liftering, spectral subtraction, and spectral 
equalization. 

Multi-Style Training 
Multi-style training is a technique in which the training 

set includes data representing different conditions so that 
the resulting HMM models are more robust to this 
variability. This simple approach has been used success- 
fully in the field of speech styles [10] and speaker indepen- 
dence [9]. The price one must pay for the robustness is a 
degradation in performance for cases in which the training 
and testing are done with the same condition. 

with s =1.0 which Jtmqua [8] found to be optimum, and the 
ban@ass liftering method defined by Juang [7]. 

Unfortunately, we found that application of these tech- 
niques produced essentially no improvement for clean 
speech and only a very small improvement for corrupted 
speech. Since the frequency-warping transformation in 
SPHINX alters the variances of the coefficients, some other 
set of weights may prove more effective. 

Spectral Subtraction and Equalization 
In spectral subtraction and equalization it is assumed 

that the speech signal x(t) is degraded by linear filtering 
and/or uncorrelated additive noise, as depicted in Fig. 1. 
The goal of the compensation is to reverse the effects of 
these degradations. 

x(t) ~ h(t) 
"Clean" Linear 
speech Distortion 

~ D ~ p g r a  y(t) ded 
eech 

n(t) 
Additive 

Noise 

Figure 1: Model of the degradation. 

An experiment was carried out in which all the speech 
recorded from the CLSTK and the CRPZM microphones 
were used in training (Table 1). As expected, robustness is 
gained by using multi-style training, but at the expense of 
sacrificing performance with respect to the case of train 
and test on the same conditions. 

TRAIN CLSTK CRPZM MULTI  

Test CLSTK 85.3% 36.9% 78.3% 

Test CRPZM 18.6% 76.5% 6'9.7% 

Table 1: Comparison of recognition accuracy of SPHINX 
under different training and testing conditions. CLSTK is 
the Sennheiser HMD224, CRPZM is the Crown PZM6sf 
and MULTI means that the data from both microphones 
were used in training 

Liftering 
Many studies have examined several potential distortion 

measures for speech recognition in noise. Most of these 
measures involve unequal weighthags of the mean-square 
distance between cepstral coefficients of the reference and 
test utterances. The motivation for weighting distances be- 
tween cepstral vectors is twofold: it provides some variance 
normalization for the coefficients and it makes the system 
more robust to noise and spectral tilt by giving less weight 
to the low-order cepstral coefficients. We tried in our sys- 
tem several weighting measures that have been proposed in 
the literature including the inverse of the intra-eluster 
variance as defined by Tokhura [14], the exponential lifter 
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Using the notation of Fig. 1, we can characterize the 
power spectral density (PSD) of the processes involved as 

Py(f) = Px(f) IH(f)12 + Pn(f) (1) 

Spectral equalization techniques attempt to compensate 
for the filter h(t), while spectral subtraction techniques at- 
tempt to remove the effects of the noise from the signal. 
We compare the performance of the following different 
implementations of spectral subtraction and equalization 
techniques in Table 2. 

• A spectral equalization algorithm (EQUAL) that is 
similar to the approach of [13]. It compensates for the 
effects of the linear fiJtering, but not the additive 
noise, as described in [12]. 

• A direct implementation of the original power spectral 
subtraction rule (PSUB) on 32 frequency bands ob- 
tained via a real D F r  of the cepstmm vector. The 
restored cepstrurn is obtained with an inverse DFT. 

• An implementation of BoU's algorithm (MMSE1) [4], 
in which a transformation is applied to all the fre- 
quency bands of the CRPZM speech that minimizes 
the mean squared error relative to the CLSTK speech. 
The log-power correction in each frequency band 
depended only on the instantaneous SNR in that band. 

• An implementation of magnitude spectral subtraction 
(MSUB) described in [12] that incorporates over- and 
under-subtraction depending on the SNR as suggested 
by [2]. In [12] it was noted that a cascade of the 
EQUAL and MSUB algorithms did not yield any fur- 
ther improvement in recognition accuracy because 
they interact nonlinearly. 



The different criteria used in PSUB, MSUB, produce 
different curves that relate the effective SNR of the input 
and output. Some of these curves are shown in Figure 2. 
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Figure 2: Input-Output transformation curves for PSUB, 
MSUB and MMSE1. The SNR is defined as the log-power 
of the signal in a frequency band minus the log-power of 
the noise in that band. The transformation for MSUB is not 
a single curve but a family of curves that depend on the 
total SNR for a given frame. 

