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Abstract

This paper investigates some computa-
tional problems associated with proba-
bilistic translation models that have re-
cently been adopted in the literature on
machine translation. These models can be
viewed as pairs of probabilistic context-
free grammars working in a ‘synchronous’
way. Two hardness results for the class
NP are reported, along with an exponen-
tial time lower-bound for certain classes
of algorithms that are currently used in the
literature.

1 Introduction

State of the art architectures for machine transla-
tion are all based on mathematical models called
translation models. Generally speaking, a transla-
tion model accounts for all the elementary opera-
tions that rule the process of translation between the
words and the different word orderings of the source
and target languages. Translation models are usu-
ally enriched with statistical parameters, to drive the
search toward the most likely translation(s). Special-
ized algorithms are provided for the automatic esti-
mation of these parameters from corpora of trans-
lation pairs. Besides the task of natural language
translation, statistical translation models are also ex-
ploited in other applications, such as word align-
ment, multilingual document retrieval and automatic
dictionary construction.

The most successful translation models that are
found in the literature exploit finite-state machinery.

The approach started with the so-called IBM mod-
els (Brown et al., 1988), implementing a set of ele-
mentary operations, such as movement, duplication
and translation, that independently act on individ-
ual words in the source sentence. These word-to-
word models have been later enriched with the in-
troduction of larger units such as phrases; see for
instance (Och et al., 1999; Och and Ney, 2002).
Still, the generative capacity of these models lies
within the realm of finite-state machinery (Kumar
and Byrne, 2003), so they are unable to handle
nested structures and do not provide the expressivity
required to process language pairs with very differ-
ent word orderings.

Recently, more sophisticated translation models
have been proposed, borrowing from the theory of
compilers and making use of synchronous rewrit-
ing. In synchronous rewriting, two formal gram-
mars are exploited, one describing the source lan-
guage and the other describing the target language.
Furthermore, the productions of the two gram-
mars are paired and, in the rewriting process, such
pairs are always applied synchronously. Formalisms
based on synchronous rewriting have been empow-
ered with the use of statistical parameters, and spe-
cialized estimation and translation (decoding) algo-
rithms were newly developed. Among the several
proposals, we mention here the models presented
in (Wu, 1997; Wu and Wong, 1998), (Alshawi et al.,
2000), (Yamada and Knight, 2001), (Gildea, 2003)
and (Melamed, 2003).

In this paper we consider synchronous models
based on context-free grammars and probabilistic
extensions thereof. This is the most common choice
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in statistical translation models that exceed the gen-
erative power of finite-state machinery. We focus
on two associated computational problems that have
been defined in the literature. One is the member-
ship problem, which involves testing whether an in-
put string pair can be generated by the model. The
other is the translation problem (also called the de-
coding problem) which involves the search for a
suitable translation of an input string/structure. It
has been often informally stated in the literature
that the use of structured models results in efficient,
polynomial time algorithms for the above problems.
We show here that sometimes this is not the case.
The contribution of this paper can be stated as fol-
lows:

• we show that the membership problem is NP-
hard, unless a constant bound is imposed on the
length of the productions (Section 3);

• we show an exponential time lower bound for
the membership problem, in case chart parsing
is adopted (Section 3);

• we show that translating an input string into
the best parse tree in the target language is NP-
hard, even in case productions are bounded in
length (Section 4).

Investigation of the computational complexity of
translation models has started in (Knight, 1999) for
word-to-word models. This paper can be seen as the
continuation of that line of research.

2 Synchronous context-free grammars

Several definitions for synchronous context-free
grammars have been proposed in the literature; see
for instance (Chiang, 2004; Chiang, 2005). Our
definition is based on syntax-directed translation
schemata (SDTS; Aho and Ullman, 1972), with the
difference that we do not impose the restriction that
two paired context-free productions have the same
left-hand side. As it will be discussed in Section 4,
this results in an enriched generative capacity when
probabilistic extensions are considered. We assume
the reader is familiar with the definition of context-
free grammar (CFG) and with the associated notion
of derivation.

