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ABSTRACT 

Speaker independent phonetic Iranscription of fluent speech is performed using an ergodic 
continuously variable duration hidden Markov model (CVDHMM) to represent the acoustic, 
phonetic and phonotactic structure of speech. An important property of the model is that each 
of its fifty-one states is uniquely identified with a single phonetic unit. Thus, for any spoken 
utterance, a phonetic transcription is obtained from a dynamic programming (DP) procedure for 
finding the state sequence of maximum likelihood. A model has been constructed based on 
4020 sentences from the TIMIT database. When tested on 180 different sentences from this 
database, phonetic accuracy was observed to be 56% with 9% insertions. A speaker dependent 
version of the model was also constructed. The transcription algorithm was then combined 
with lexical access and parsing routines to form a complete recognition system. When tested 
on sentences from the DARPA resource management task spoken over the local switched 
telephone network, phonetic accuracy of 64% with 8% insertions and word accuracy of 87% 
with 3% insertions was measured. This system is presently operating in an on-line mode over 
the local switched telephone network in less than ten times real time on an Alliant FX-80. 

INTRODUCTION 

Though rarely explicitly stated, a fundamental assumption on which many speech recognition 
systems are implicitly based is that speech is literate. That is, it is a code for communication 
having a small number of discrete phonetic symbols in its alphabet. These symbols are, 
however, merely mental constructs and, as such, are not directly accessible but are, instead, 
observable only in their highly variable acoustic manifestation. It is also well-known but 
equally seldom expressed that a hidden Markov model comprises a finite set of discrete 
inaccessible states observable only via a set of random processes, one associated with each 
hidden state. When these two simple ideas are juxtaposed, it seems to us inescapable that the 
most natural representation of speech by a hidden Markov model is one in which the 
hypothetical phonetic symbols are identified with the hidden states of the Markov chain and the 
variability of the measurable acoustic signal is captured by the observable, state-dependent 
random processes. 
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The mathematical details of just such a model are given in [6]. Its application to a small- 
vocabulary continuous speech recognition system and a large-vocabulary isolated word 
recognition system are described in [7] and [8], respectively. Here we present a brief overview 
of the use of this approach in large vocabulary continuous speech recognition and some 
preliminary results of  two experiments performed with it on the TIMIT [4] and DARPA [9] 
databases. 

THE M O D E L  

We have constructed two models, a 51 state model on which the speaker-independent phonetic 
transcription results are based, and a 43 state model on which the speaker-dependent 
recognition of sentences from the DARPA resource management task are founded. The 51 
states in the first model correspond to 51 of  the phonetic symbols used in the standard 
transcriptions of the TIMIT sentences. The 43 states of the second model are associated with 
the 43 symbols used in the pronunciation guide of the Collins English dictionary [1]. The 
phonetic units are listed in figure 1. Flap and closure units are not included in the 43 state 
model. 

STATE TIMIT COLLINS EXPLANATION 

1 h# pau + silence 
2 eh e bet 
3 ao > bought 
4 aa @ cot 
5 uw ux U boot 
6 er R bird 
7 ay I bite 
8 ey A bait 
9 aw W now 
10 ax & schwa 
11 ill i bit 
12 ae a bat 
13 ah ^ butt 
14 uh u book 
15 oy Y boy 
16 iy E beat 
17 ow O boat 
18 axr # diner 
19 1 1 led 
20 el " bottle 
21 r r red 
22 w w wet 
23 y y yet  
24 hh hv h hay 
25 s s sister 
26 sh S shoe 
27 z z zoo 
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28 zh Z 
29 ch C 
30 jh J 
31 th T 
32 dh D 
33 f f 
34 v v 
35 m em m 
36 n e n  n 
37 ng eng N 
38 nx [ 
39 p p 
40 t t 
41 k k 
42 pcl 1 
43 tcl 2 
44 kcl 3 
45 dx ] 
46 b b 

4 7  d d 
48 g g 
49 bcl 4 
50 dcl 5 
51 gcl 6 

measure 
church 
judge 
thief 
they 
food 
v e r v e  

mom 
n u n  

sing 
nasal flap 
pop 
tot 
kick 
p closure 
t closure 
k closure 
alveolar flap 
bob 
dad 
gag 
b closure 
d closure 
g closure 

Figure 1: Phonetic Units and Symbols 

Both models are of the same form, CVDHMM, as described in the reference cited earlier. The 
state transition matrices define ergodic Markov chains and weakly capture the phonotactic 
structure of English. The acoustic measurements are represented by 26-dimensional Gaussian 
density functions. The first twelve coordinates are LPC based cepstra; the second twelve, 
delta-cepstra [2], and the last two, log energy and its time-derivative, respectively. The 
temporal structure of the acoustic signal is reflected in the durational densities which are of the 
two-parameter gamma family. Because of the presence of the durational densities, self- 
transitions are forbidden. 

PARAMETER ESTIMATION 

The parameters for both the 51 and 43 state models were estimated in the same way although 
on different training data. In both cases, the state transition matrix was computed from bigram 
statistics extracted from the Collins dictionary. No attempt was made to count bigrams 
resulting from word junctures. Also, in both cases, the respective databases were segmented by 
hand and labeled with respect to the appropriate phonetic alphabet. Acoustic observations were 
sorted into sets corresponding to the phonetic symbols. The necessary parameters, spectral 
means and covariances and durational means and standard deviations, were then calculated for 
each set independently. No parameter optimization was applied to these estimates. 
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The 51 state speaker-independent model was trained on 4200 sentences of TIMIT data. Ten 
different sentences were selected from each of 402 different speakers. The 43 state speaker- 
dependent model was trained on one reading of the 450 sentences in the TIMIT phonetically 
balanced list by a single male speaker. These utterances were recorded over the local switched 
telephone network with a conventional telephone handset. 