TRAIN CLSTK CLSTK CRPZM CRPZM 
TEST CLSTK CRPZM CLSTK CRPZM 

BASE 85.3% 18.6% 36.9% 76.5% 

EQUAL 85.3% 38.3% 50.9% 76.5% 

PSUB 82.2% 37.2% 62.0% 64.7% 

MMSE1 85.3% 48.7% 68.7% 71.4% 

MSUB 82.7% 64.8% 75.1% 72.8% 

Table 2: Performance of different equalization and 
spectral subtraction algorithms. EQUAL and MMSE1 were 
applied only to the CRPZM speech while PSUB and 
MSUB were applied to both the CLSTK and the CPRPZM 
speech. 

For the most part these algorithms provide increasing 
degrees of compensation, but their recognition accuracy 
under the "cross" conditions is still much worse than that 
obtained even with the system is trained and tested on the 
CRPZM. We have found that the above techniques produce 
many output frames that do not constitute legitimate speech 
vectors, especially at low SNR, because they do not take 
into account correlations across frequency. That problem, 
along with the nonlinear interaction of the subtraction and 
normalization processes motivated us to consider new al- 
gorithms which jointly compensate for noise and filtering, 
and with some attention paid to the spectral profile of the 
compensated speech. 

Joint Compensation for 
Noise and Filtering 

In this section we discuss two algorithms that perform 
noise suppression and spectral-flit compensation jointly in 
the cepstmm by means of additive corrections. 

If we let the cepstral vectors x, n, y and q represent the 
Fourier series expansion of ln ex( f ) ,  ln Pn(f) ,  ln Py( f )  

and in IH(f)12 respectively, (1) can be rewritten as 

y = x + q + r (x ,n ,q )  (2) 

where the correction vector r (x, n, q) is given by 

r (x ,n ,q )  = IDFT {In (1 + e B b [ n -  q-x])} (3) 

Let z be an estimate of y obtained through our spectral 
estimation algorithm. Our goal is to recover the uncor- 
mpted vectors X = Xo,...x N_ 1 of an utterance given the ob- 
servations Z = Zo,...zN_ 1 and our knowledge of the en- 
vironment n and q. 

SDCN Algorithm 
SNR-Dependent Cepstral Normalization (SDCN) is a 

simple algorithm that applies a fixed additive correction 
vector w to the cepstrai coefficients that depends ex- 
clusively on the instantaneous SNR of the input frame. 

A 
x = z - w(SNR) (4) 

At high SNR, inspection of equations (1), (2) and (3) 
indicates that x (0) + q(0) >> n(0), r = 0, and y = x + q. 
On the other hand at low SNR, x ( 0 ) +  q(0)<< n(0) and 
y = n. Hence, the SDCN algorithm performs spectrai 
equalization at high SNR and noise suppression at low 
SNR. 

SNR is estimated in the SDCN algorithm as 
z (0) - n (0). This is not the true signal-to-noise ratio but it 
is related to it and easier to compute. The compensation 
vectors w(SNR) were estimated with an MMSE criterion by 
computing the average difference between cepstral vectors 
for the test condition versus a standard acoustical environ- 
ment from simultaneous stereo recordings. We have ob- 
served that applying a correction to just c o and c 1 yields 
basically the same results than if all the cepstmm coef- 
ficients are normalized. 

For the sake of comparison between algorithms operat- 
ing in the spectral domain and the cepstral domain, we 
developed an algorithm called MMSEN that accomplishes 
noise suppression and spectral equalization jointly using 
different transformations for every frequency band. 
MMSEN is similar in concept to SDCN except that it 
operates in the spectral (rather than cepstral) domain. As is 
seen in Table 4, SDCN performs slightly better than 
MMSEN, and it is more computationally efficient as well. 

TRAIN CLSTK CLSTK CRPZM CRPZM 
TEST CLSTK CRPZM CLSTK CRPZM 

BASE 85.3% [ 18.6% 36.9% 76.5% 

MMSEN 85.3% I 66.4% 75.5% 72.3% 

SDCN 85.3% 67.2% 76.4% 75.5% 

Table3: Performance of the MMSEN and SDCN al- 
gorithrns when compared with the baseline. 
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Although liftering provided very little improvement for 
our baseline system, this technique is actually complemen- 
tary to SDCN: liftering techniques can be viewed as a 
variance normalization while SDCN is a bias- 
compensation algorithm. Using SDCN and the algorithm 
of Juang [7] with p = 12 and values of  the parameter L rang- 
ing from 0 to 6, we observed a modest improvement over 
pure SDCN (from 67.2% to 72.3%) when training using the 
CLSTK and testing with the CPRPZM microphone. 