Let VN and VT be sets of nonterminal and termi-
nal symbols, respectively. In what follows we need
to represent bijections between all the occurrences
of nonterminals in two strings over VN ∪ VT . This
can be done by annotating nonterminals with indices
from an infinite set. We define I(VN ) = {A(t) |
A ∈ VN , t ∈ N} and VI = I(VN ) ∪ VT . We
write index(γ), γ ∈ V ∗

I , to denote the set of all in-
dices (the integers t) that appear in symbols in γ.
Two strings γ, γ′ ∈ V ∗

I are synchronous if each in-
dex in index(γ) occurs only once in γ, each index
in index(γ′) occurs only once in γ′, and index(γ) =
index(γ′). Therefore synchronous strings have the
general form

u10A
(t1)
11 u11A

(t2)
12 u12 · · · u1r−1A

(tr)
1r u1r,

u20A
(tπ(1))

21 u21A
(tπ(2))

22 u22 · · · u2r−1A
(tπ(r))

2r u2r,

where r ≥ 0, u1i, u2i ∈ V ∗
T , A

(ti)
1i , A

(tπ(i))

2i ∈
I(VN ), ti 6= tj for i 6= j and π is some permuta-
tion defined on set {1, . . . , r}.

Definition 1 A synchronous context-free gram-
mar (SCFG) is a tuple G = (VN , VT , P, S), where
VN , VT are finite, disjoint sets of nonterminal and
terminal symbols, respectively, S ∈ VN is the start
symbol and P is a finite set of synchronous produc-
tions, each of the form [A1 → α1, A2 → α2], with
A1, A2 ∈ VN and α1, α2 ∈ V ∗

I synchronous strings.

The size of a SCFG G is defined as |G| =∑
[A1→α1, A2→α2]∈P |A1α1A2α2|. Based on an ex-

ample from (Yamada and Knight, 2001), we provide
a sample SCFG fragment translating from English to
Japanese, specified by means of the following syn-
chronous productions:

s1 : [VB → PRP(1) VB1(2) VB2(3),

VB → PRP(1) VB2(3) VB1(1)]
s2 : [VB2 → VB(1) TO(2),

VB2 → TO(2) VB(1) ga]
s3 : [TO → TO(1) NN(2), TO → NN(2) TO(1)]
s4 : [PRP → he, PRP → kare ha]
s5 : [VB1 → adores, VB1 → daisuki desu]
s6 : [VB → listening, VB → kiku no]
s7 : [TO → to, TO → wo]
s8 : [NN → music, NN → ongaku]

Note that in production s2 above, the nonterminals
VB and TO generated from nonterminal VB2 in
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the English component are inverted in the Japanese
component, where some additional lexical material
is also added.

In a SCFG, the ‘derives’ relation is defined on
synchronous strings in terms of simultaneous rewrit-
ing of two nonterminals with the same index. Some
additional notation will help us defining this rela-
tion precisely. A reindexing is a one-to-one func-
tion on N. We extend a reindexing f to VI by letting
f(A(t)) = A(f(t)) for A(t) ∈ I(VN ) and f(a) = a
for a ∈ VT . We also extend f to strings in V ∗

I by
letting f(ε) = ε and f(Xγ) = f(X)f(γ), for each
X ∈ VI and γ ∈ V ∗

I . We say that strings γ1, γ2 ∈
V ∗

I are independent if index(γ1) ∩ index(γ2) = ∅.

Definition 2 Let G = (VN , VT , P, S) be a SCFG
and let γ1, γ2 be synchronous strings in V ∗

I . The
derives relation [γ1, γ2] ⇒G [δ1, δ2] holds
whenever there exist an index t in index(γ1), a syn-
chronous production [A1 → α1, A2 → α2] in P
and some reindexing f such that

(i) f(α1α2) and γ1γ2 are independent; and

(ii) γi = γ′iA
(t)
i γ′′i , δi = γ′if(αi)γ′′i , for i = 1, 2.

We also write [γ1, γ2] ⇒s
G [δ1, δ2] to explicitly

indicate that the derives relation holds through some
synchronous production s ∈ P .

