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ABSTRACT 

We describe the structure, preliminary implementation and performance of  an algorithm for 
doing continuous speech recognition. The algorithm, known as a stack decoder,  proceeds by 
continually evaluating one-word  extensions of  the most promising partial transcriptions of an 
input utterance. The output  is a list of  candidate complete transcriptions, ordered by likelihood 
under a stochastic model. The stochastic model in the current  implementation is composed solely 
of  an acoustic component  - a linguistic component  will soon be added. The acoustic models 
make use of  dictionary phonetic spellings together with models for phonemes in context. The 
linguistic models will be based on digram statistics. 

A key component  of  the system is a module for quickly evaluating a hypothesized partial 
transcription of  an input utterance to determine how likely it is that it will extend to a complete 
transcription which is the most likely transcription under the model. 

THE SPEECH RECOGNITION PROBLEM 

Natural language automatic speech recognition typically proceeds as follows. Human speech is 
recorded via a microphone, then digitized. This digitized waveform is further  processed to 
extract t ime- and/or  f requency-domain  parameters and features. This processed input, which 
we will refer to as an 'utterance',  is then fed to a recognizer, which is a program that uses 
knowledge about speech and language to present a list of  possible transcriptions of the input. 

We will discuss a particular algorithm, known as a 'stack decoder '  (or sometimes, 'A*-search')  
for doing continuous speech recognition. We will also discuss an implementation of this 
algorithm developed at Dragon Systems. 

THE STACK DECODER 

This section provides a description of  the basic structure of  the algorithm. The development of  
the stack decoder idea as applied to speech recognition was first done by Fred Jelinek and his 
associates at IBM in the early 70's (Jelinek et. al., 1975 [3]), based on earlier work by Jelinek 
(Jelinek, 1969 [1,2]), who had developed the algorithm as a method of sequential decoding of 
transmitted information. 

The algorithm controls the use of  two sub-algorithms, which in this section we will assume as 
given. Each of  the sub-algorithms takes as input a word sequence W and an utterance U. The 
first, which we will call a 'complete transcription scorer', or CTS, computes the likelihood that 
W is a complete and correct transcription of the utterance U. The second sub-algorithm, a 
'partial transcription evaluator' ,  or PTE, computes a 'priority'  for a hypothesized partial 
transcription. This priority will be used to decide which of a given list of partial transcriptions 
will be considered first for extension. 
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The 'stack' (which is far from being a stack in the computer science sense of  a f i r s t - in - f i r s t -ou t  
list) is a list of  partial transcriptions, ordered by the PTE. Initially the stack consist,,; of the 
empty word sequence (which is certain to extend to a correct transcription of the utterance). 
The algorithm then iterates the following steps until a stopping criterion, explained below, is 
satisfied. 

- I. Remove from the stack the partial transcription W having the highest priority. 

- 2. For each possible one-word extension W' of W: 

3. Apply the PTE to W' and use the result to insert W' in the appropriate place on 
the stack. 

* 4. Apply the CTS to W' and use the result to insert W' in a 'choice list'. 

The stopping criterion will depend on the desired output and performance. If  the desired output 
is a list of  the N most likely candidates for the transcription, then run the algorithm until it 
may be determined that the best partial transcription on the stack cannot extend to a complete 
transcription which scores better than the Nth best choice so far computed. 

REFINEMENTS OF THE BASIC ALGORITHM 

One obvious refinement is to save the computational state of an item on the stack. That is, one 
expects that the computation that the PTE and CTS perform with input W', a one-word 
extension of W, can make use of the work done in computing with input W. In particular, 
suppose that the utterance U consists of a sequence of parameter vectors, one vector 
representing the speech signal at a certain discrete time instant. Then one could save, over a 
certain time interval, the likelihood that W provides a correct partial transcription of U up to 
each time in that interval. In other words, save an ending time distribution for the partial 
transcription W. 

Another ref inement  is called 'thresholding'. This is the process whereby a hypothesized partial 
transcription is discarded when there is good reason to believe that it will not extend to a choice 
in the top N. If  thresholding is done, there is no guarantee that the most likely complete 
transcription will appear on the choice list. However, thresholding significantly reduces the 
amount of computation required. One method of thresholding is to maintain a likelihood score 
for the best current hypothesis at each time instant, and to discard a partial hypothesis if  its 
score at a particular time is more than a fixed difference from the score of the best hypothesis 
at that time. Another kind of thresholding results from placing a limit on the number of items 
on the stack at any one time (such a limit already exists by virtue of memory limitations). When 
a new item is inserted into a full stack, the item having least priority will be discarded in order 
to make room. 

A third refinement is called 'shared computation'.  The acoustic models corresponding to 
different  one-word extensions of a partial transcription may be identical on initial portions. One 
may compute the acoustic match on those identical portions just once. This may be 
accomplished by changing the algorithmic assumptions slightly, and allowing the PTE and CTS 
to operate on all legal one-word extensions of a given partial transcription. A fur ther  advantage 
of doing this is that thresholding may be done sooner if the extensions are processed time- 
synchronously. 

