
Speaker Adaptation from Limited Training 
in the BBN BYBLOS Speech Recognition System 

Francis Kubala 
Ming-Whel  Feng, John Makhoul, Richard Schwartz 

B B N  Systems and Technologies Corporation 
10 Moulton St., Cambridge, Ma. 02238 

A b s t r a c t  

The BBN BYBLOS continuous speech recognition system has been used to develop a method 
of speaker adaptation from limited training. The key step in the method  is the estimation of a 
probabilistic spectral mapping between a prototype speaker, for whom there exists a well-trained 
speaker-dependent hidden Markov model (HMM), and a target speaker for whom there is only a 
small amount of training speech available. The mapping defines a set of transformation matrices 
which are used to modify the parameters of the prototype model. The resulting transformed model 
is then used as an approximation to a well-trained model for the target speaker. We review the 
techniques employed to accomplish this transformation and present experimental results conducted 
on the DARPA Resource Management database. 

1. I n t r o d u c t i o n  

Soon after a speech recognition system begins operation, small amounts  of new speech data 
become available to the system as spoken utterances are successfully transcribed to text. This data 
is of potentially great value to the system because it contains detailed information on the current 
state of the speaker and the environment. The purpose of rapid speaker adaptation is to utilize 
such small samples of speech to improve the recognition performance of the system. 

Speaker adaptation offers other benefits as well. For applications which cannot tolerate the ini- 
tial training expense of high performance speaker-dependent models, adaptation can trade-off peak 
performance for rapid training of the system. For typical experimental systems being investigated 
today on a 1000-word continuous speech task domain, speaker-dependent training uses 30 minutes 
of speech (600 sentences), while the adaptation methods described here use only 2 minutes (40 
sentences). 

For applications in which an initial speaker-independent model fails to perform adequately due 
to a change in the environment or the task domain not represented in the training data, adaptation 
can utilize an economical initial model  generated from the speaker-dependent training of a single 
prototype speaker. Again, looking at typical systems today, speaker-independent models train on 3 
1/2 hours of speech (4200 sentences), while adaptation can use a speaker-dependent model trained 
from 30 minutes (600 sentences). 

In this paper, we describe the speaker adaptive capabilities of the BBN BYBLOS continuous 
speech recognition system. Our basic approach to the problem is described first in section 2. Two 
methods for estimating the speaker transformation are described in section 3. In section 4 we 
present our latest results on a standard testbed database. 

i00 



3. M e t h o d s  F o r  C o m p u t i n g  t h e  T r a n s f o r m a t i o n  

In 1987 [5] we reported a new algorithm for estimating a probabilistic spectral mapping between 
two speakers. The transformation in this method is equivalent to expanding the HMM of the 
prototype, replacing each state by N states and connecting them in parallel by N transitions. The 
transition probabilities on each of these paths axe then p(kils, ), which are the original prototype 
probabilities for each spectrum, i, given the state, ~. The pdf at each new state on these paths is 
p(k~lk~, ¢(~)) which corresponds to one row of the transformation matrix, T¢(s). 

Since the conditional probability, i~(k~18 ) in equation (3) is computed by the expanded HMM, 
the familiar forward-backward procedure can be used to estimate T~b(s ). The target speech is first 
quantized by the prototype codebook and is automatically aligned against the prototype model. 
This method worked very well with low perplexity grammars but performance degraded unaccept- 
ably as the perplexity of the grammar increased. 

We found that cross-speaker quantization was a significant factor in the performance degrada- 
tion. Also, the transformed pdfs were excessively smooth. We think that the original models, which 
have been smoothed appropriately for the prototype by interpolating context-dependent phoneme 
models, may not be specific enough to preserve important detail under the transformation. 

To overcome these problems, we investigated a text-dependent procedure which is described in 
[2]. In this method we constrain the prototype and target speaker to say a common set of training 
sentences. A class labeling, ¢(s), is derived for each frame of prototype speech by using the proto- 
type HMM to perform recognition while constrained to the correct word sequence. Matching pairs 
of utterances are time-aligned using a DTW procedure on the parameters of the training speech. 
This alignment of the speech frames defines a set of spectral co-occurrence triplets, {(k~, ki, ¢(s))}, 
for all i, j ,  which can be counted to estimate the elements of each matrix T¢(a) directly. 

In this method the target speech is quantized by a codebook derived from the target's own 
training data thereby eliminating the cross-speaker quantization problem. The smoothing problem 
is overcome by using the prototype speech itself as the prototype model while estimating the 
transformation. 

We found that the second method outperformed the first using 30 seconds of training speech 
and an artificial grammar of perplexity .60. This remained true even after controlling for the 
quantization problem of the first method by adapting the prototype codebook after the manner of 
[6]. 