Since δ1 and δ2 in Definition 2 are synchronous
strings, we can define the reflexive and transitive
closure of ⇒G, written ⇒∗

G. This relation is used
to represent derivations in G. In case we have
[γ1i−1, γ2i−1] ⇒si

G [γ1i, γ2i] for 1 ≤ i ≤ n,
n ≥ 1, we also write [γ10, γ20] ⇒σ

G [γ1n, γ2n],
where σ = s1s2 · · · sn. We always assume some
canonical form for derivations (as for instance left-
most derivation on the left component). Similarly to
the case of context-free grammars, each derivation
in G can be associated with a pair of parse trees, that
is, one parse tree for each dimension.

Back to our example, we report a fragment of a
derivation of the string pair [he adores listening to
music, kare ha ongaku wo kiku no ga daisuki desu]:

[VB(1), VB(1)]
⇒s1

G [PRP(2) VB1(3) VB2(4),

PRP(2) VB2(4) VB1(3)]
⇒s4

G [he VB1(3) VB2(4),

kare ha VB2(4) VB1(3)]
⇒s5

G [he adores VB2(4),

kare ha VB2(4) daisuki desu]
⇒s2

G [he adores VB(5) TO(6),

kare ha TO(6) VB(5) ga daisuki desu].

The translation generated by a SCFG G is a bi-
nary relation over V ∗

T defined as

T (G) = {[w1, w2] | [S(1), S(1)] ⇒∗
G [w1, w2],

w1, w2 ∈ V ∗
T }.

The set of strings that are translations of a given
string w1 is defined as:

T (G, w1) = {w2 | [w1, w2] ∈ T (G)}.

A probabilistic SCFG (PSCFG) is a pair (G, pG)
where G = (VN , VT , P, S) is a SCFG and pG is a
function from P to real numbers in [0, 1] such that,
for each A1, A2 ∈ VN , we have:∑

α1,α2

pG([A1 → α1, A2 → α2] = 1.

If for n ≥ 1 and si ∈ P , 1 ≤ i ≤ n, string
σ = s1s2 · · · sn is a canonical derivation of the form
[S(1), S(1)] ⇒σ

G [w1, w2], we write pG(σ) =∏n
i=1 pG(si). If D([w1, w2]) is the set of all canon-

ical derivations in G for pair [w1, w2], we write
pG([w1, w2]) =

∑
σ∈D([w1,w2]) pG(σ).

3 The membership problem

We consider here the membership problem for
SCFG, defined as follows: for input instance a
SCFG G and a pair [w1, w2], decide whether
[w1, w2] is in T (G). This problem has been con-
sidered for instance in (Wu, 1997) for his inver-
sion transduction grammars and has applications in
the support of several tasks of automatic annotation
of parallel corpora, as for instance segmentation,
bracketing, phrasal and word alignment. We show
that the membership problem for SCFGs is NP-
hard. The result could be derived from the findings
in (Melamed et al., 2004) that synchronous rewriting
systems as SCFGs are related to the class of so called
linear context-free rewriting systems (LCFRSs) and
from the result that the membership problem for
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LCFRSs is NP-hard (Satta, 1992; Kaji and others,
1994). However, we provide here a direct proof, to
simplify the presentation.

Theorem 1 The membership problem for SCFGs is
NP-hard.

Proof. We reduce from the three-satisfiability
problem (3SAT, Garey and Johnson, 1979). Let
〈U,C〉 be an instance of the 3SAT problem, where
U = {u1, . . . , up} is a set of variables and C =
{c1, . . . , cn} is a set of clauses. Each clause is a set
of three literals from {u1, u1, . . . , up, up}.

The general idea of the proof is to use a string
pair [w1w2 · · ·wp, wc], where wc is a string repre-
sentation of C and each wi is a string controlling the
truth assignment for the variable ui. We then con-
struct a SCFG G such that each wi can be derived
in two possible ways only, using some specialized
productions of G, encoding the truth assignment of
variable ui. In this way the derivation of the whole
string w1 · · ·wp in the left dimension corresponds to
a guess of a truth assignment for U . Accordingly, on
the right dimension only those symbols of wc will
be derived that represent clauses that hold true un-
der the guessed assignment.