'Rapid match' is the process of pruning the one-word extensions of a partial transcription to 
produce a shorter list. Rapid match would make use of both acoustic and linguistic information 
in a crude manner to discard possibilities that are not likely to extend to a correct complete 
transcription. One method of doing this is to combine simple word frequencies and acoustic 
matches to crude models for word beginnings to obtain a smaller list of candidates. 
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ACOUSTIC MODELS 

With this section we start discussion of  the implementation details of  the stack decoder at 
Dragon Systems. The models we use for words are based on phonetic spellings (from the 
Random House Unabridged Dictionary [4]) together with stochastic models for phonemes in 
context. 

A phoneme in context model (or PIC) models the acoustics and duration of  a phoneme in a 
given environment which consists of: 

1. The immediately preceding phoneme. 

- 2. The immediately succeeding phoneme. 

3. The level of  stress (primary, secondary, or unstressed). 

- 4. Whether or not the phoneme is expected to undergo pre-pausal  lengthening. 

The fourth component  of  the environment may need further explanation. Before a pause, a 
speaker will typically extend speech sounds past their normal durations, and this pre-pausal  
lengthening is confined mainly (although not strictly) to the syllable immediately preceding the 
pause. 

A PIC is a stochastic network consisting of  a sequence of from one to three nodes. Each node 
carries with it a probabil i ty distribution of acoustic parameters and a probabil i ty distribution of  
durations. 

For purposes of  eff iciency in storage, we allow the same PIC to represent the phoneme in many 
different  environments. 

A stochastic model for a word is constructed "on the fly" during the recognition process using 
its phonetic spelling. The PICs that may represent the phonemes in a word (with a given 
phoneme given as left context) are assembled into a network in the following way. 

1. Each phoneme that is not included in the final syllable of the word has only one 
possible PIC representing it. 

2. The final syllable will have one of two subnetworks representing it (unless the final 
syllable consists of  one phoneme - in that case there will be more, as indicated in 3.). 
One subnetwork (the 'pre-pausal  subnetwork' ,  or PPS) would consider the hypothesis that 
a pause immediately follows the word, the other subnetwork ( 'non-pausal subnetwork' ,  or 
NPS) would consider the opposite hypothesis. 

3. In the NPS, the final phoneme will be represented by any one of a number of PICs, 
depending on which phoneme starts the next word in the hypothesis. For the PPS, the 
final phoneme is assumed to be followed by silence. 

LANGUAGE MODELS 

At the time of  preparation of  this paper, a language module was being installed in the system. 
This language module has been tested in conjunction with Dragon Systems' discrete utterance 
recognizer. 

The language module makes use of  word-pair  statistics (for common word pairs) combined with 
one-gram statistics. 
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THE COMPLETE TRANSCRIPTION SCORER 

When we refer to a 'score', we mean a negative log likelihood of a path through a stochastic 
network. Thus the most likely paths are those with the lowest scores. 

Recall that a complete transcription scorer (or CTS) computes an estimate of  the likelihood that 
a given word sequence is a correct transcription of  the input: utterance. The CTS for the stack 
decoder at present consists of  a single component,  the acoustic likelihood module (ALM) (future 
versions will include a linguistic likelihood module and perhaps more). The output  of  the ALM 
is based upon consideration of  the following stochastic process. Link together the stochastic 
networks defined by the words in the proposed transcription in a linear fashion. The right and 
left contexts for each word are now determined, so the resulting network is a linear sequence of  
nodes. For each node in this sequence, obtain a sample parameter vector sequence from its 
distribution. Concatenate these sequences together to produce an utterance. The AL M is a 
dynamic program to compute th'e likelihood that this process produces the input utterance. 

THE PARTIAL TRANSCRIPTION EVALUATOR 

The general description given in the section entitled "THE STACK DECODER" defined a 
partial transcription evaluator, or PTE, as a module which takes as input an utterance and a 
hypothesized partial transcription and returns a priority for evaluating extensions of  the partial 
transcription. It is a challenging research problem to design algorithms that compute an effect ive 
measure of  priority. 

An effect ive priority should satisfy the following requirements. 

- 1. There should be an algorithm (i.e., a PTE) which computes it fairly rapidly. 

- 2. It should tend to favor extending correct partial hypotheses. 

If  the PTE computes an estimate of  the likelihood of the best complete transcription extending 
the input partial transcription, then that would satisfy requirement 2. The PTEs that we have 
developed and tested have this goal in mind. 

The importance of  the actual implementation of  the PTE is two-fold.  First of  all, the earlier the 
best scoring transcription is considered, the better the subsequent thresholding will be. Second, a 
poor PTE may cause the best partial transcription to 'fall of f  the bottom of the stack'. 

So far we have tested several PTEs. The first few of these do not look ahead at the speech data. 
However ,  they do (as they should) allow comparison between hypotheses which consume 
differing amounts of  speech data. Following are the descriptions of  the PTEs. 