Several enhancements have been made to the DTW-based method. As described in [3], we in- 
troduced an iterative normalization procedure which modifies the speech parameters of one speaker 
by shifting them toward the other speaker. A VQ codebook partitions the speech of one speaker 
into groups of spectra which quantize to a common VQ codeword. The DTW alignment maps the 
partition onto corresponding groups of spectra for the other speaker. The shift is then determined 
by the difference vector between the means of these corresponding groups of spectra. Each itera- 
tion of aligning and shifting reduces the mean-squared error of the aligned speech parameters until 
convergence. 

More recently, we have used additional features in the DTW to improve the alignment between 
utterances, and additional codebooks in the HMM to improve the prototype model. 
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2. B a s i c  A p p r o a c h  to  S p e a k e r  A d a p t i o n  

We view the problem of speaker adaptation as one of modeling the difference between two 
speakers. One of the speakers, who we call the prototype, is represented by a speaker-dependent 
HMM trained from large amounts of speech data. The other speaker, called the target, is repre- 
sented by only a small sample of speech. If the difference between the speakers can be successfully 
modeled, then one strategy for speaker adaptation is to make the prototype speaker look like the 
target speaker. This can be accomphshed by finding a transformation which can be apphed to the 
prototype HMM that makes it into a good model of the target speech. 

The difference between speakers is a complex one, involving the interaction of spectral, artic- 
ulatory, phonological, and dialectal influences. A non-parametric probabihstic mapping between 
the VQ spectra of the two speakers has appropriate properties for such a problem. A probabilistic 
transformation can capture the many-to-many mapping typical of the differences between speak- 
ers and it can be made robust even when estimated from sparse data. Non-parametricity makes 
few constraining assumptions about the data under transformation. Mapping VQ spectra between 
speakers constrains the transformation to dimensionswhich can be estimated reasonably from the 
limited training data. 

We begin with high performance speaker-dependent phonetic models which have been trained 
from a large sample of speech from the prototype speaker. The speaker-dependent training proce- 
dure in the BYBLOS system has been described in [1]. For each state of the prototype HMM, we 
have a discrete probability density function (pdf) represented here as a row vector: 

p(s)  = [p(kt]s),p(k2Is), ...,p(kNls)] (1) 

where p(kils) is the probability of the VQ label ki at state s of the prototype HMM model, and N 
is the size of the VQ codebook. 

The elements of the desired transformed pdf, p '(s) ,  can be computed from: 

N 
p(k~ls ) = ~p(Ikils)p(k~lki, s) (2) 

i =1  

Since we have insufficient data to estimate a separate transformation for each state we approximate 
p '(s)  by: 

N 

 (k ls) : p(k,I,)p(k lk,, (3) 
i = 1  

where ¢(s) specifies an equivalence class defined on the states s. 

For each of the classes, ¢(s), the set of conditional probabihties, {p(k~,ki, ¢(s))}, for an i and j 
form an N × N matrix, T¢(,), which cart be interpreted as a probabilistic transformation matrix from 
one speaker's spectral space to another's. We can then rewrite the computation of the transformed 
pdf, p'(s), as the product of the prototype row vector, p(s),  and the matrix, T¢(°): 

p ' (s)  = p(s)  x T4,(.); Tij¢(,) = p(k;lki, ep(s)) (4) 

There are many ways to estimate T¢(s). We describe next two procedures that we have inves- 
tigated. 

102 



4. Experimental R e s u l t s  

The DARPA Resource Management database [4] defines a protocol for evaluating speaker adap- 
tive recognition systems which is constrained to use 12 sentences common to all speakers in the 
database. To avoid problems due to unobserved spectra, we have chosen to develop our speaker 
adaptation methods on a larger training set, which restricts us to the speaker-dependent portion 
of the database for performance evaluation. 

This segment of the database includes training and test data for 12 speakers sampled from 
representative dialects of the United States. We have used the first 40 utterances (2 minutes of 
speech) of the designated training material for our limited training sample. Two development test 
sets have been defined by the National Institute of Standards and Technology (NIST). These test 
sets consist of 25 utterances for each speaker. Each test set is drawn from different sentence texts 
and includes about 200 word tokens. 

For all of our experiments, we have used one male prototype speaker originally from the New 
York area. 30 minutes of speech (600 sentences) were recorded at BBN in a normal office environ- 
ment and used to train the prototype HMM. The speech is sampled at 20 kHz and analysed into 
14 mel-frequency cepstral coefficients at a frame rate of 10 ms. 14 cepstral derivatives, computed 
as a linear regression over 5 adjacent frames, are derived from the original coefficients. The trans- 
formation matrices are made to be phoneme-dependent by defining the equivalence classes, ~b(s), 
over the 61 phonemes in the lexicon. 

Experiment Features Normalized Codebooks % Word Error 
1 
2 
3 
4 
5 
6 

14 
14 
28 
28 
28 
28 

NO 
YES 
NO 

YES 
NO 

YES 

17.8 
14.7 
15.3 
13.2 
10.8 
9.8 

Table 1: Comparison of speaker adaptation results averaged over 8 speakers for the Word-Pair 
grammar and the Oct. '87 test set. 