CDCN Algorithm 
Although the SDCN technique performs acceptably, it 

has the disadvantage that new microphones must be 
"calibrated" by conecang long-term statistics from a new 
stereo database. Since only long-term averages axe used, 
SDCN is clearly not able to model a non-stationary en- 
vironment. The second new algorithm, 
Codeword-Dependent Cepstral Normalization (CDCN), 
was proposed to circumvent these problems. 

The CDCN algorithm attempts to determine the fixed 
equalization and noise vectors q and n that provide an en- 

semble of compensated cepstral vectors ~ that are collec- 
tively closest to the set of  locations of legitimate VQ 
codewords. The correction vector will be different for 
every codebook vector. 

The q and n are estimated using ML techniques via the 
EM algorithm since no close-form expression can be ob- 

tained. The compensated vectors ~ are estimated using 
M/VISE techniques. The reader is referred to [1] for the 
details of this algorithm. 

Results and Discussion 
Table 4 describes the recognition accuracy of the 

original SPHINX system with no preprocessing, and with the 
SDCN and CDCN algorithms. Use of the CDCN algo- 
rithm brings the performance obtained when training on the 
CLSTK and testing on the CRPZM to the level observed 
when the system is trained and tested on the CRPZM. 
Moreover, use of CDCN improves performance obtained 
when training and testing on the CRPZM to a level greater 
than the baseline performance. The much simpler SDCN 
algorithm also provides considerable improvement in per- 
formance when the system is trained and tested on two 
different microphones. 

Unlike in previous studies where estimates of the power 
norroaliTation factor, spectral equalization function, and 
noise are obtained independently, these quantities are 
jointly estirnated in CDCN using a common maximum 
likelihood fiarnework that is based on a priori knowledge 
of the speech signal. Since CDCN only requires a single 
utterance in order to estimate noise and spectral tilt, it can 
better captme the non-stationatity of the environment. 
Moreover, in a real application, long-term averages may 
not be available for every speaker and new microphone. 

In Figures 3, 4, 5 and 6 we show 3-D representations of  

TRAIN CLSTK CLSTK CRPZM CRPZM 
TEST CLSTK CRPZM CLSTK CRPZM 

BASE 85.3% 18.6% 36.9% 76.5% 

SDCN 85.3% 67.2% 76 . , 0 ,% 75.5% 

CDCN 85.3% 74.9% 73.7% 77.9% 

Table 4: Comparison of  recognition accuracy of SPHINX 
with no processing, SDCN and CDCN algorithms. The sys- 
tem was trained and tested using an combinations of the 
CLSTK and CRPZM microphones. 

an utterance with the CLSTK and no processing, the 
CRPZM with no processing, SDCN, and CDCN respec- 
tively. While it can be seen that noise suppression is ach- 
ieved with both SDCN and CDCN, the CDCN algorithm 
provides greater compensation for spectral tilt. 

~+ 
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Figure 3: "Yes" with CLSTK and no processing. 
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Figure 4: "Yes" with CRPZ/vl and no processing. 

Results with other microphones 
To confirm the ability of the CDCN algorithm to adapt 

to new environmental conditions, a series of tests was per- 
formed with 5 new stereo speech databases. The test data 
were all collected after development of the CDCN algo- 
rithm was completed. In all cases the system was trained 
using the Sennl'~iser HMD224. The "second" microphones 
(with which the system was not trained) were: 
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Figure 5: "Yes" with CRPZM and SDCN. 

®+ 

a n ~ / ~ m e - e  

Figure 6: "Yes" with CRPZM and CDCN. 

• The Crown PCC160 desk-top phase-coherent cardioid 
micmpbone (CRPCC160). (This is the new DARPA 
"standard" desk-top microphone.) 

• An independent test set using the Crown PZM6fs. 

• The Sennheiser 518 dynamic cardioid, hand-held 
microphone (SENN518). 

• The Sennlaeiser ME80 eleetret supercardioid stand- 
mounted microphone (SENNME80). 

• An H/vIE lavalier microphone that also used an FM 
receiver (HME). 