We need some additional notation. Below we
treat C as an alphabet of atomic symbols. We use
a function d such that, for every i with 1 ≤ i ≤
p, cd(i,1), cd(i,2), . . . , cd(i,si) is the sequence of all
clauses that include literal ui, in the left to right
order in which they appear within c1c2 · · · cn, and
cd(i,si+1), cd(i,si+2), . . . , cd(i,ti) is the sequence of all
clauses that include literal ui, again as they appear
within c1c2 · · · cn from left to right. Note that we
must have

∑p
i=1 ti = 3n. We also use a function

e such that, for every 1 ≤ i ≤ p and 1 ≤ j ≤ ti,
e(i, j) = j +

∑i−1
k=1 tk (assume

∑0
k=1 tk = 0).

Consider the alphabet {ai, bi | 1 ≤ i ≤ p}. For
every i, 1 ≤ i ≤ p, let wi denote a sequence of
exactly ti + 1 alternating symbols ai and bi, i.e.,
wi ∈ (aibi)+ ∪ (aibi)∗ai. For every 1 ≤ i ≤ p,
let x(i, 1) = aibi and let x(i, h) = ai (resp. bi)
if h is even (resp. odd), 2 ≤ h ≤ ti. Let
also x(i, h) = ai (resp. bi) if h is odd (resp.
even), 1 ≤ h ≤ ti − 1, and let x(i, ti) = aibi

(resp. biai) if ti is odd (resp. even). There-
fore we can write wi = x(i, 1)x(i, 2) · · ·x(i, t1) =
x(i, 1)x(i, 2) · · ·x(i, t1).

Finally, we need a permutation π defined on the
set {1, . . . , 3n} as follows. Fix i and j with 1 ≤ i ≤
p and 1 ≤ j ≤ ti, and let h be the number of oc-
currences of the clause cd(i,j) found in the sequence
cd(1,1), cd(1,2), . . ., cd(1,t1), cd(2,1), . . ., cd(i,j). Note
that we must have 1 ≤ h ≤ 3. Then we set
π(e(i, j)) = 3 · [d(i, j)− 1] + h.

We can now define the target instance
〈G, [w,w′]〉 of our reduction. Let [w,w′] =
[w1w2 · · ·wp, c1c2 · · · cn]. Let also G = (VN , VT ,
P, S), with VN = {S} ∪ {Ai | 1 ≤ i ≤ 3n} and
VT = C ∪ {ai, bi | 1 ≤ i ≤ p}. The productions
below define set P :

(i) for every 1 ≤ i ≤ p:

(a) for 1 ≤ h ≤ si:
[Ae(h,i) → x(i, h), Ae(h,i) → ce(i,h)],
[Ae(h,i) → x(i, h), Ae(h,i) → ε],
[Ae(h,i) → x(i, h), Ae(h,i) → ε];

(b) for si + 1 ≤ h ≤ ti:
[Ae(h,i) → x(i, h), Ae(h,i) → ε],
[Ae(h,i) → x(i, h), Ae(h,i) → ce(i,h)],
[Ae(h,i) → x(i, h), Ae(h,i) → ε];

(ii) [S → A
(e(1,1))
e(1,1) A

(e(1,2))
e(1,2) · · ·

A
(e(1,t1))
e(1,t1) A

(e(2,1))
e(2,1) · · ·A(e(p,tp))

e(p,tp) ,

S → A
(π(e(1,1)))
π(e(1,1)) A

(π(e(1,2)))
π(e(1,2)) · · ·

A
(π(e(1,t1)))
π(e(1,t1)) A

(π(e(2,1)))
π(e(2,1)) · · ·A(π(e(p,tp)))

π(e(p,tp)) ].

It is easy to see that |G|, |w| and |w′| are polyno-
mially related to |U | and |C|. From a derivation of
[w,w′] ∈ T (G), we can exhibit a truth assignment
that satisfies C simply by reading off the derivation
of the left string w1w2 · · ·wp. Conversely, starting
from a truth assignment that satisfies C we can prove
w ∈ L(G) by means of (finite) induction on |U |: this
part requires a careful inspection of all items in the
definition of G.