The Average Score PTE. The measure returned by this PTE is the average score per time 
instant for the hypothesis as computed by the ALM. 

The Score Difference PTE. The number returned by this PTE is the di f ference between the 
score for the hypothesis and the best score of  any path at the time which is the best guess for 
the ending time of  the last word in the hypothesis. 

The Confidence PTE. As explained above, each node in the stochastic network has associated 
with it some probabil i ty distributions. Hence there is a notion of 'expected score' for a path in 
the network (averaged over utterances created by drawing samples from these distributions). The 
'confidence '  of  a path through the network obtained by running the acoustic likelihood module 
on an input utterance is the difference between the expected score for that path and the actual 
score as computed by the module, divided by a factor designed to reduce the effect  of  larger 
variance for longer hypotheses. This confidence is the measure returned by the confidence PTE. 
It is essentially a 'normalized' total score to allow comparison between paths of  different  lengths 
in the network. 
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MISCELLANEOUS IMPLEMENTATION DETAILS 

The code implementing the stack decoder described above has been written using the C 
programming language, conforming completely to the ANSI standard. 

The implementation also was designed with parallelism in mind. In particular, given a parallel 
programming environment which supports C, the code may be modified so as to allow different  
partial transcriptions to be extended simultaneously on separate processors. 

A separate PC-specific module allows one to view labelled spectrograms of both recorded and 
fabricated data. More specifically, one can save live utterances (as above - live speech data 
which has undergone signal processing) or create utterances from the models (string together 
data based on the means of the probability distributions in the nodes). Using either one of these 
types of utterances as input, together with acoustic models and a transcription of the utterance, 
the spectrogram will display (using CGA, EGA, or VGA) a view of the utterance, segmented 
according to the model (i.e., the module finds the best path through the stochastic network 
defined by the the model corresponding to the given transcription). The module may be used 
for (among other things) understanding speech recognition errors and discovering programming 
errors. 

PERFORMANCE AND TESTBED 

As the stack decoder is still in the intermediate stages of development, significant performance 
results are not yet available. We will in this section describe the preliminary results with a 
caveat that these results should not be taken as any indication of the future performance of the 
stack decoder, but rather as an indication that the acoustic models that we have described model 
coarticulation reasonably well, and that they have a chance of performing well on more difficult  
tasks. 

The first test of  the stack decoder on speech data used a vocabulary consisting of the ten digits. 
The models for phonemes in context were trained by one speaker. Two lists of 100 7-digit  
sequences were constructed with the property that all digits appeared with every possible left 
and right context in each list. A second speaker provided utterances for every sequence on these 
lists. Using the 100 utterances from the first list, the PICs were adapted to model the second 
speaker's voice. The 100 utterances from the second list were used as test data. Two replacement 
errors resulted. 

A second test was based on 100 frequent words appearing in a large (several million words) 
corpus of radiology reports. Sentences were constructed from these words by considering the 
most common 8-grams in the corpus. Models for phonemes in context were built, and utterances 
of the sentences were collected from the speaker who provided the training data for the PICs. 
So far the stack decoder has not performed well - on a sample of 10 of the sentences, in five 
instances the correct transcription does not appear on the choice list, even though when the 
CTE was applied to the thresholded transcriptions, the scores would have placed them at the top 
or high in the list. In the other five, the correct transcription appears first three times, second 
once, and third once. Over the ten sentences, there was one insertion error, seven replacement 
errors, and two deletion errors out of the 85 words in the sentences. We hope that installation of 
the language model, together with implementation of a superior PTE, will cause the thresholding 
problem to diminish. 

In the future,  we will use as the testbed for our continuous speech recognition algorithms a 
1000-word vocabulary and language model based on the radiology corpus. 
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FUTURE RESEARCH 

In this section, we sketch some ideas which, when implemented, are expected to improve the 
performance of the stack decoder. 

Installation of rapid match and language model. These imminent developments (described briefly 
above) are expected to boost the time and accuracy performance of the decoder significantly. 

Improvements in the partial transcription evaluator. In the section entitled "THE PARTIAL 
TRANSCRIPTION EVALUATOR" we have outlined PTE calculations that do not look ahead at 
speech data not 'consumed' by the hypothesized partial transcription. We are in the process of 
developing algorithms that do look ahead, and expect them (ion a theoretical basis) to be more 
effective than the ones we have implemented so far. 

The results on the 100-word task indicate that in the top choices, the longer words (which are 
typically content words) are generally recognized correctly, whereas uncertainty as to the correct 
shorter words (usually function words) exists. This suggests the following two improvements. 

Caching of word matches (terminology suggested by Doug Paul). In the present scheme, the 
scorers are repeatedly computing likelihoods of a word in the same time interval. Caching would 
save the results of such evaluations for future use. 

Special treatment of function words. One possibility is to treat the set of all function words (or 
even the set of all reasonable function word sequences) as a single model in the initial stages of 
recognition. As a post-processing step, the best choice for the function words will be 
determined. There are also certain benefits in this treatment as far as the language model is 
concerned, and research is currently being done on this aspect. 
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