At this writing, we have yet to train a speaker-independent model using the DARPA training 
material. Although we expect to do so, we are concerned about its utility since the phonetic 
contexts in this database are rather restrictive compared with those of the TIMIT sentences. 

PHONETIC TRANSCRIPTION 

Phonetic transcription is accomplished by means of a DP technique for finding the state 
sequence that maximizes the joint likelihood of state, duration and observation sequences. The 
details of this algorithm are given in [7]. Note that this procedure makes no use of lexical or 
syntactic structure. The algorithm runs in approximately twice real time on an Alliant FX-80. 

EXPERIMENTAL RESULTS ON TRANSCRIPTION 

The transcription algorithm was tested on 180 sentences from the TIMIT database. Neither the 
sentences nor the speakers were used in ihe training. Transcription accuracy was determined 
by computing the Levenshtein distance between the derived transcription and the standard 
transcription supplied with the database. By this measure, the 51 state model yielded a 
phonetic recognition rate of 56% with a 9% insertion rate. The 43 state model resulted in a 
64% recognition rate with an 8% insertion rate on 48 sentences from the DARPA task 
collected from the male speaker on whose speech the model had been trained. 

The reader should bear in mind that these are the very first experiments performed with this 
system. We fully expect that the performance will improve greatly as a result of  refinements 
we are presently making to the model. These include accounting for coarticulation, making the 
durational densities more faithful and using parameter reestimation techniques. 

THE SPEECH RECOGNITION SYSTEM 

The phonetic transcription algorithm described above is the first stage of a complete speech 
recognition system. The architecture of the system is unchanged from that described in [8] but 
the details of the lexical access procedure and the parser are utterly different from those given 
in the reference. 

The lexical access procedure is simply that of  computing the likelihood of every word in the 
lexicon over every sub-interval of the observation sequence. We define the likelihood of a 
word on an observation sub-sequence to be the joint likelihood of the standard phonetic 
transcription for that word as given in the lexicon and the phonetic transcription of that 
subsequence provided by the transcription algorithm. Because the standard transcription need 
not have the same length as the one computed for an arbitrary observation sub-sequence, the 
calculation is carried out by means of a DP algorithm. Note that this procedure is 
synchronized at the segment rate, not the frame rate. 
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The parser takes as input, the word lattice constructed by the lexical access procedure and finds 
the well-formed sentence of  maximum likelihood. Here, well-formed means with respect to the 
strict DARPA resource management task grammar. This is a finite state grammar having 4767 
states, 60433 state transitions, 90 final states and a maximum entropy of 4.4 bits/word. The 
parser itself is yet another DP algorithm. The search it effects is not pruned in any way. 

The system has been tested in an on-line mode over the switched local telephone network. 
Under these conditions, we obtained an 87% correct word recognition rate and a 3% insertion 
rate. On an Alliant FX-80, a sentence is recognized in less than ten times real time. A sample 
of  the recognizer output is shown in figure 2. 

PHONETIC TRANSCRIPTION: h@riRriEZUzpl>grUDENw^ndTWz&ndSEdED&nd>rTtUsiZ 
&kObS&n 

DURATIONS: 
5 5 7 4 8 8 7 5 1 0 1 7  9 1 2  4 613  8 8 7 6 9 7 6 6 7 4 
9 1910 3 6 3 11 17 5 12 4 4 5 3 9 6 7 6 7 14 5 8 3 10 12 
3 1 3 7 5  

LOG LIKELIHOOD = 0.23880190715663E+04 

POSITION BEGIN END STATE LOG LIKELIHOOD WORD 
1 49 53 19 0.2250650E+02 ocean 
2 42 48 394 0.2147619E+02 pacific 
3 37 41 344 0.1887782E+02 north 
4 35 36 265 0.1787559E+02 the 
5 34 34 378 0.1733334E+02 in 
6 30 33 299 0.1590989E+02 feet 
7 24 29 926 0.1379514E+02 thousand 
8 21 23 838 0.1118440E+02 one 
9 18 20 758 0.1093698E+02 than 

10 13 17 691 0.9208550E+01 longer 
11 9 12 623 0.6723166E+01 ships 
12 6 8 557 0.4362227E+01 any 
13 3 5 513 0.3019794E+01 there 
14 1 2 491 0.1371470E+01 are 

RECOGNIZED SENTENCE: are there any ships longer than one thousand feet in the 
north pacific ocean 

LOG LIKELIHOOD = 0.22506502151489E+02 

RECOGNITION TIME = 49.78 CPU-SECONDS 

Figure 2: Sample of Sentence Recognition Results 

C O N C L U S I O N  
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We have presented some very early results of experiments on phonetic transcription and 
recognition of fluent speech based on a novel use of a hidden Markov model. While our error 
rates are substantially higher than those achieved by more conventional systems [5,3,10], we 
believe that by improving the acoustic/phonetic model - the only adjustable part of the system - 
results comparable to those obtained by other investigators can be realized. 
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