From Theorem 1 we may conclude that algo-
rithms for the membership problem for SCFGs are
very unlikely to run in polynomial time. In the
literature, several algorithms for this problem have
been proposed using tabular methods (chart pars-
ing). In the worst case, all these algorithms run in
time Θ(|G| · nk(G)), with G an SCFG and n the
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length of the input string pair. We know that, un-
less P = NP, k(G) cannot be a constant. We now
prove a lower bound on k(G), providing thereby an
exponential time lower bound result for our problem
under the assumption of the tabular paradigm.

Tabular methods for the membership problem are
based on the following representation. Given a syn-
chronous production

s : [A1 → B
(1)
11 · · ·B(r)

1r ,

A2 → B
(π(1))
21 · · ·B(π(r))

2r ], (1)

the already recognized constituent pairs B1i, B2π(i)

are gather together in several steps, keeping a record
of the spanned substrings of the input. To pro-
vide a concrete example, if we gather all the B1i’s
on the left dimension from left to right, the partial
analysis we obtain after the first step can be repre-
sented as a state 〈s(1), (i11, j11), (i21, j21)〉, mean-
ing that B11 and B2π(1) span substrings w1[i11, j11]
and w2[i21, j21], respectively.1 At the second
step we have a state 〈s(2), (i11, j12), (i21, j21),
(i22, j22)〉, meaning that B11B12 together span
w1[i11, j12], B2π(1) spans w2[i21, j21] and B2π(2)

spans w2[i22, j22]. We can see that, for some worst
case permutations, the left-to-right strategy demands
for increasingly more pairs of indices, so that the ex-
ponent in the time complexity linearly grows with r.

How much better can we do, if we exploit some
strategy other than the left-to-right above? More
precisely, we ask how many unconnected spannings
a state may require for some worst case permutation
π, under the choice of the best possible parsing strat-
egy for π itself.

Theorem 2 In the worst case, standard tabular
methods for the SCFG membership problem require
an amount of time Ω(|G|nc·

√
r), with r the length of

the longest production in G and c a constant.

Proof. For any r ≥ 8 we let q = b
√

r/2c ≥
b
√

8/2c = 2, and define a permutation πr on
{1, . . . , r}. We view the domain of πr as composed
of 2q blocks with q adjacent integers each, possi-
bly followed by r − 2q2 additional “padding” in-
tegers, and its codomain as composed of q blocks

1For a string w = a1 · · · an, we write w[i, j] to denote the
substring ai+1 · · · aj .

with 2q adjacent integers each, again possibly fol-
lowed by r − 2q2 “padding” integers. Permutation
πr transposes all blocks by sending the j-th element
of the i-th block in the domain into the i-th element
of the j-th block in the codomain, while mapping
each padding integer identically into itself. For-
mally, for all positive integers i ≤ 2q and j ≤ q,
πr(q · (i − 1) + j) = 2q · (j − 1) + i, and for all
integers i with 2q2 < i ≤ r, πr(i) = i.

We count below how many spans are instanti-
ated by a state that has gathered p constituent pairs,
1 ≤ p ≤ r, in parsing production (1) under any pos-
sible strategy. When a constituent pair B1i, B2πr(i)

is gathered, we say integer i in the domain of πr and
integer πr(i) in the codomain have been pebbled. In
this way each span (i, j) in a state corresponds to
some run i, i + 1, . . . j of pebbled integers, with ei-
ther i = 1 or i− 1 unpebbled, and with either j = r
or j + 1 unpebbled. We call each such run a seg-
ment, and show that every parsing strategy demands
at least q = b

√
r/2c segments either in the domain

or in the codomain of πr.
We say that a block in the domain of πr is empty,

full, or mixed if, respectively, none, all, or some but
not all of its elements have been pebbled. Assume
that, for a given parsing strategy, the last block that
becomes mixed does so when we place the i-th peb-
ble, and the first block that becomes full does so
when we place the j-th pebble. Obviously i 6= j:
the first pebble placed in a previously empty block
can not make it full since every block contains at
least 2 elements.