We have performed our development work on 8 speakers using the test set designated by NIST 
as Oct. '87 test. The results of this work, using the standard word-pair grammar, are summarized 
in Table 1, where: 

% Word Error = 100 × [(substitutions + deletions + insertions) / number of word tokens] 
For each experiment we show the number of features used in the DTW alignment, whether the 
iterative normalization procedure was used, and the number of codebooks used in recognition. 

Using experiment (1) as a baseline, the table shows a 45% decrease overall in word error rate 
for using all three improvements together. Comparing experiments using 14 features with their 
counterparts using 28 features shows that the contribution due to the differential features is roughly 
a 10% - 14% reduction in error rate. A similar comparison for using/not-using the normalization 
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reveals a 9% - 17% reduction. Finally, using the second codebook reduces the error rate by 26% - 
29%. 

It should be mentioned that the 40 sentences used for training in these experiments are drawn 
equaUy from 6 recording sessions separated by several days. Furthermore, the test data is from 
another session altogether. For the adaptation methods described here, it is reasonable to assume 
that the training data would be recorded in a single session and only a few minutes before the 
transformed models were ready for use. This means that the adaptation training and test data 
should realistically come from the same recording session. From earlier published experiments using 
single-session training and test, we believe the multi-session material accounts for about I/5 of the 
total word error for the experiments reported here. 

Speaker 
DAS (F) 
DMS (F) 
DTD (F) 
TAB 
PGI-I 
CMR (F) 
ttXS (F) 
DTB 
ERS 
RKM 
JWS 
BEF 

~vLe 

Word 
Substitutions Deletions Insertions Correct 

2.0 
2.2 
4.3 
2.2 
3.9 
2.6 
3.2 
7.5 
8.5 
7.2 
9.0 
8.4 

5.1 

1.5 
2.8 
0.4 
3.4 
2.0 
1.7 
0.5 
2.6 
1.4 
1.9 
4.5 
5.8 

2.4 

0.0 
0.0 
0.4 
0.0 
0.0 
1.7 
3.2 
0.0 
1.9 
2.9 
0.0 
0.9 

0.9 

96.6 
95.0 
95.3 
94.4 
94.1 
95.7 
96.4 
89.9 
90.1 
90.9 
86.5 
85.8 

92.6 

Word Sentence 
Error  Error 

3.5 16.0 
5.0 20.0 
5.1 32.0 
5.6 32.0 
5.9 32.0 
6.0 36.0 
6.9 32.0 

10.1 48.0 
11.8 52.0 
12.0 48.0 
13.5 52.0 
15.1 56.0 

8.4 38.0 

Table 2: Recognition performance by speaker for the Word-Pair g rammar  and the May '88 test set. 

We evaluated the three improvements to the system by testing on new data  designated as 
the May 88 test set which is defined for 12 speakers. For this experiment ,  we added 2 features, 
normalized energy and differential energy, and an additional codebook for the energy features. All 
parameters for this experiment were fixed prior to testing. The results shown in Table 2 were 
obtained from the first run of the system on the May '88 test data. All entries in the table are 
percentages, where: 

% Word Correct = 100 x [1 - (substitutions + deletions) / number of word tokens] 
% Sentence Error = 100 x [number of sentences with any e r ro r  / number of sentences] 

and % Word Error is defined as in Table 1. 

The speakers in Table 2 are ordered from the top by increasing word error rate. It is evident 
from the table that the speakers cluster into two distinct performance groups. It is remarkable 
that  all 5 female speakers are included in the higher performance group despite the fact that  the 
prototype is male. The ordering of speakers shown here is not predicted by their speaker-dependent 
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performance or by subjective listening. 

The average word error rate of 8.4% for this test set is comparable to previously reported results 
from speaker-independent systems on this identical test set. Using training from 105 speakers (4200 
sentences), the word error rates for the Sphinx system of CMU was 8.9% and for the Lincoln Labs 
system; 10.1%. New results from these systems, on different test data but from the same 12 
speakers, are reported elsewhere in these proceedings. 

5. C o n c l u s i o n  

Three improvements to the DTW-based speaker adaptation method have been combined to 
achieve a 45% overall reduction in recognition word error rate on development test data. The largest 
single improvement was due to the addition of a codebook derived from a set of cepstral derivative 
features. This improvement does not affect the estimation of the between-speaker transformation. 
This suggests that further improvements to the speaker-dependent prototype model can lead to 
significant improvements in the adapted model's performance. 

The performance of the system on new evaluation test data was 8.4% word error averaged over 
12 speakers, using the standard word-pair grammar. The system used a total of 600 sentences 
from a single prototype speaker and and a training sample of 40 sentences from each of the 12 test 
speakers. The performance of the system is comparable to several speaker-independent systems 
trained on 4200 sentences from 105 speakers, and tested on the same data. This result suggests 
that speaker adaptation may be the most cost-effective solution for applications which must be 
brought up quickly and must accommodate changing task domains or test conditions. 
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