TEST C I ~ T K  CRPCCI60  

BASE 82.4% 70.2% 

CDCN 81.0% 78.5% 

TEST CLSTK CRPZM6FS 

BASE 84.8% 41.8% 

CDCN 83.3% 73.9% 

In Table 5 we compare results using the CDCN algo- 
rithm to baseline performance. With this algorithm great 
robustness is obtained across microphones. However, there 
is a slight drop in performance when training and testing on 

TEST CLSTK SENNS18 

BASE 871% 84.5% 

CDCN 82.2% 83.3% 

T E S T  CLSTK SENNME80 

BASE 83.7% 71.4% 

CDCN 81.5% 80.7% 

TEST l IME CRPCC160 

BASE 55.9% 56.3% 

CDCN 81.7% 72.2% 

Table 5: Analysis of performance of SPHINX for the 
basefine and the CDCN algorithm. Two microphones were 
recorded in stereo in each case. The microphones compared 
are the Sennheiser HMD224, 518, MES0, the Crown 
PZM6FS and PCC160, and the HME microphone. Training 
was done with the Sennheiser HMD224 in all cases. 

the Sennheiser HMD224. We believe that one cause for 
this is that estimates of q and n are not very good for short 
u t t e rances .  

Interpolated SDCN 
One of the deficiencies of the SDCN algorithm is the 

inah i f i ty  to adapt to new environments since the correction 
vectors are derived from a stereo database of our "stan- 
dard" Sennheiser I-IMD224 and the new microphone. By 
using an MMSE criterion that included some a priori infor- 
marion about the distribution of speech (a codebook), the 
SDCN can estimate the parameters of the environment q 
and n just as CDCN does. 

As we have noted above, the correction vector in 
SDCN, w, has the asymptotic value of the noise vector n at 
low SNR and of  the equalization vector q at high SNR. In 
interpolated SDCN (ISDCN) the dependence on SNR is 
modelled as follows: 

wi(SNR ) = n i + (qi-ni)~.(SNR) (5) 

wberefi  (SNR) is chosen to be the sigmoid function 

fi(x) = 1 / [ 1 + exp(--ct ix + ~i)] (6) 

In this evaluation tz i and 15i were set empirically to 3.0 for 
i > 0 and 6.0 for i= 0. The vectors n and q were deter- 
mined by an EM algorithm whose objective function is the 
minimization of the total VQ distortion. 

In evaluating the ISDCN algorith m we also varied the 
amount of speech used for estimation of q and n. Since 
these parameters are normally estimated over the course of  
only a single utterance, the estimates of q and n will ex- 
hibit a large variance for short utterances. We believe this 
is one of the causes for the slight degradation in perfor- 
mance in Table 5 observed when the system was trained 
and tested using the CLSTK microphone. 
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We compared the recognition accuracy with the ISDCN 
algorithm using estimates of the model parameters obtained 
by considering only one utterance at a rime, and with es- 
timates obtained using all 14 utterances spoken by a given 
speaker. Estimating the model parameters from all ut- 
terances for a speaker produced an accuracy of 85.9%, 
which is slightly higher than the baseline 85.3%. (The cor- 
responding recognition accuracy working an utterance at a 
time was 84.8%.) These results lead us to believe that 
CDCN could also benefit from a longer estimation time, 
and will be analyzed in future work. 

Conclusions 
We described and evaluated two algorithms to make 

SPHINX more robust with respect to changes of microphone 
and acoustical environment. With the first algorithm, 
SNR-dependent cepstral normalization, a correcrion vector 
is added that depends exclusively on the instantaneous 
SNR of the input. While SDCN is very simple, it provides 
a cousiderable improvement in performance when the sys- 
tem is trained and tested on different microphones, while 
maintaining the same performance for the case of training 
and testing on the same microphone. Two drawbacks of 
the method are that the system must be retrained using a 
stereo database for each new microphone considered, and 
that the normalization is based on long-term statistical 
models. 

The second algorithm, codeword-dependent cepstral 
normalization, uses a maximum likelihood technique to es- 
tirnate noise and spectral tilt in the context of an iterafive 
algorithm similar to the EM algorithm. With CDCN, the 
system can adapt to new speakers, microphones, and en- 
vironrnents without the need for collecting statistics about 
them a priori. By not relying on long-term a priori infor- 
marion, the CDCN algorithm can dynamically adapt to 
changes in the acoustical environment as well. 

Both algorithms provided dramatic improvement in per- 
forrnance when SPHINX is tra.ined on one microphone and 
tested on another, without degrading recognition accuracy 
obtained when the same microhone was used for training 
and testing. 
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