If i < j, after placing the i-th pebble and before
placing the j-th pebble every block in the domain of
πr is mixed. Each of these 2q blocks then contains
at least one pebbled element which is adjacent to an
unpebbled one and must therefore be either the first
or the last element of a segment. The domain of πr

then contains at least 2q/2 = q segments.
If j < i, after placing the j-th pebble and be-

fore placing the i-th pebble at least one block in the
domain of πr (e.g., the h-th block) is full, and at
least one (e.g., the k-th) is empty. Then, in each
of the q blocks in the codomain of πr, the h-th el-
ement is pebbled while the k-th is not. Therefore
the h-th elements of any two consecutive blocks in
the codomain of πr must belong to two distinct seg-
ments, since at least one intermediate element is not
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pebbled. The codomain of πr then contains at least
q segments.

4 The translation problem

In this section we consider some formulations of the
translation problem for PSCFG that have been pro-
posed in the literature. The most general definition
of the translation problem for PSCFG is this: for
an input PSCFG Gp = (G, pG) and an input string
w, produce a representation of all possible parse
trees, along with their probabilities, that are assigned
by G to a string in the set T (G, w) under some trans-
lation of w.

Variant of this definition can be found where the
input is a single parse tree for w (Yamada and
Knight, 2001), or where the output is a single parse
tree, chosen according to some specific criteria (Wu
and Wong, 1998). To formally study these problems,
in what follows we focus on single parse trees asso-
ciated with derivations in Gp. For a derivation σ of
the form [S(1), S(1)] ⇒σ

G [w1, w2], we write tσ,l and
tσ,r to denote the left and the right parse trees, re-
spectively, associated with σ. The probability that
tσ,r is obtained as a translation of tσ,l through Gp is
thus pG([tσ,l, tσ,r]) = pG(σ). Let t be some parse
tree; we write y(t) to denote the string in the yield
of t. For a string w ∈ V ∗

T and a parse tree t, we
also consider the probability that t is obtained from
w through Gp, defined as:

pG([w, t]) =
∑

y(t′)=w

pG([t′, t]). (2)

We can now precisely define the variants of the
translation problem we are interested in. Given
as input a PSCFG Gp = (G, pG) and two strings
w1, w2 ∈ V ∗

T , output the pair of parse trees

argmax
y(t1) = w1,
y(t2) = w2

pG([t1, t2]). (3)

If the synchronous productions in the underlying
SCFG G have length bounded by some constant,
then the above problem can be solved in polynomial
time using extensions of the Viterbi search strategy
to parse forests. This has been shown for instance
in (Wu and Wong, 1998; Yamada and Knight, 2001;
Melamed, 2004).

A second interesting problem is defined as fol-
lows. Given as input a PSCFG Gp = (G, pG) and a
string w ∈ V ∗

T , output the parse tree

argmax
t

pG([w, t]). (4)

Even in case we impose some constant bound on
the length of the synchronous productions in G, the
above problem is NP-hard, as we show in what fol-
lows.

We assume the reader is familiar with the defini-
tion of probabilistic context-free grammar (PCFG)
and with the associated notion of derivation prob-
ability (Wetherell, 1980). We denote a PCFG as
a pair (G, pG), with G = (VN , VT , P, S) the un-
derlying context-free grammar and pG the associ-
ated function providing the probability distributions
for the productions in P , conditioned on their left-
hand side. A probabilistic regular grammar (PRG)
is a PCFG with underlying productions of the form
A → aB or A → ε, with A,B nonterminal symbols
and a a terminal symbol.

We consider below a decision problem associated
with PRG, called the consensus problem, defined as
follows: Given as input a PRG (G, pG) and a ra-
tional number d ∈ [0, 1], decide whether there ex-
ists a string w in the language generated by G such
that pG(w) ≥ d. It has been shown in (Casacuberta
and de la Higuera, 2000) that, for a PRG G whose
productions have all probabilities expressed by ra-
tional numbers, the above problem is NP-complete.
(Essentially the same result is also reported in (Lyn-
gso and Pedersen, 2002), stated in terms of hidden
Markov models.) We reduce the consensus problem
for PRG to a decision version of the problem in (4),
called the best translated derivation problem and
defined as follows. Given as input a PCFG Gp =
(G, pG), a string w ∈ V ∗

T and a rational number
d ∈ [0, 1], decide whether maxt pG([w, t]) ≥ d.

Theorem 3 The best translated derivation problem
for the class PSCFG is NP-hard.

Proof. We provide a reduction from the consensus
problem for the class PRG with rational production
probabilities. The main idea is described in what fol-
lows. Given the input PRG Gp, we construct a target
PSCFG G′

p that translates string $ into $, with $ a
special symbol. Given as input the string $, G′

p sim-
ulates all possible derivations of Gp through its own
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derivations. This is done by encoding the nontermi-
nals appearing in a derivation ρ of Gp within the left
component of some derivation σ of G′

p, and by en-
coding the terminal string generated by ρ within the
right component of σ. The probability of ρ is also
preserved by σ.

Let Gp = (G, pG), d be an instance of the con-
sensus problem as above, with G = (VN , VT , P, S).
We specify a PSCFG G′

p = (G′, pG′) with G′ =
(V ′

N , {$}, P ′, S) and V ′
N = VN ∪ VT . Set P ′ is con-

structed as follows:

(i) for every (S → aA) ∈ P , s : [S → A(1), S →
a(1)] is added to P ′, with pG′(s) = pG(S →
aA);

(ii) for every (S → ε) ∈ P , s : [S → $, S → $] is
added to P ′, with pG′(s) = pG(S → ε);

(iii) for every a ∈ VT and (A → bB) ∈ P , s :
[A → B(1), a → b(1)] is added to P ′, with
pG′(s) = pG(A → bB)

(iv) for every a ∈ VT and (A → ε) ∈ P ,
s : [A → $, a → $] is added to P ′, with
pG′(s) = pG(A → ε).

Note that the construction of G′
p can be carried out

in quadratic time in the size of Gp. It is not diffi-
cult to see that there exists a derivation of the form
S ⇒G a1A1 ⇒G a1a2A2 · · · ⇒G a1a2 · · · anAn

if and only if there exist a derivation in G′ asso-
ciated with unary trees t1 and t2, such that string
SA1A2 · · ·An is read from the spine of t1 and string
Sa1a2 · · · an is read from the spine of t2. Further-
more, the two derivations are composed of ‘corre-
sponding’ productions with the same probabilities.
We conclude that there exists a string w in L(G)
with pG(w) > d if and only if there exists a unary
tree t with string Sw$ read from the spine such that
pG′([$, t]) > d.

We discuss below an interesting consequence of
Theorem 3. The SDTS formalism discussed in Sec-
tion 1 has been extended to the probabilistic case
in (Maryanski and Thomason, 1979), called stochas-
tic SDTS (SSDTS). As a corollary to the proof of
Theorem 3, we obtain that one can define, through
some PSCFG Gp and some fixed string w, a proba-
bility distribution pG([w, t]) on parse trees that can-
not be obtained through any SSDTS. Without pro-

viding the details of the definition of SSDTS, we
give here only an outline of the proof. We also as-
sume that the reader is familiar with probabilistic
finite automata and with their distributional equiv-
alence with PRG.

Consider the PSCFG G′
p = (G′, pG′) defined in

the proof of Theorem 3, and assume there exists
some SSDTS G′′

p = (G′′, pG′′) such that, for every
tree t, we have pG′′([$, t]) = pG′([$, t]). Since in a
derivation of an SDTS the generated trees are always
isomorphic, up to some reordering of sibling nodes,
we obtain that the productions of G′′ must have the
form [S → a(1), S → a(1)], [a → b(1), a → b(1)]
and [a → $, a → $]. From these productions we
can construct a probabilistic deterministic finite au-
tomaton generating the same language as the PRG
Gp, and with the same distribution. But this is im-
possible since there are string distributions defined
by some PRG that cannot be obtained through prob-
abilistic deterministic finite automata; see for in-
stance (Vidal et al., 2005).

We conclude by remarking that in (Casacuberta
and de la Higuera, 2000) it is shown that finding
the best output string for a given input string is NP-
hard for stochastic SDTS with a single nonterminal
in each production’s right-hand side. Our result in
Theorem 3, stated for PSCFG, is stronger, since it in-
vestigates individual parse trees rather than strings.

5 Concluding remarks

The presented results are based on worst case analy-
sis: further experimental evaluation needs to be car-
ried out on multilingual corpora in order to asses the
practical impact of these findings.
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